MOBILE VIEW  | 

BUTOXYETHOXY ETHANOL

Classification   |    Detailed evidence-based information

Therapeutic Toxic Class

    A) Butoxyethoxy ethanol or diethylene glycol monobutyl ether (DGBE) is used primarily as an industrial solvent.

Specific Substances

    1) 2-(2-butoxyethanoxy) ethanol
    2) Butoxydiethylene glycol
    3) Butyl carbitol
    4) Butyl digol
    5) DGBE (diethylene glycol butyl ether)
    6) Diethylene glycol monobutyl ether
    7) Diglycol monobutyl ether
    8) Molecular Formula: C8-H18-O3
    9) CAS 112-34-5
    10) BUCB
    11) BUTYL DIOXITOL
    12) ETHANOL, BUTOXYETHOXY
    1.2.1) MOLECULAR FORMULA
    1) C8-H18-O3

Available Forms Sources

    A) USES
    1) It is primarily used as a solvent in hard-surface cleaners and inks, and as a solvent and coalescing agent in paints and other coatings (Clayton & Clayton, 1994), as well as a melting-out solution in the textile industry or as a solvent for cellulose nitrate.

Life Support

    A) This overview assumes that basic life support measures have been instituted.

Clinical Effects

    0.2.1) SUMMARY OF EXPOSURE
    A) USES: Butoxyethoxy ethanol or diethylene glycol monobutyl ether (DGBE) is a colorless, odorless liquid. It is primarily used as a solvent in hard-surface cleaners and inks, and as a solvent and coalescing agent in paints and other coatings. It is also used as a melting-out solution in the textile industry or as a solvent for cellulose nitrate.
    B) TOXICOLOGY: DGBE has a low order of toxicity via the oral, dermal and inhalational route. The primary urinary metabolites are 2-butoxyethoxyacetic acid, along with diethylene glycol, and hydroxybutoxyethoxyacetic acid.
    C) EPIDEMIOLOGY: Acute poisoning is relatively rare but DGBE is used widely in industrial settings and chronic exposure may occur in many workers among certain industries.
    D) WITH POISONING/EXPOSURE
    1) MILD TO MODERATE TOXICITY: DGBE is an irritant to eyes, skin, and mucosa. Increased intraocular pressure was noted after instillation of a 0.4 mL of a 10% solution of DGBE. Patients may experience nausea, vomiting, and diarrhea following ingestion of DGBE.
    2) SEVERE TOXICITY: Tachypnea, cyanosis, uremia and impaired kidney function have been observed. Large and intentional exposures to other diglycol ethers have resulted in reports of CNS depression, metabolic acidosis, renal injury, and acute lung injury. Theoretically, acidosis may occur.
    0.2.20) REPRODUCTIVE
    A) At the time of this review, no data were available to assess the potential effects of exposure to this agent during pregnancy or lactation.
    0.2.21) CARCINOGENICITY
    A) At the time of this review, no data were available to assess the carcinogenic potential of this agent.

Laboratory Monitoring

    A) Monitor pulse oximetry and/or arterial blood gases, chest radiograph and pulmonary function tests in patients with respiratory signs/symptoms.
    B) In severe toxic cases, monitor renal function and evaluate for acidosis.

Treatment Overview

    0.4.2) ORAL/PARENTERAL EXPOSURE
    A) MANAGEMENT OF MILD TO MODERATE TOXICITY
    1) Treatment is predominantly decontamination, and symptomatic and supportive care. Monitor patients for respiratory distress.
    B) MANAGEMENT OF SEVERE TOXICITY
    1) In patients with severe toxicity, supportive care with attention to monitoring for respiratory depression is recommended. Following an inhalational exposure, move the patient to fresh air. Monitor for respiratory distress. If cough or difficulty breathing develops, evaluate for respiratory tract irritation, bronchitis, or pneumonitis. Administer 100% humidified supplemental oxygen, perform endotracheal intubation and provide assisted ventilation as required. Administer inhaled beta-2 adrenergic agonists and systemic corticosteroids if bronchospasm develops. Acid-base balance should be assessed after significant ingestion or in symptomatic patients. Monitor and support renal function. There is no data to evaluate the efficacy of alcohol dehydrogenase inhibition with ethanol or fomepizole; it should be considered in patients who develop significant metabolic acidosis or acute renal failure.
    C) DECONTAMINATION
    1) PREHOSPITAL: Gastrointestinal decontamination is not recommended after ingestion because of the risk of CNS and respiratory depression and aspiration. Remove contaminated clothing and wash exposed area thoroughly with soap and water. Irrigate exposed eyes with copious amounts of room temperature 0.9% saline or water for at least 15 minutes. If present, carefully remove contact lenses.
    2) HOSPITAL: Consider activated charcoal if the overdose is recent, the patient is not vomiting, and is able to maintain airway. However, given the low order of toxicity of this compound, routine administration of activated charcoal is not recommended. Remove contaminated clothing and wash exposed area thoroughly with soap and water. Irrigate exposed eyes with copious amounts of room temperature 0.9% saline or water for at least 15 minutes. If present, carefully remove contact lenses. If irritation, pain, swelling, lacrimation, or photophobia persists after 15 minutes of irrigation, an ophthalmologic examination should be performed.
    D) AIRWAY MANAGEMENT
    1) Administer 100% humidified supplemental oxygen; perform endotracheal intubation and provide assisted ventilation as required based on clinical signs. Administer inhaled beta2-adrenergic agonists and systemic corticosteroids if bronchospasm develops.
    E) ANTIDOTE
    1) There is no specific antidote for treatment of DGBE exposure. At the time of this review, there are insufficient data to recommend the administration of an alcohol dehydrogenase inhibitor (fomepizole or ethanol). However, this is reasonable in a patient who develops metabolic acidosis following DGBE exposure. FOMEPIZOLE VS ETHANOL : Fomepizole is easier to use clinically, requires less monitoring, and does not cause CNS depression or hypoglycemia. Ethanol requires continuous administration and frequent monitoring of serum ethanol and glucose levels, and may cause CNS depression and hypoglycemia (especially in children). The drug cost associated with ethanol use is generally much lower than with fomepizole; however, other costs associated with ethanol use (continuous intravenous infusion, hourly blood draws and ethanol levels, possibly greater use of hemodialysis) may make the costs more comparable.
    a) FOMEPIZOLE: Fomepizole is administered as a 15 mg/kg loading dose, followed by four bolus doses of 10 mg/kg every 12 hours. If therapy is needed beyond this 48 hour period, the dose is then increased to 15 mg/kg every 12 hours for as long as necessary. Fomepizole is also effectively removed by hemodialysis; therefore, doses should be repeated following each round of hemodialysis.
    b) ETHANOL: Ethanol is given to maintain a serum ethanol concentration of 100 to 150 mg/dL. This can be accomplished by using a 5% to 10% ethanol solution administered IV through a central line. Intravenous therapy dosing, which is preferred, is 0.8 g/kg as a loading dose (8 mL/kg of 10% ethanol) administered over 20 to 60 minutes as tolerated, followed by an infusion rate of 80 to 150 mg/kg/hr (for 10% ethanol, 0.8 to 1.3 mL/kg/hr for a nondrinker; 1.5 mL/kg/hr for a chronic alcoholic). During hemodialysis, either add ethanol to the dialysate to achieve 100 mg/dL concentration or increase the rate of infusion during dialysis (for 10% ethanol, 2.5 to 3.5 mL/kg/hr). Blood ethanol concentrations must be monitored hourly and the infusion adjusted accordingly.
    F) ENHANCED ELIMINATION PROCEDURE
    1) There is no human data to evaluate the efficacy of enhanced elimination techniques. Hemodialysis may be considered in patients with severe metabolic acidosis or acute renal failure.
    G) PATIENT DISPOSITION
    1) HOME CRITERIA: Asymptomatic patients with inadvertent small exposures can be monitored at home.
    2) OBSERVATION CRITERIA: Symptomatic patients or patients with known large exposure should be observed for 6 hours for signs of toxicity.
    3) ADMISSION CRITERIA: Patients with significant symptoms should be admitted for treatment and monitoring. Patients with respiratory failure should be admitted to an ICU setting.
    4) CONSULT CRITERIA: Consult a medical toxicologist or your regional poison center for any patients with severe toxicity. For patients with eye exposure, consult an ophthalmologist for assistance with ophthalmic examination if needed.
    H) PITFALLS
    1) Failure to detect airway compromise and lack of proper airway management. Failure to recognize progression and worsening of symptoms. Failure to detect/recognize acidosis and acute renal injury.
    I) TOXICOKINETICS
    1) DGBE has a low order of toxicity via the oral, dermal and inhalation. The most likely route of exposure is by the dermal route based on its extensive use in cleaning products and coatings. The primary urinary metabolites are 2-butoxyethoxyacetic acid, along with diethylene glycol, and hydroxybutoxyethoxyacetic acid. Two other unknown metabolites were also found. Following oral administration, it is anticipated that DGBE is primarily excreted (85% of dose) in the urine.
    J) DIFFERENTIAL DIAGNOSIS
    1) Ethylene glycol or methanol toxicity, diethylene glycol toxicity, salicylate toxicity, chlorine gas exposure, ammonia gas exposure, and irritant exposure.
    0.4.3) INHALATION EXPOSURE
    A) INHALATION: Move patient to fresh air. Monitor for respiratory distress. If cough or difficulty breathing develops, evaluate for respiratory tract irritation, bronchitis, or pneumonitis. Administer oxygen and assist ventilation as required. Treat bronchospasm with an inhaled beta2-adrenergic agonist. Consider systemic corticosteroids in patients with significant bronchospasm.
    0.4.4) EYE EXPOSURE
    A) DECONTAMINATION: Remove contact lenses and irrigate exposed eyes with copious amounts of room temperature 0.9% saline or water for at least 15 minutes. If irritation, pain, swelling, lacrimation, or photophobia persist after 15 minutes of irrigation, the patient should be seen in a healthcare facility.
    0.4.5) DERMAL EXPOSURE
    A) OVERVIEW
    1) DECONTAMINATION: Remove contaminated clothing and jewelry and place them in plastic bags. Wash exposed areas with soap and water for 10 to 15 minutes with gentle sponging to avoid skin breakdown. A physician may need to examine the area if irritation or pain persists (Burgess et al, 1999).

Range Of Toxicity

    A) TOXICITY: DGBE has a low order of toxicity via the oral, dermal and inhalational route. In a case report, 2 mL/kg of DGBE (unknown concentration) produced cyanosis, tachypnea, and slight uremia.

Summary Of Exposure

    A) USES: Butoxyethoxy ethanol or diethylene glycol monobutyl ether (DGBE) is a colorless, odorless liquid. It is primarily used as a solvent in hard-surface cleaners and inks, and as a solvent and coalescing agent in paints and other coatings. It is also used as a melting-out solution in the textile industry or as a solvent for cellulose nitrate.
    B) TOXICOLOGY: DGBE has a low order of toxicity via the oral, dermal and inhalational route. The primary urinary metabolites are 2-butoxyethoxyacetic acid, along with diethylene glycol, and hydroxybutoxyethoxyacetic acid.
    C) EPIDEMIOLOGY: Acute poisoning is relatively rare but DGBE is used widely in industrial settings and chronic exposure may occur in many workers among certain industries.
    D) WITH POISONING/EXPOSURE
    1) MILD TO MODERATE TOXICITY: DGBE is an irritant to eyes, skin, and mucosa. Increased intraocular pressure was noted after instillation of a 0.4 mL of a 10% solution of DGBE. Patients may experience nausea, vomiting, and diarrhea following ingestion of DGBE.
    2) SEVERE TOXICITY: Tachypnea, cyanosis, uremia and impaired kidney function have been observed. Large and intentional exposures to other diglycol ethers have resulted in reports of CNS depression, metabolic acidosis, renal injury, and acute lung injury. Theoretically, acidosis may occur.

Vital Signs

    3.3.2) RESPIRATIONS
    A) WITH POISONING/EXPOSURE
    1) TACHYPNEA was reported following a human ingestion of 2 mL/kg (Brennaas, 1960).

Heent

    3.4.3) EYES
    A) WITH POISONING/EXPOSURE
    1) SUMMARY: It is moderately irritating to the eyes. Instillation may increase intraocular pressure.
    2) CONJUNCTIVITIS and transient corneal injury may be seen (Ballantyne, 1984; Carpenter & Smyth, 1946).
    3) INTRAOCULAR PRESSURE: Increased intraocular pressure was noted after instillation of a 0.4 mL of a 10% solution of diethylene glycol monobutyl ether (Ballantyne, 1984).

Respiratory

    3.6.2) CLINICAL EFFECTS
    A) HYPERVENTILATION
    1) WITH POISONING/EXPOSURE
    a) CASE REPORT: Tachypnea was associated with cyanosis in one reported case (Brennaas, 1960).

Genitourinary

    3.10.2) CLINICAL EFFECTS
    A) UREMIA
    1) WITH POISONING/EXPOSURE
    a) Reduced kidney function and slight uremia may occur (Brennaas, 1960).

Acid-Base

    3.11.2) CLINICAL EFFECTS
    A) ACIDOSIS
    1) WITH POISONING/EXPOSURE
    a) Since other diglycol ethers may cause acidosis, acid-base balance should be assessed in symptomatic patients.
    b) LACK OF EFFECT: Brennaas (1960) did not report acidosis following an exposure (Brennaas, 1960).

Dermatologic

    3.14.2) CLINICAL EFFECTS
    A) SKIN IRRITATION
    1) WITH POISONING/EXPOSURE
    a) Irritation of the skin can be produced by DGBE (Clayton & Clayton, 1994). It usually occurs only after prolonged contact with the skin in large quantities (HSDB , 2000).
    B) DISORDER OF SKIN
    1) WITH POISONING/EXPOSURE
    a) PERCUTANEOUS ABSORPTION: Dugard et al (1984) reported diethylene glycols are less rapidly absorbed through human epidermis than the corresponding monoethylene glycols (Dugard et al, 1984).

Reproductive

    3.20.1) SUMMARY
    A) At the time of this review, no data were available to assess the potential effects of exposure to this agent during pregnancy or lactation.
    3.20.2) TERATOGENICITY
    A) LACK OF INFORMATION
    1) At the time of this review, no data were available to assess the teratogenic potential of this agent.
    3.20.3) EFFECTS IN PREGNANCY
    A) LACK OF INFORMATION
    1) At the time of this review, no data were available to assess the potential effects of exposure to this agent during pregnancy or lactation.
    B) ANIMAL STUDIES
    1) Nolan et al (1985) reported no evidence of DGBE affect on fertility or embryonic development in rats and rabbits.

Carcinogenicity

    3.21.1) IARC CATEGORY
    A) IARC Carcinogenicity Ratings for CAS112-34-5 (International Agency for Research on Cancer (IARC), 2016; International Agency for Research on Cancer, 2015; IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, 2010; IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, 2010a; IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, 2008; IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, 2007; IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, 2006; IARC, 2004):
    1) Not Listed
    3.21.2) SUMMARY/HUMAN
    A) At the time of this review, no data were available to assess the carcinogenic potential of this agent.
    3.21.3) HUMAN STUDIES
    A) LACK OF INFORMATION
    1) At the time of this review, no data were available to assess the carcinogenic potential of this agent.

Monitoring Parameters Levels

    4.1.1) SUMMARY
    A) Monitor pulse oximetry and/or arterial blood gases, chest radiograph and pulmonary function tests in patients with respiratory signs/symptoms.
    B) In severe toxic cases, monitor renal function and evaluate for acidosis.
    4.1.2) SERUM/BLOOD
    A) ACID/BASE
    1) Monitor pulse oximetry and/or arterial blood gases, chest radiograph and pulmonary function tests in patients with respiratory signs/symptoms.
    B) BLOOD/SERUM CHEMISTRY
    1) In severe toxic cases, monitor renal function and evaluate for acidosis.
    4.1.3) URINE
    A) URINALYSIS
    1) Obtain urinalysis following a significant exposure.

Life Support

    A) Support respiratory and cardiovascular function.

Patient Disposition

    6.3.1) DISPOSITION/ORAL EXPOSURE
    6.3.1.1) ADMISSION CRITERIA/ORAL
    A) Patients with significant symptoms should be admitted for treatment and monitoring. Patients with respiratory failure should be admitted to an ICU setting.
    6.3.1.2) HOME CRITERIA/ORAL
    A) Asymptomatic patients with inadvertent small exposures can be monitored at home.
    6.3.1.3) CONSULT CRITERIA/ORAL
    A) Consult a medical toxicologist or your regional poison center for any patients with severe toxicity. For patients with eye exposure, consult an ophthalmologist for assistance with ophthalmic examination if needed.
    6.3.1.5) OBSERVATION CRITERIA/ORAL
    A) Symptomatic patients or patients with known large exposure should be observed for 6 hours for signs of toxicity.

Monitoring

    A) Monitor pulse oximetry and/or arterial blood gases, chest radiograph and pulmonary function tests in patients with respiratory signs/symptoms.
    B) In severe toxic cases, monitor renal function and evaluate for acidosis.

Oral Exposure

    6.5.1) PREVENTION OF ABSORPTION/PREHOSPITAL
    A) Gastrointestinal decontamination is not recommended after ingestion because of the risk of CNS and respiratory depression and aspiration. Remove contaminated clothing and wash exposed area thoroughly with soap and water. Irrigate exposed eyes with copious amounts of room temperature water for at least 15 minutes. If present, carefully remove contact lenses.
    6.5.2) PREVENTION OF ABSORPTION
    A) SUMMARY: Consider activated charcoal if the overdose is recent, the patient is not vomiting, and is able to maintain airway. However, given the low order of toxicity of this compound, routine administration of activated charcoal is not recommended.
    B) ACTIVATED CHARCOAL
    1) CHARCOAL ADMINISTRATION
    a) Consider administration of activated charcoal after a potentially toxic ingestion (Chyka et al, 2005). Administer charcoal as an aqueous slurry; most effective when administered within one hour of ingestion.
    2) CHARCOAL DOSE
    a) Use a minimum of 240 milliliters of water per 30 grams charcoal (FDA, 1985). Optimum dose not established; usual dose is 25 to 100 grams in adults and adolescents; 25 to 50 grams in children aged 1 to 12 years (or 0.5 to 1 gram/kilogram body weight) ; and 0.5 to 1 gram/kilogram in infants up to 1 year old (Chyka et al, 2005).
    1) Routine use of a cathartic with activated charcoal is NOT recommended as there is no evidence that cathartics reduce drug absorption and cathartics are known to cause adverse effects such as nausea, vomiting, abdominal cramps, electrolyte imbalances and occasionally hypotension (None Listed, 2004).
    b) ADVERSE EFFECTS/CONTRAINDICATIONS
    1) Complications: emesis, aspiration (Chyka et al, 2005). Aspiration may be complicated by acute respiratory failure, ARDS, bronchiolitis obliterans or chronic lung disease (Golej et al, 2001; Graff et al, 2002; Pollack et al, 1981; Harris & Filandrinos, 1993; Elliot et al, 1989; Rau et al, 1988; Golej et al, 2001; Graff et al, 2002). Refer to the ACTIVATED CHARCOAL/TREATMENT management for further information.
    2) Contraindications: unprotected airway (increases risk/severity of aspiration) , nonfunctioning gastrointestinal tract, uncontrolled vomiting, and ingestion of most hydrocarbons (Chyka et al, 2005).
    6.5.3) TREATMENT
    A) SUPPORT
    1) MANAGEMENT OF MILD TO MODERATE TOXICITY
    a) Treatment is predominantly decontamination, and symptomatic and supportive care. Monitor patients for respiratory distress.
    2) MANAGEMENT OF SEVERE TOXICITY
    a) In patients with severe toxicity, supportive care with attention to monitoring for respiratory depression is recommended. Following an inhalational exposure, move the patient to fresh air. Monitor for respiratory distress. If cough or difficulty breathing develops, evaluate for respiratory tract irritation, bronchitis, or pneumonitis. Administer 100% humidified supplemental oxygen, perform endotracheal intubation and provide assisted ventilation as required. Administer inhaled beta-2 adrenergic agonists and systemic corticosteroids if bronchospasm develops. Acid-base balance should be assessed after significant ingestion or in symptomatic patients. Monitor and support renal function. There is no data to evaluate the efficacy of alcohol dehydrogenase inhibition with ethanol or fomepizole; it should be considered in patients who develop significant metabolic acidosis or acute renal failure.
    B) MONITORING OF PATIENT
    1) Monitor pulse oximetry and/or arterial blood gases, chest radiograph and pulmonary function tests in patients with respiratory signs/symptoms.
    2) In severe toxic cases, monitor renal function and evaluate for acidosis.
    C) ACIDOSIS
    1) METABOLIC ACIDOSIS: Treat severe metabolic acidosis (pH less than 7.1) with sodium bicarbonate, 1 to 2 mEq/kg is a reasonable starting dose(Kraut & Madias, 2010). Monitor serum electrolytes and arterial or venous blood gases to guide further therapy.
    D) FOMEPIZOLE
    1) SUMMARY: There is no specific antidote for treatment of DGBE exposure. At the time of this review, there are insufficient data to recommend the administration of an alcohol dehydrogenase inhibitor (fomepizole or ethanol). However, this is reasonable in a patient who develops metabolic acidosis following DGBE exposure.
    2) Fomepizole, a specific antagonist of alcohol dehydrogenase, has been demonstrated to be highly effective in the treatment of ethylene glycol poisoning (Battistella, 2002; Druteika et al, 2002; Sivilotti et al, 2000; Borron et al, 1999; Brent et al, 1999).
    3) Fomepizole has not been approved for use in children.
    4) AVAILABILITY
    a) Fomepizole is available in the United States for the treatment of methanol and ethylene glycol poisoning (Prod Info ANTIZOL(R) IV injection, 2006).
    5) DOSE
    a) An initial loading dose of 15 mg/kg is intravenously infused over 30 minutes followed by doses of 10 mg/kg/every 12 hours for 4 doses, then 15 mg/kg every 12 hours until ethylene glycol concentrations are below 20 mg/dL (Prod Info ANTIZOL(R) IV injection, 2006).
    b) HEMODIALYSIS - The frequency of dosing should be increased during dialysis. If dialysis is begun 6 hours or more since the last fomepizole dose the next scheduled dose should be administered. Dosing during dialysis should be increased to every 4 hours (Prod Info ANTIZOL(R) IV injection, 2006).
    1) If the last fomepizole dose was administered one to three hours before completion of dialysis, half of the next scheduled dose should be administered at the completion of dialysis. If the last fomepizole dose was administered more than 3 hours before completion of hemodialysis, the next scheduled dose should be administered when dialysis is completed.
    6) ADVERSE EFFECTS
    a) Studies in normal human volunteers show less side effects and slower elimination rate compared to ethanol (McMartin & Heath, 1989).
    b) The manufacturer reported the most frequent adverse effects in 78 patients and 63 normal volunteers receiving fomepizole to be headache (14%), nausea (11%), and dizziness, increased drowsiness, and bad taste (6% each) (Prod Info ANTIZOL(R) IV injection, 2006).
    c) A placebo-controlled, double-blind, multiple dose, sequential, ascending dose study among HEALTHY volunteers showed mild, transient increase in liver function tests and slower elimination rate of fomepizole (4-methylpyrazole). The mild, sporadic, and transient elevations in blood pressure were not dose-related (Jacobsen et al, 1990).
    E) ETHANOL
    1) EFFICACY
    a) SUMMARY: There is no specific antidote for treatment of DGBE exposure. At the time of this review, there are insufficient data to recommend the administration of an alcohol dehydrogenase inhibitor (fomepizole or ethanol). However, this is reasonable in a patient who develops metabolic acidosis following DGBE exposure.
    b) The role of ethanol therapy in preventing toxicity of glycol monoalkyl ethers is uncertain. Putative evidence suggests that ethanol therapy is beneficial. No human studies evaluating efficacy in poisoned patients are available. The parent ether compound is relatively nontoxic compared to the acetic acid metabolite. It is predicted that glycol ether toxicity may be reduced by blocking the production of the toxic metabolite by competitive inhibition of alcohol dehydrogenase with ethanol (Browning & Curry, 1994).
    c) The presence of acid metabolites in animals and in vitro studies showing the ethyl and methyl ether to be a substrate for alcohol dehydrogenase (ADH) would indicate a potential for therapeutic effect of ethanol (Blair & Vallee, 1966).
    2) INDICATIONS
    a) Anion gap metabolic acidosis associated with a history of glycol ether ingestion
    b) Any symptomatic patient with a history of glycol ether ingestion
    c) A good history of substantial glycol ether ingestion
    d) Keep in mind that glycol ether serum levels are not routinely available, and interpretation of such levels is difficult since a toxic range is not established. Thus, the endpoint of ethanol therapy will often be arbitrary.
    3) AVAILABILITY
    a) CONCENTRATIONS AVAILABLE (V/V)
    1) In the United States, 5% or 10% (V/V) ethanol in 5% dextrose for intravenous infusion is no longer available commercially (Howland, 2011). Ethanol 10% (V/V) contains approximately 0.08 gram ethanol/mL.
    2) ABSOLUTE ETHANOL or dehydrated ethanol, USP contains no less than 99.5% volume/volume or 99.2% weight/weight of ethanol with a specific gravity of not more than 0.7964 at 15.56 degrees C. Absolute ethanol is hygroscopic (absorbs water from the atmosphere) and when exposed to air may be less than 99.5% ethanol by volume (S Sweetman , 2002).
    b) PREPARATION OF 10% V/V ETHANOL IN A 5% DEXTROSE SOLUTION
    1) A 10% (V/V) solution can be prepared by the following method (Howland, 2011):
    a) If available, use sterile ethanol USP (absolute ethanol). Add 55 mL of the absolute ethanol to 500 mL of 5% dextrose in water for infusion. This yields a total volume of 555 mL. This produces an approximate solution of 10% ethanol in 5% dextrose for intravenous infusion (Howland, 2011).
    4) PRECAUTIONS
    a) HYPOGLYCEMIA
    1) Hypoglycemia may occur, especially in children. Monitor blood glucose frequently (Howland, 2011; Barceloux et al, 2002).
    b) CONCURRENT ETHANOL
    1) If the patient concurrently has ingested ethanol, then the ethanol loading dose must be modified so that the blood ethanol level does not exceed 100 to 150 mg/dL (Barceloux et al, 2002).
    c) DISULFIRAM
    1) Fomepizole is preferred as an alcohol dehydrogenase inhibitor in patients taking disulfiram. If fomepizole is not available, ethanol therapy should be initiated in those patients with signs or symptoms of severe poisoning (acidemia, toxic blood level) despite a history of recent disulfiram (Antabuse(R)) ingestion.
    2) The risk of not treating these patients is excessive, especially if hemodialysis is not immediately available.
    3) Administer the ethanol cautiously with special attention to the severity of the "Antabuse reaction" (flushing, sweating, severe hypotension, and cardiac dysrhythmias).
    4) Be prepared to treat hypotension with fluids and pressor agents (norepinephrine or dopamine). Monitor ECG and vital signs carefully. Hemodialysis should be performed as soon as adequate vital signs are established, and every effort should be made to obtain fomepizole.
    5) LOADING DOSE
    a) INTRAVENOUS LOADING DOSE
    1) Ethanol is given to maintain a patient’s serum ethanol concentration at 100 to 150 mg/dL. This can be accomplished by using a 5% or 10% ethanol solution administered intravenously through a central line (10% ethanol is generally preferred due to the large volumes required for 5%). Intravenous therapy dosing, which is preferred, is 0.8 g/kg as a loading dose (8 mL/kg of 10% ethanol) administered over 20 to 60 minutes as tolerated. Begin the maintenance infusion as soon as the loading dose is infused (Howland, 2011).
    b) ORAL LOADING DOSE
    1) Oral ethanol may be used as a temporizing measure until intravenous ethanol or fomepizole can be obtained, but it is more difficult to achieve the desired stable ethanol concentrations. The loading dose is 0.8 g/kg (4 mL/kg) of 20% (40 proof) ethanol diluted in juice administered orally or via a nasogastric tube(Howland, 2011).
    6) MAINTENANCE DOSE
    a) MAINTENANCE DOSE
    1) Maintain a serum ethanol concentration of 100 to 150 mg/dL. Intravenous administration is preferred, but oral ethanol may be used if intravenous is unavailable(Howland, 2011; Barceloux et al, 2002).
    INTRAVENOUS ADMINISTRATION OF 10% ETHANOL
    Non-drinker to moderate drinker80 to 130 mg/kg/hr (0.8 to 1.3 mL/kg/hr)
    Chronic drinker150 mg/kg/hr (1.5 mL/kg/hr)
    ORAL ADMINISTRATION OF 20% (40 proof) ETHANOL*
    Non-drinker to moderate drinker80 to 130 mg/kg/hr (0.4 to 0.7 mL/kg/hr) orally or via nasogastric tube
    Chronic drinker150 mg/kg/hr (0.8 mL/kg/hr) orally or via nasogastric tube
    *Diluted in juice

    b) MAINTENANCE DOSE/ETHANOL DIALYSATE
    1) During hemodialysis maintenance doses of ethanol should be increased in accordance with the recommendation given below, or ethanol should be added to the dialysate to achieve a concentration of 100 milligrams/deciliter (Pappas & Silverman, 1982).
    c) MAINTENANCE DOSE/ETHANOL-FREE DIALYSATE
    1) Maintain a serum ethanol concentration of 100 to 150 mg/dL(Howland, 2011; Barceloux et al, 2002):
    INTRAVENOUS ADMINISTRATION OF 10% ETHANOL - 250 to 350 mg/kg/hr (2.5 to 3.5 mL/kg/hr)
    ORAL ADMINISTRATION OF 20% (40 proof) ETHANOL* - 250 to 350 mg/kg/hr (1.3 to 1.8 mL/kg/hr) orally or via nasogastric tube
    *Diluted in juice

    2) Variations in blood flow rate and the ethanol extraction efficiency of the dialyzer will affect the dialysance(McCoy et al, 1979).
    3) If the ethanol dialysance ((CL)D) is calculated, the infusion rate during dialysis (Kod) can be individually adjusted using the following expression (McCoy et al, 1979):
    Kod = Vmax x   Cp   + (CL)D x Cp
                 -------
                 Km + Cp
    where Cp = desired blood ethanol level
    *  Vmax = 175 mg/kg/hr in chronic ethanol drinkers 
    *  Vmax = 75 mg/kg/hr in non-chronic drinkers
    *  Km = 13.8 mg/dL
    

    7) PEDIATRIC DOSE
    a) There is very little information on ethanol dosing in the pediatric patient (Barceloux et al, 2002). The loading dose and maintenance infusion should be the same as for an adult non-drinker. Loading dose is 0.8 g/kg (8 mL/kg) of 10% ethanol infused over 1 hour, maintenance dose is 80 mg/kg/hr (0.8 mL/kg/hr) of 10% ethanol (Howland, 2011).
    b) Blood ethanol concentration should be initially monitored hourly and the infusion rate should be adjusted to obtain an ethanol concentration of 100 to 150 mg/dL (Howland, 2011; Barceloux et al, 2002).
    1) Monitor blood glucose and mental status frequently during therapy (Howland, 2011). Ethanol-induced hypoglycemia is more common in children (Barceloux et al, 2002) and children may develop more significant CNS depression.
    8) MONITORING PARAMETERS
    a) ETHANOL CONCENTRATION
    1) Blood ethanol concentrations should be determined every 1 to 2 hours until concentrations are maintained within the therapeutic range (100 - 150 mg/dL). Thereafter concentrations should be monitored every 2 to 4 hours. Any change in infusion rate will require monitoring every 1 to 2 hours until the therapeutic range is reached and maintained (Barceloux et al, 2002).
    b) ADDITIONAL MONITORING
    1) Monitor serum electrolytes and blood glucose, monitor for CNS depression (Howland, 2011).
    9) DURATION OF THERAPY
    a) SERUM CONCENTRATIONS AVAILABLE: Ethanol therapy should be continued until the following criteria are met:
    1) Glycol ether blood concentration, measured by a reliable technique, is no longer detectable.
    2) Glycol ether-induced acidosis (pH, blood gases), clinical findings (CNS, hyperventilation), electrolyte abnormalities (calcium, potassium), and osmolal gap have resolved.
    3) NO SERUM CONCENTRATIONS AVAILABLE: Ethanol therapy should be continued for a minimum of 3 days in the absence of dialysis, one day when dialysis has been performed, or until clinical findings resolve, whichever is longer.
    4) Endpoint of ethanol therapy for treatment of glycol ethers is arbitrary. Additional studies are needed to demonstrate efficacy and duration of therapy. Glycol ether serum concentrations are not routinely available and a toxic range has not been established.
    5) If the clinical findings have not resolved it may indicate the continued presence of glycol ether, metabolites, or both or some other etiology.
    6) Serum osmolality may not be indicative of exposure (Lund et al, 1983).

Inhalation Exposure

    6.7.1) DECONTAMINATION
    A) Move patient from the toxic environment to fresh air. Monitor for respiratory distress. If cough or difficulty in breathing develops, evaluate for hypoxia, respiratory tract irritation, bronchitis, or pneumonitis.
    B) OBSERVATION: Carefully observe patients with inhalation exposure for the development of any systemic signs or symptoms and administer symptomatic treatment as necessary.
    C) INITIAL TREATMENT: Administer 100% humidified supplemental oxygen, perform endotracheal intubation and provide assisted ventilation as required. Administer inhaled beta-2 adrenergic agonists, if bronchospasm develops. Consider systemic corticosteroids in patients with significant bronchospasm (National Heart,Lung,and Blood Institute, 2007). Exposed skin and eyes should be flushed with copious amounts of water.

Eye Exposure

    6.8.1) DECONTAMINATION
    A) EYE IRRIGATION, ROUTINE: Remove contact lenses and irrigate exposed eyes with copious amounts of room temperature 0.9% saline or water for at least 15 minutes. If irritation, pain, swelling, lacrimation, or photophobia persist after 15 minutes of irrigation, an ophthalmologic examination should be performed (Peate, 2007; Naradzay & Barish, 2006).

Dermal Exposure

    6.9.1) DECONTAMINATION
    A) DERMAL DECONTAMINATION
    1) DECONTAMINATION: Remove contaminated clothing and wash exposed area thoroughly with soap and water for 10 to 15 minutes. A physician may need to examine the area if irritation or pain persists (Burgess et al, 1999).

Enhanced Elimination

    A) HEMODIALYSIS
    1) Hemodialysis is indicated, if severe acidosis or renal failure is present. The value of early hemodialysis to remove the substance has not been examined, but may be beneficial following severe poisoning (HSDB , 2000).

Summary

    A) TOXICITY: DGBE has a low order of toxicity via the oral, dermal and inhalational route. In a case report, 2 mL/kg of DGBE (unknown concentration) produced cyanosis, tachypnea, and slight uremia.

Maximum Tolerated Exposure

    A) SUMMARY: DGBE has a low order of toxicity via the oral, dermal or inhalational route (Clayton & Clayton, 1994). The dermal route is the most likely source for exposure, but is generally only toxic following prolonged contact in large quantities (HSDB , 2000).
    B) There has been only one human case reported. Two milliliters per kilogram of an unknown concentration resulted in cyanosis, tachypnea, and slight uremia (Brennaas, 1960).
    C) The ethers of diethylene glycol are lower in toxicity than the ethers of ethylene glycol, but they reportedly have similar characteristics (HSDB , 2000).
    D) ANIMAL DATA
    1) ORAL/NON-TOXIC: Rats consuming drinking water for 30 days containing 0.051 grams/kilogram/day developed no adverse effects (Smyth & Carpenter, 1948).
    2) ORAL/TOXIC: Rats consuming drinking water for 30 days containing 0.094 and 0.65 grams/kilogram/day developed reduction in appetite and histopathologic injury in either the kidney, liver, spleen, or testes (Smyth & Carpenter, 1948).
    3) INHALATION: Animal data indicate there is little hazard associated with a single vapor exposure in part because of its low vapor concentration (Clayton & Clayton, 1994).

Workplace Standards

    A) ACGIH TLV Values for CAS112-34-5 (American Conference of Governmental Industrial Hygienists, 2010):
    1) Editor's Note: The listed values are recommendations or guidelines developed by ACGIH(R) to assist in the control of health hazards. They should only be used, interpreted and applied by individuals trained in industrial hygiene. Before applying these values, it is imperative to read the introduction to each section in the current TLVs(R) and BEI(R) Book and become familiar with the constraints and limitations to their use. Always consult the Documentation of the TLVs(R) and BEIs(R) before applying these recommendations and guidelines.
    a) Under Study
    1) Diethylene glycol monobutyl ether
    a) TLV:
    1) TLV-TWA:
    2) TLV-STEL:
    3) TLV-Ceiling:
    b) Notations and Endnotes:
    1) Carcinogenicity Category: Not Listed
    2) Codes: Not Listed
    3) Definitions: Not Listed
    c) TLV Basis - Critical Effect(s):
    d) Molecular Weight:
    1) For gases and vapors, to convert the TLV from ppm to mg/m(3):
    a) [(TLV in ppm)(gram molecular weight of substance)]/24.45
    2) For gases and vapors, to convert the TLV from mg/m(3) to ppm:
    a) [(TLV in mg/m(3))(24.45)]/gram molecular weight of substance
    e) Additional information:

    B) NIOSH REL and IDLH Values for CAS112-34-5 (National Institute for Occupational Safety and Health, 2007):
    1) Not Listed

    C) Carcinogenicity Ratings for CAS112-34-5 :
    1) ACGIH (American Conference of Governmental Industrial Hygienists, 2010): Not Listed ; Listed as: Diethylene glycol monobutyl ether
    2) EPA (U.S. Environmental Protection Agency, 2011): Not Listed
    3) IARC (International Agency for Research on Cancer (IARC), 2016; International Agency for Research on Cancer, 2015; IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, 2010; IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, 2010a; IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, 2008; IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, 2007; IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, 2006; IARC, 2004): Not Listed
    4) NIOSH (National Institute for Occupational Safety and Health, 2007): Not Listed
    5) MAK (DFG, 2002): Not Listed
    6) NTP (U.S. Department of Health and Human Services, Public Health Service, National Toxicology Project ): Not Listed

    D) OSHA PEL Values for CAS112-34-5 (U.S. Occupational Safety, and Health Administration (OSHA), 2010):
    1) Not Listed

Toxicity Information

    7.7.1) TOXICITY VALUES
    A) LD50- (INTRAPERITONEAL)MOUSE:
    1) 850 mg/kg ((RTECS, 2000))
    B) LD50- (ORAL)RAT:
    1) 5.66 g/kg ((RTECS, 2000))
    2) 6.56 g/kg ((RTECS, 2000))

Physical Characteristics

    A) a colorless, odorless liquid (Budavari, 1996)

Molecular Weight

    A) 162.26 (RTECS , 2000)

Other

    A) ODOR THRESHOLD
    1) Currently not available (CHRIS , 2002)

General Bibliography

    1) 40 CFR 372.28: Environmental Protection Agency - Toxic Chemical Release Reporting, Community Right-To-Know, Lower thresholds for chemicals of special concern. National Archives and Records Administration (NARA) and the Government Printing Office (GPO). Washington, DC. Final rules current as of Apr 3, 2006.
    2) 40 CFR 372.65: Environmental Protection Agency - Toxic Chemical Release Reporting, Community Right-To-Know, Chemicals and Chemical Categories to which this part applies. National Archives and Records Association (NARA) and the Government Printing Office (GPO), Washington, DC. Final rules current as of Apr 3, 2006.
    3) 49 CFR 172.101 - App. B: Department of Transportation - Table of Hazardous Materials, Appendix B: List of Marine Pollutants. National Archives and Records Administration (NARA) and the Government Printing Office (GPO), Washington, DC. Final rules current as of Aug 29, 2005.
    4) 62 FR 58840: Notice of the National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances - Proposed AEGL Values, Environmental Protection Agency, NAC/AEGL Committee. National Archives and Records Administration (NARA) and the Government Publishing Office (GPO), Washington, DC, 1997.
    5) 65 FR 14186: Notice of the National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances - Proposed AEGL Values, Environmental Protection Agency, NAC/AEGL Committee. National Archives and Records Administration (NARA) and the Government Publishing Office (GPO), Washington, DC, 2000.
    6) 65 FR 39264: Notice of the National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances - Proposed AEGL Values, Environmental Protection Agency, NAC/AEGL Committee. National Archives and Records Administration (NARA) and the Government Publishing Office (GPO), Washington, DC, 2000.
    7) 65 FR 77866: Notice of the National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances - Proposed AEGL Values, Environmental Protection Agency, NAC/AEGL Committee. National Archives and Records Administration (NARA) and the Government Publishing Office (GPO), Washington, DC, 2000.
    8) 66 FR 21940: Notice of the National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances - Proposed AEGL Values, Environmental Protection Agency, NAC/AEGL Committee. National Archives and Records Administration (NARA) and the Government Publishing Office (GPO), Washington, DC, 2001.
    9) 67 FR 7164: Notice of the National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances - Proposed AEGL Values, Environmental Protection Agency, NAC/AEGL Committee. National Archives and Records Administration (NARA) and the Government Publishing Office (GPO), Washington, DC, 2002.
    10) 68 FR 42710: Notice of the National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances - Proposed AEGL Values, Environmental Protection Agency, NAC/AEGL Committee. National Archives and Records Administration (NARA) and the Government Publishing Office (GPO), Washington, DC, 2003.
    11) 69 FR 54144: Notice of the National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances - Proposed AEGL Values, Environmental Protection Agency, NAC/AEGL Committee. National Archives and Records Administration (NARA) and the Government Publishing Office (GPO), Washington, DC, 2004.
    12) AIHA: 2006 Emergency Response Planning Guidelines and Workplace Environmental Exposure Level Guides Handbook, American Industrial Hygiene Association, Fairfax, VA, 2006.
    13) American Conference of Governmental Industrial Hygienists : ACGIH 2010 Threshold Limit Values (TLVs(R)) for Chemical Substances and Physical Agents and Biological Exposure Indices (BEIs(R)), American Conference of Governmental Industrial Hygienists, Cincinnati, OH, 2010.
    14) Ansell-Edmont: SpecWare Chemical Application and Recommendation Guide. Ansell-Edmont. Coshocton, OH. 2001. Available from URL: http://www.ansellpro.com/specware. As accessed 10/31/2001.
    15) Ballantyne B: Eye irritancy potential of diethylene glycol monobutyl ether. J Toxicol Cut Ocular Toxicol 1984; 3:7-15.
    16) Barceloux DG, Bond GR, Krenzelok EP, et al: American Academy of Clinical Toxicology practice guidelines on the treatment of methanol poisoning. J Toxicol Clin Toxicol 2002; 40(4):415-446.
    17) Bata Shoe Company: Industrial Footwear Catalog, Bata Shoe Company, Belcamp, MD, 1995.
    18) Battistella M: Fomepizole as an antidote for ethylene glycol poisoning. Ann Pharmacother 2002; 36:1085-1089.
    19) Best Manufacturing: ChemRest Chemical Resistance Guide. Best Manufacturing. Menlo, GA. 2002. Available from URL: http://www.chemrest.com. As accessed 10/8/2002.
    20) Best Manufacturing: Degradation and Permeation Data. Best Manufacturing. Menlo, GA. 2004. Available from URL: http://www.chemrest.com/DomesticPrep2/. As accessed 04/09/2004.
    21) Blair AH & Vallee BL: Some catalytic properties of human liver alcohol dehydrogenase. Biochemistry 1966; 5:2026-2034.
    22) Borron SW, Megarbane B, & Baud FJ: Fomepizole in treatment of uncomplicated ethylene glycol poisoning. Lancet 1999; 354:831.
    23) Boss Manufacturing Company: Work Gloves, Boss Manufacturing Company, Kewanee, IL, 1998.
    24) Brennaas O: Forgiftning med dietylenglykolmonoetyleter. Nordisk Med 1960; 64:1291-1293.
    25) Brent J, McMartin K, & Phillips S: Fomepizole for the treatment of ethylene glycol poisoning. Methylpyrazole for toxic alcohols study group. N Engl J Med 1999; 40:832-838.
    26) Browning RG & Curry SC: Clinical toxicology of ethylene glycol monoalkyl ethers. Hum Experiment Toxicol 1994; 13:325-335.
    27) Budavari S: The Merck Index, 11th ed, Merck & Co, Rahway, New Jersey, 1989.
    28) Budavari S: The Merck Index, 12th ed, Merck & Co, Whitehouse Station, NJ, 1996.
    29) Burgess JL, Kirk M, Borron SW, et al: Emergency department hazardous materials protocol for contaminated patients. Ann Emerg Med 1999; 34(2):205-212.
    30) CHRIS : CHRIS Hazardous Chemical Data. US Department of Transportation, US Coast Guard. Washington, DC (Internet Version). Edition expires 2002; provided by Truven Health Analytics Inc., Greenwood Village, CO.
    31) Carpenter CP & Smyth HF Jr: AM J Ophthalmol 1946; 29:1363.
    32) ChemFab Corporation: Chemical Permeation Guide Challenge Protective Clothing Fabrics, ChemFab Corporation, Merrimack, NH, 1993.
    33) Chyka PA, Seger D, Krenzelok EP, et al: Position paper: Single-dose activated charcoal. Clin Toxicol (Phila) 2005; 43(2):61-87.
    34) Clayton GD & Clayton FE: Patty's Industrial Hygiene and Toxicology, Vol 2, Part D - Toxicology, 4th ed, John Wiley & Sons, New York, NY, 1994, pp 2841-2846.
    35) Comasec Safety, Inc.: Chemical Resistance to Permeation Chart. Comasec Safety, Inc.. Enfield, CT. 2003. Available from URL: http://www.comasec.com/webcomasec/english/catalogue/mtabgb.html. As accessed 4/28/2003.
    36) Comasec Safety, Inc.: Product Literature, Comasec Safety, Inc., Enfield, CT, 2003a.
    37) DFG: List of MAK and BAT Values 2002, Report No. 38, Deutsche Forschungsgemeinschaft, Commission for the Investigation of Health Hazards of Chemical Compounds in the Work Area, Wiley-VCH, Weinheim, Federal Republic of Germany, 2002.
    38) Druteika DP, Zed PJ, & Ensom MHH: Role of fomepizole in the management of ethylene glycol toxicity. Pharmacother 2002; 22:365-372.
    39) DuPont: DuPont Suit Smart: Interactive Tool for the Selection of Protective Apparel. DuPont. Wilmington, DE. 2002. Available from URL: http://personalprotection.dupont.com/protectiveapparel/suitsmart/smartsuit2/na_english.asp. As accessed 10/31/2002.
    40) DuPont: Permeation Guide for DuPont Tychem Protective Fabrics. DuPont. Wilmington, DE. 2003. Available from URL: http://personalprotection.dupont.com/en/pdf/tyvektychem/pgcomplete20030128.pdf. As accessed 4/26/2004.
    41) DuPont: Permeation Test Results. DuPont. Wilmington, DE. 2002a. Available from URL: http://www.tyvekprotectiveapprl.com/databases/default.htm. As accessed 7/31/2002.
    42) Dugard PH, Walker M, & Mawdsley SJ: Absorption of some glycol ethers through human skin in vitro. Environ Health Perspect 1984; 57:193-197.
    43) EPA: Search results for Toxic Substances Control Act (TSCA) Inventory Chemicals. US Environmental Protection Agency, Substance Registry System, U.S. EPA's Office of Pollution Prevention and Toxics. Washington, DC. 2005. Available from URL: http://www.epa.gov/srs/.
    44) Elliot CG, Colby TV, & Kelly TM: Charcoal lung. Bronchiolitis obliterans after aspiration of activated charcoal. Chest 1989; 96:672-674.
    45) FDA: Poison treatment drug product for over-the-counter human use; tentative final monograph. FDA: Fed Register 1985; 50:2244-2262.
    46) Golej J, Boigner H, Burda G, et al: Severe respiratory failure following charcoal application in a toddler. Resuscitation 2001; 49:315-318.
    47) Graff GR, Stark J, & Berkenbosch JW: Chronic lung disease after activated charcoal aspiration. Pediatrics 2002; 109:959-961.
    48) Guardian Manufacturing Group: Guardian Gloves Test Results. Guardian Manufacturing Group. Willard, OH. 2001. Available from URL: http://www.guardian-mfg.com/guardianmfg.html. As accessed 12/11/2001.
    49) HSDB : Hazardous Substances Data Bank. National Library of Medicine. Bethesda, MD (Internet Version). Edition expires 1990; provided by Truven Health Analytics Inc., Greenwood Village, CO.
    50) HSDB : Hazardous Substances Data Bank. National Library of Medicine. Bethesda, MD (Internet Version). Edition expires 2000; provided by Truven Health Analytics Inc., Greenwood Village, CO.
    51) Harris CR & Filandrinos D: Accidental administration of activated charcoal into the lung: aspiration by proxy. Ann Emerg Med 1993; 22:1470-1473.
    52) Howland MA: Ethanol. In: Nelson LS, Hoffman RS, Lewin NA, et al, eds. Goldfrank's Toxicologic Emergencies, 9th ed. McGraw Hill Medical, New York, NY, 2011, pp 1419-1422.
    53) IARC Working Group on the Evaluation of Carcinogenic Risks to Humans : IARC Monographs on the Evaluation of Carcinogenic Risks to Humans: 1,3-Butadiene, Ethylene Oxide and Vinyl Halides (Vinyl Fluoride, Vinyl Chloride and Vinyl Bromide), 97, International Agency for Research on Cancer, Lyon, France, 2008.
    54) IARC Working Group on the Evaluation of Carcinogenic Risks to Humans : IARC Monographs on the Evaluation of Carcinogenic Risks to Humans: Formaldehyde, 2-Butoxyethanol and 1-tert-Butoxypropan-2-ol, 88, International Agency for Research on Cancer, Lyon, France, 2006.
    55) IARC Working Group on the Evaluation of Carcinogenic Risks to Humans : IARC Monographs on the Evaluation of Carcinogenic Risks to Humans: Household Use of Solid Fuels and High-temperature Frying, 95, International Agency for Research on Cancer, Lyon, France, 2010a.
    56) IARC Working Group on the Evaluation of Carcinogenic Risks to Humans : IARC Monographs on the Evaluation of Carcinogenic Risks to Humans: Smokeless Tobacco and Some Tobacco-specific N-Nitrosamines, 89, International Agency for Research on Cancer, Lyon, France, 2007.
    57) IARC Working Group on the Evaluation of Carcinogenic Risks to Humans : IARC Monographs on the Evaluation of Carcinogenic Risks to Humans: Some Non-heterocyclic Polycyclic Aromatic Hydrocarbons and Some Related Exposures, 92, International Agency for Research on Cancer, Lyon, France, 2010.
    58) IARC: List of all agents, mixtures and exposures evaluated to date - IARC Monographs: Overall Evaluations of Carcinogenicity to Humans, Volumes 1-88, 1972-PRESENT. World Health Organization, International Agency for Research on Cancer. Lyon, FranceAvailable from URL: http://monographs.iarc.fr/monoeval/crthall.html. As accessed Oct 07, 2004.
    59) ILC Dover, Inc.: Ready 1 The Chemturion Limited Use Chemical Protective Suit, ILC Dover, Inc., Frederica, DE, 1998.
    60) International Agency for Research on Cancer (IARC): IARC monographs on the evaluation of carcinogenic risks to humans: list of classifications, volumes 1-116. International Agency for Research on Cancer (IARC). Lyon, France. 2016. Available from URL: http://monographs.iarc.fr/ENG/Classification/latest_classif.php. As accessed 2016-08-24.
    61) International Agency for Research on Cancer: IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. World Health Organization. Geneva, Switzerland. 2015. Available from URL: http://monographs.iarc.fr/ENG/Classification/. As accessed 2015-08-06.
    62) Jacobsen D, Sebastian CS, & Barron SK: Effects of 4-methylpyazole, methanol/ethylene glycol antidote, in healthy humans. J Emerg Med 1990; 8:455-461.
    63) Kappler, Inc.: Suit Smart. Kappler, Inc.. Guntersville, AL. 2001. Available from URL: http://www.kappler.com/suitsmart/smartsuit2/na_english.asp?select=1. As accessed 7/10/2001.
    64) Kimberly-Clark, Inc.: Chemical Test Results. Kimberly-Clark, Inc.. Atlanta, GA. 2002. Available from URL: http://www.kc-safety.com/tech_cres.html. As accessed 10/4/2002.
    65) Kraut JA & Madias NE: Metabolic acidosis: pathophysiology, diagnosis and management. Nat Rev Nephrol 2010; 6(5):274-285.
    66) LaCrosse-Rainfair: Safety Products, LaCrosse-Rainfair, Racine, WI, 1997.
    67) Lund ME, Banner W Jr, & Finley PR: Effect of alcohols and selected solvents on serum osmolality measurements. J Toxicol Clin Toxicol 1983; 20:115-132.
    68) MAPA Professional: Chemical Resistance Guide. MAPA North America. Columbia, TN. 2003. Available from URL: http://www.mapaglove.com/pro/ChemicalSearch.asp. As accessed 4/21/2003.
    69) MAPA Professional: Chemical Resistance Guide. MAPA North America. Columbia, TN. 2004. Available from URL: http://www.mapaglove.com/ProductSearch.cfm?id=1. As accessed 6/10/2004.
    70) Mar-Mac Manufacturing, Inc: Product Literature, Protective Apparel, Mar-Mac Manufacturing, Inc., McBee, SC, 1995.
    71) Marigold Industrial: US Chemical Resistance Chart, on-line version. Marigold Industrial. Norcross, GA. 2003. Available from URL: www.marigoldindustrial.com/charts/uschart/uschart.html. As accessed 4/14/2003.
    72) McCoy HG, Cipolle RJ, & Ehlers SM: Severe methanol poisoning: application of a pharmacokinetic model for ethanol therapy and hemodialysis. Am J Med 1979; 67:804-807.
    73) McMartin KE & Heath A: Treatment of ethylene glycol poisoning with intravenous 4-methylpyrazole (Letter). N Engl J Med 1989; 320:125.
    74) Memphis Glove Company: Permeation Guide. Memphis Glove Company. Memphis, TN. 2001. Available from URL: http://www.memphisglove.com/permeation.html. As accessed 7/2/2001.
    75) Montgomery Safety Products: Montgomery Safety Products Chemical Resistant Glove Guide, Montgomery Safety Products, Canton, OH, 1995.
    76) NFPA: Fire Protection Guide to Hazardous Materials, 13th ed., National Fire Protection Association, Quincy, MA, 2002.
    77) NRC: Acute Exposure Guideline Levels for Selected Airborne Chemicals - Volume 1, Subcommittee on Acute Exposure Guideline Levels, Committee on Toxicology, Board on Environmental Studies and Toxicology, Commission of Life Sciences, National Research Council. National Academy Press, Washington, DC, 2001.
    78) NRC: Acute Exposure Guideline Levels for Selected Airborne Chemicals - Volume 2, Subcommittee on Acute Exposure Guideline Levels, Committee on Toxicology, Board on Environmental Studies and Toxicology, Commission of Life Sciences, National Research Council. National Academy Press, Washington, DC, 2002.
    79) NRC: Acute Exposure Guideline Levels for Selected Airborne Chemicals - Volume 3, Subcommittee on Acute Exposure Guideline Levels, Committee on Toxicology, Board on Environmental Studies and Toxicology, Commission of Life Sciences, National Research Council. National Academy Press, Washington, DC, 2003.
    80) NRC: Acute Exposure Guideline Levels for Selected Airborne Chemicals - Volume 4, Subcommittee on Acute Exposure Guideline Levels, Committee on Toxicology, Board on Environmental Studies and Toxicology, Commission of Life Sciences, National Research Council. National Academy Press, Washington, DC, 2004.
    81) Naradzay J & Barish RA: Approach to ophthalmologic emergencies. Med Clin North Am 2006; 90(2):305-328.
    82) Nat-Wear: Protective Clothing, Hazards Chart. Nat-Wear. Miora, NY. 2001. Available from URL: http://www.natwear.com/hazchart1.htm. As accessed 7/12/2001.
    83) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for 1,2,3-Trimethylbenzene (Proposed). United States Environmental Protection Agency. Washington, DC. 2006k. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d68a&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    84) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for 1,2,4-Trimethylbenzene (Proposed). United States Environmental Protection Agency. Washington, DC. 2006m. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d68a&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    85) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for 1,2-Butylene Oxide (Proposed). United States Environmental Protection Agency. Washington, DC. 2008d. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648083cdbb&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    86) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for 1,2-Dibromoethane (Proposed). United States Environmental Protection Agency. Washington, DC. 2007g. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064802796db&disposition=attachment&contentType=pdf. As accessed 2010-08-18.
    87) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for 1,3,5-Trimethylbenzene (Proposed). United States Environmental Protection Agency. Washington, DC. 2006l. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d68a&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    88) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for 2-Ethylhexyl Chloroformate (Proposed). United States Environmental Protection Agency. Washington, DC. 2007b. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648037904e&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    89) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Acrylonitrile (Proposed). United States Environmental Protection Agency. Washington, DC. 2007c. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648028e6a3&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    90) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Adamsite (Proposed). United States Environmental Protection Agency. Washington, DC. 2007h. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020fd29&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    91) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Agent BZ (3-quinuclidinyl benzilate) (Proposed). United States Environmental Protection Agency. Washington, DC. 2007f. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064803ad507&disposition=attachment&contentType=pdf. As accessed 2010-08-18.
    92) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Allyl Chloride (Proposed). United States Environmental Protection Agency. Washington, DC. 2008. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648039d9ee&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    93) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Aluminum Phosphide (Proposed). United States Environmental Protection Agency. Washington, DC. 2005b. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c5ed&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    94) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Arsenic Trioxide (Proposed). United States Environmental Protection Agency. Washington, DC. 2007m. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480220305&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    95) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Automotive Gasoline Unleaded (Proposed). United States Environmental Protection Agency. Washington, DC. 2009a. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a7cc17&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    96) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Biphenyl (Proposed). United States Environmental Protection Agency. Washington, DC. 2005j. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064801ea1b7&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    97) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Bis-Chloromethyl Ether (BCME) (Proposed). United States Environmental Protection Agency. Washington, DC. 2006n. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648022db11&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    98) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Boron Tribromide (Proposed). United States Environmental Protection Agency. Washington, DC. 2008a. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064803ae1d3&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    99) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Bromine Chloride (Proposed). United States Environmental Protection Agency. Washington, DC. 2007d. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648039732a&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    100) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Bromoacetone (Proposed). United States Environmental Protection Agency. Washington, DC. 2008e. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064809187bf&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    101) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Calcium Phosphide (Proposed). United States Environmental Protection Agency. Washington, DC. 2005d. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c5ed&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    102) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Carbonyl Fluoride (Proposed). United States Environmental Protection Agency. Washington, DC. 2008b. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064803ae328&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    103) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Carbonyl Sulfide (Proposed). United States Environmental Protection Agency. Washington, DC. 2007e. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648037ff26&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    104) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Chlorobenzene (Proposed). United States Environmental Protection Agency. Washington, DC. 2008c. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064803a52bb&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    105) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Cyanogen (Proposed). United States Environmental Protection Agency. Washington, DC. 2008f. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064809187fe&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    106) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Dimethyl Phosphite (Proposed). United States Environmental Protection Agency. Washington, DC. 2009. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a7cbf3&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    107) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Diphenylchloroarsine (Proposed). United States Environmental Protection Agency. Washington, DC. 2007l. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020fd29&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    108) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Ethyl Isocyanate (Proposed). United States Environmental Protection Agency. Washington, DC. 2008h. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648091884e&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    109) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Ethyl Phosphorodichloridate (Proposed). United States Environmental Protection Agency. Washington, DC. 2008i. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480920347&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    110) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Ethylbenzene (Proposed). United States Environmental Protection Agency. Washington, DC. 2008g. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064809203e7&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    111) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Ethyldichloroarsine (Proposed). United States Environmental Protection Agency. Washington, DC. 2007j. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020fd29&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    112) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Germane (Proposed). United States Environmental Protection Agency. Washington, DC. 2008j. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480963906&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    113) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Hexafluoropropylene (Proposed). United States Environmental Protection Agency. Washington, DC. 2006. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064801ea1f5&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    114) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Ketene (Proposed). United States Environmental Protection Agency. Washington, DC. 2007. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020ee7c&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    115) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Magnesium Aluminum Phosphide (Proposed). United States Environmental Protection Agency. Washington, DC. 2005h. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c5ed&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    116) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Magnesium Phosphide (Proposed). United States Environmental Protection Agency. Washington, DC. 2005g. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c5ed&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    117) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Malathion (Proposed). United States Environmental Protection Agency. Washington, DC. 2009k. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064809639df&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    118) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Mercury Vapor (Proposed). United States Environmental Protection Agency. Washington, DC. 2009b. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a8a087&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    119) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Methyl Isothiocyanate (Proposed). United States Environmental Protection Agency. Washington, DC. 2008k. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480963a03&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    120) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Methyl Parathion (Proposed). United States Environmental Protection Agency. Washington, DC. 2008l. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480963a57&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    121) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Methyl tertiary-butyl ether (Proposed). United States Environmental Protection Agency. Washington, DC. 2007a. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064802a4985&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    122) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Methylchlorosilane (Proposed). United States Environmental Protection Agency. Washington, DC. 2005. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c5f4&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    123) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Methyldichloroarsine (Proposed). United States Environmental Protection Agency. Washington, DC. 2007i. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020fd29&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    124) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Methyldichlorosilane (Proposed). United States Environmental Protection Agency. Washington, DC. 2005a. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c646&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    125) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Nitrogen Mustard (HN1 CAS Reg. No. 538-07-8) (Proposed). United States Environmental Protection Agency. Washington, DC. 2006a. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d6cb&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    126) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Nitrogen Mustard (HN2 CAS Reg. No. 51-75-2) (Proposed). United States Environmental Protection Agency. Washington, DC. 2006b. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d6cb&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    127) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Nitrogen Mustard (HN3 CAS Reg. No. 555-77-1) (Proposed). United States Environmental Protection Agency. Washington, DC. 2006c. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d6cb&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    128) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Nitrogen Tetroxide (Proposed). United States Environmental Protection Agency. Washington, DC. 2008n. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648091855b&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    129) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Nitrogen Trifluoride (Proposed). United States Environmental Protection Agency. Washington, DC. 2009l. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480963e0c&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    130) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Parathion (Proposed). United States Environmental Protection Agency. Washington, DC. 2008o. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480963e32&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    131) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Perchloryl Fluoride (Proposed). United States Environmental Protection Agency. Washington, DC. 2009c. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a7e268&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    132) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Perfluoroisobutylene (Proposed). United States Environmental Protection Agency. Washington, DC. 2009d. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a7e26a&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    133) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Phenyl Isocyanate (Proposed). United States Environmental Protection Agency. Washington, DC. 2008p. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648096dd58&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    134) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Phenyl Mercaptan (Proposed). United States Environmental Protection Agency. Washington, DC. 2006d. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020cc0c&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    135) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Phenyldichloroarsine (Proposed). United States Environmental Protection Agency. Washington, DC. 2007k. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020fd29&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    136) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Phorate (Proposed). United States Environmental Protection Agency. Washington, DC. 2008q. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648096dcc8&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    137) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Phosgene (Draft-Revised). United States Environmental Protection Agency. Washington, DC. 2009e. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a8a08a&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    138) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Phosgene Oxime (Proposed). United States Environmental Protection Agency. Washington, DC. 2009f. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a7e26d&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    139) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Potassium Cyanide (Proposed). United States Environmental Protection Agency. Washington, DC. 2009g. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a7cbb9&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    140) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Potassium Phosphide (Proposed). United States Environmental Protection Agency. Washington, DC. 2005c. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c5ed&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    141) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Propargyl Alcohol (Proposed). United States Environmental Protection Agency. Washington, DC. 2006e. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020ec91&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    142) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Selenium Hexafluoride (Proposed). United States Environmental Protection Agency. Washington, DC. 2006f. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020ec55&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    143) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Silane (Proposed). United States Environmental Protection Agency. Washington, DC. 2006g. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d523&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    144) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Sodium Cyanide (Proposed). United States Environmental Protection Agency. Washington, DC. 2009h. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a7cbb9&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    145) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Sodium Phosphide (Proposed). United States Environmental Protection Agency. Washington, DC. 2005i. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c5ed&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    146) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Strontium Phosphide (Proposed). United States Environmental Protection Agency. Washington, DC. 2005f. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c5ed&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    147) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Sulfuryl Chloride (Proposed). United States Environmental Protection Agency. Washington, DC. 2006h. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020ec7a&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    148) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Tear Gas (Proposed). United States Environmental Protection Agency. Washington, DC. 2008s. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648096e551&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    149) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Tellurium Hexafluoride (Proposed). United States Environmental Protection Agency. Washington, DC. 2009i. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a7e2a1&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    150) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Tert-Octyl Mercaptan (Proposed). United States Environmental Protection Agency. Washington, DC. 2008r. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648096e5c7&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    151) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Tetramethoxysilane (Proposed). United States Environmental Protection Agency. Washington, DC. 2006j. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d632&disposition=attachment&contentType=pdf. As accessed 2010-08-17.
    152) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Trimethoxysilane (Proposed). United States Environmental Protection Agency. Washington, DC. 2006i. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d632&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    153) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Trimethyl Phosphite (Proposed). United States Environmental Protection Agency. Washington, DC. 2009j. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a7d608&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    154) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Trimethylacetyl Chloride (Proposed). United States Environmental Protection Agency. Washington, DC. 2008t. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648096e5cc&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    155) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Zinc Phosphide (Proposed). United States Environmental Protection Agency. Washington, DC. 2005e. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c5ed&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    156) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for n-Butyl Isocyanate (Proposed). United States Environmental Protection Agency. Washington, DC. 2008m. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064808f9591&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    157) National Heart,Lung,and Blood Institute: Expert panel report 3: guidelines for the diagnosis and management of asthma. National Heart,Lung,and Blood Institute. Bethesda, MD. 2007. Available from URL: http://www.nhlbi.nih.gov/guidelines/asthma/asthgdln.pdf.
    158) National Institute for Occupational Safety and Health: NIOSH Pocket Guide to Chemical Hazards, U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, Cincinnati, OH, 2007.
    159) National Research Council : Acute exposure guideline levels for selected airborne chemicals, 5, National Academies Press, Washington, DC, 2007.
    160) National Research Council: Acute exposure guideline levels for selected airborne chemicals, 6, National Academies Press, Washington, DC, 2008.
    161) National Research Council: Acute exposure guideline levels for selected airborne chemicals, 7, National Academies Press, Washington, DC, 2009.
    162) National Research Council: Acute exposure guideline levels for selected airborne chemicals, 8, National Academies Press, Washington, DC, 2010.
    163) Neese Industries, Inc.: Fabric Properties Rating Chart. Neese Industries, Inc.. Gonzales, LA. 2003. Available from URL: http://www.neeseind.com/new/TechGroup.asp?Group=Fabric+Properties&Family=Technical. As accessed 4/15/2003.
    164) None Listed: Position paper: cathartics. J Toxicol Clin Toxicol 2004; 42(3):243-253.
    165) North: Chemical Resistance Comparison Chart - Protective Footwear . North Safety. Cranston, RI. 2002. Available from URL: http://www.linkpath.com/index2gisufrm.php?t=N-USA1. As accessed April 30, 2004.
    166) North: eZ Guide Interactive Software. North Safety. Cranston, RI. 2002a. Available from URL: http://www.northsafety.com/feature1.htm. As accessed 8/31/2002.
    167) Pappas SC & Silverman M: Treatment of methanol poisoning with ethanol and hemodialysis. Can Med Assoc J 1982; 126:1391-1394.
    168) Peate WF: Work-related eye injuries and illnesses. Am Fam Physician 2007; 75(7):1017-1022.
    169) Playtex: Fits Tough Jobs Like a Glove, Playtex, Westport, CT, 1995.
    170) Pollack MM, Dunbar BS, & Holbrook PR: Aspiration of activated charcoal and gastric contents. Ann Emerg Med 1981; 10:528-529.
    171) Product Information: ANTIZOL(R) IV injection, fomepizole IV injection. Jazz Pharmaceuticals,Inc, Palo Alto, CA, 2006.
    172) RTECS : Registry of Toxic Effects of Chemical Substances. National Institute for Occupational Safety and Health. Cincinnati, OH (Internet Version). Edition expires 2000; provided by Truven Health Analytics Inc., Greenwood Village, CO.
    173) RTECS : Registry of Toxic Effects of Chemical Substances. National Institute for Occupational Safety and Health. Cincinnati, OH (Internet Version). Edition expires 2000; provided by Truven Health Analytics Inc., Greenwood Village, CO.
    174) Rau NR, Nagaraj MV, Prakash PS, et al: Fatal pulmonary aspiration of oral activated charcoal. Br Med J 1988; 297:918-919.
    175) River City: Protective Wear Product Literature, River City, Memphis, TN, 1995.
    176) S Sweetman : Martindale: The Complete Drug Reference. Pharmaceutical Press. London, England (Internet Version). Edition expires 2002; provided by Truven Health Analytics Inc., Greenwood Village, CO.
    177) Safety 4: North Safety Products: Chemical Protection Guide. North Safety. Cranston, RI. 2002. Available from URL: http://www.safety4.com/guide/set_guide.htm. As accessed 8/14/2002.
    178) Servus: Norcross Safety Products, Servus Rubber, Servus, Rock Island, IL, 1995.
    179) Sivilotti MLA, Burns MJ, & McMartin KE: Toxicokinetics of ethylene glycol during fomepizole therapy: implications for management. Ann Emerg Med 2000; 36:114-125.
    180) Smyth HF Jr & Carpenter CP: J Ind Hyg Toxicol 1948; 30:63.
    181) Standard Safety Equipment: Product Literature, Standard Safety Equipment, McHenry, IL, 1995.
    182) Tingley: Chemical Degradation for Footwear and Clothing. Tingley. South Plainfield, NJ. 2002. Available from URL: http://www.tingleyrubber.com/tingley/Guide_ChemDeg.pdf. As accessed 10/16/2002.
    183) Trelleborg-Viking, Inc.: Chemical and Biological Tests (database). Trelleborg-Viking, Inc.. Portsmouth, NH. 2002. Available from URL: http://www.trelleborg.com/protective/. As accessed 10/18/2002.
    184) Trelleborg-Viking, Inc.: Trellchem Chemical Protective Suits, Interactive manual & Chemical Database. Trelleborg-Viking, Inc.. Portsmouth, NH. 2001.
    185) U.S. Department of Energy, Office of Emergency Management: Protective Action Criteria (PAC) with AEGLs, ERPGs, & TEELs: Rev. 26 for chemicals of concern. U.S. Department of Energy, Office of Emergency Management. Washington, DC. 2010. Available from URL: http://www.hss.doe.gov/HealthSafety/WSHP/Chem_Safety/teel.html. As accessed 2011-06-27.
    186) U.S. Department of Health and Human Services, Public Health Service, National Toxicology Project : 11th Report on Carcinogens. U.S. Department of Health and Human Services, Public Health Service, National Toxicology Program. Washington, DC. 2005. Available from URL: http://ntp.niehs.nih.gov/INDEXA5E1.HTM?objectid=32BA9724-F1F6-975E-7FCE50709CB4C932. As accessed 2011-06-27.
    187) U.S. Environmental Protection Agency: Discarded commercial chemical products, off-specification species, container residues, and spill residues thereof. Environmental Protection Agency's (EPA) Resource Conservation and Recovery Act (RCRA); List of hazardous substances and reportable quantities 2010b; 40CFR(261.33, e-f):77-.
    188) U.S. Environmental Protection Agency: Integrated Risk Information System (IRIS). U.S. Environmental Protection Agency. Washington, DC. 2011. Available from URL: http://cfpub.epa.gov/ncea/iris/index.cfm?fuseaction=iris.showSubstanceList&list_type=date. As accessed 2011-06-21.
    189) U.S. Environmental Protection Agency: List of Radionuclides. U.S. Environmental Protection Agency. Washington, DC. 2010a. Available from URL: http://www.gpo.gov/fdsys/pkg/CFR-2010-title40-vol27/pdf/CFR-2010-title40-vol27-sec302-4.pdf. As accessed 2011-06-17.
    190) U.S. Environmental Protection Agency: List of hazardous substances and reportable quantities. U.S. Environmental Protection Agency. Washington, DC. 2010. Available from URL: http://www.gpo.gov/fdsys/pkg/CFR-2010-title40-vol27/pdf/CFR-2010-title40-vol27-sec302-4.pdf. As accessed 2011-06-17.
    191) U.S. Environmental Protection Agency: The list of extremely hazardous substances and their threshold planning quantities (CAS Number Order). U.S. Environmental Protection Agency. Washington, DC. 2010c. Available from URL: http://www.gpo.gov/fdsys/pkg/CFR-2010-title40-vol27/pdf/CFR-2010-title40-vol27-part355.pdf. As accessed 2011-06-17.
    192) U.S. Occupational Safety and Health Administration: Part 1910 - Occupational safety and health standards (continued) Occupational Safety, and Health Administration's (OSHA) list of highly hazardous chemicals, toxics and reactives. Subpart Z - toxic and hazardous substances. CFR 2010 2010; Vol6(SEC1910):7-.
    193) U.S. Occupational Safety, and Health Administration (OSHA): Process safety management of highly hazardous chemicals. 29 CFR 2010 2010; 29(1910.119):348-.
    194) United States Environmental Protection Agency Office of Pollution Prevention and Toxics: Acute Exposure Guideline Levels (AEGLs) for Vinyl Acetate (Proposed). United States Environmental Protection Agency. Washington, DC. 2006. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d6af&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    195) Wells Lamont Industrial: Chemical Resistant Glove Application Chart. Wells Lamont Industrial. Morton Grove, IL. 2002. Available from URL: http://www.wellslamontindustry.com. As accessed 10/31/2002.
    196) Workrite: Chemical Splash Protection Garments, Technical Data and Application Guide, W.L. Gore Material Chemical Resistance Guide, Workrite, Oxnard, CA, 1997.