2,6-XYLIDINE
HAZARDTEXT ®
Information to help in the initial response for evaluating chemical incidents
-IDENTIFICATION
SYNONYMS
AMINODIMETHYLBENZENE 1-AMINO-2,6-DIMETHYLBENZENE 2-AMINO-1,3-DIMETHYLBENZENE 2-AMINO-m-XYLENE 2-AMINO-1,3-XYLENE ANILINE, 2,6-DIMETHYL- AR,AR-DIMETHYLBENZENAMINE BENZENAMINE, 2,6-DIMETHYL- BENZENEAMINE, 2,6-DIMETHYL- BENZENE, 2-AMINO-1,3-DIMETHYL- DIMETHYLANILINE, 2,6- 2,6-DIMETHYLANILINE 2,6-DIMETHYLBENZENAMINE 2,6-DIMETHYLPHENYLAMINE DMA 2,6-XYLIDENE XYLIDINE, 2,6- 2,6-XYLIDINE o-XYLIDINE 2,6-meta-XYLIDINE ortho-XYLIDINE 2,6-XYLYLAMINE
IDENTIFIERS
1711-Xylidines 1711-Xylidines, liquid
SYNONYM REFERENCE
- (Ashford, 1994; Bingham et al, 2001; CHRIS, 2002; (CRS, 2002); HSDB , 2002; IARC, 1993; Lewis, 2000; NTP , 2001; RTECS , 2002)
USES/FORMS/SOURCES
Uses for 2,6-xylidine include the following: as a chemical dye intermediate, additive in gasoline, antiknock and detergent agent, textile wetting agent, ore dressing frothing agent and in the manufacture of pharmaceuticals, pesticides, agrochemicals, antioxidants, curing agents, polymers, synthetic resins, dyestuffs, and fragrances. It also is used in wood preservative preparation, and in special lacquers and metal complexes (Bingham et al, 2001; HSDB , 2002; NTP , 2001). Xylidine mixtures are used primarily in the manufacture of dyes (S Budavari , 2001).
2,6-Xylidine exists as a colorless to reddish-yellow liquid (Bingham et al, 2001; HSDB , 2002). The commercial product consists primarily of the 2,4- and 2,6-isomers (Hathaway et al, 1991). It may consist of various isomers of xylidine, and occur as either a solid or a liquid (AAR, 2000). 2,6-Xylidine has a 99% purity grade (CHRIS, 2002).
2,6-Xylidine can be produced by combining aniline with methanol (orthoalkylation) or 2,6-xylenol with ammonia (ammoniation) (Ashford, 1994). It also can be manufactured through a nitration/nitro reaction using xylene (Ashford, 1994), or by "catalytic hydrogenation of corresponding nitro derivative" (HSDB , 2002).
SYNONYM EXPLANATION
- Although commercial xylidine exists as a mixture of multiple xylidine isomers, the information provided in this document is specific to the 2,6-xylidine isomer (CAS 87-62-7). If you are interested in data concerning the xylidine isomer mixture (CAS 1300-73-8) or any of the other individual isomers, please search on the specific CAS number for that chemical.
-CLINICAL EFFECTS
GENERAL CLINICAL EFFECTS
- Xylidine is toxic by ingestion, inhalation, and skin absorption. It may be irritating to the eyes, skin, and mucous membranes. Xylidine closely resembles aniline in its toxic effects, but is twice as toxic as aniline. It may not produce signs and symptoms such as cyanosis, headache, and dizziness, which characterizes aniline poisoning.
- Xylidine may cause liver and kidney damage and is a methemoglobin inducer. The extent of methemoglobin formation from xylidines appears to be species-dependent. Cats are more susceptible than humans and dogs less susceptible.
- No data on reproduction and prenatal toxicity in humans are available. There are no published reports of poisoning cases or epidemiological studies in workers. It has been suggested that a 1-hour exposure at 400 ppm xylidine is lethal to humans and that a long-term exposure at 10 ppm is toxic to humans.
- Experimental mutation data exist for xylidine. It is a suspected human carcinogen.
- Consumer exposure to xylidine is not expected to be significant, given its use primarily as a dye intermediate. Some exposure may occur through contact with residual material in endproduct dyes or pharmaceuticals or through contact with surface waters contaminated with the compound as a result of releases from manufacturing and use operations.
- POTENTIAL HEALTH HAZARDS - EMERGENCY RESPONSE GUIDEBOOK, GUIDE 153 (ERG, 2004)
TOXIC; inhalation, ingestion or skin contact with material may cause severe injury or death. Contact with molten substance may cause severe burns to skin and eyes. Avoid any skin contact. Effects of contact or inhalation may be delayed. Fire may produce irritating, corrosive and/or toxic gases. Runoff from fire control or dilution water may be corrosive and/or toxic and cause pollution.
-MEDICAL TREATMENT
LIFE SUPPORT
- Support respiratory and cardiovascular function.
SUMMARY
- FIRST AID - EMERGENCY RESPONSE GUIDEBOOK, GUIDE 153 (ERG, 2004)
Move victim to fresh air. Call 911 or emergency medical service. Give artificial respiration if victim is not breathing. Do not use mouth-to-mouth method if victim ingested or inhaled the substance; give artificial respiration with the aid of a pocket mask equipped with a one-way valve or other proper respiratory medical device. Administer oxygen if breathing is difficult. Remove and isolate contaminated clothing and shoes. In case of contact with substance, immediately flush skin or eyes with running water for at least 20 minutes. For minor skin contact, avoid spreading material on unaffected skin. Keep victim warm and quiet. Effects of exposure (inhalation, ingestion or skin contact) to substance may be delayed. Ensure that medical personnel are aware of the material(s) involved and take precautions to protect themselves.
FIRST AID EYE EXPOSURE - Immediately wash the eyes with large amounts of water, occasionally lifting the lower and upper lids. Get medical attention immediately. Primary eye protection (spectacles or goggles), as defined by the Occupational Safety and Health Administration (OSHA), should be used when working with this chemical. Face shields should only be worn over primary eye protection. DERMAL EXPOSURE - Immediately wash the contaminated skin with soap and water. If this chemical penetrates the clothing, immediately remove the clothing, wash the skin with soap and water, and get medical attention promptly. INHALATION EXPOSURE - Move the exposed person to fresh air at once. If breathing has stopped, perform artificial respiration. Keep the affected person warm and at rest. Get medical attention as soon as possible. ORAL EXPOSURE - If this chemical has been swallowed, get medical attention immediately. TARGET ORGANS - Respiratory system, blood, liver, kidneys, and cardiovascular system (National Institute for Occupational Safety and Health, 2007) OSHA, 2000).
INHALATION EXPOSURE INHALATION: Move patient to fresh air. Monitor for respiratory distress. If cough or difficulty breathing develops, evaluate for respiratory tract irritation, bronchitis, or pneumonitis. Administer oxygen and assist ventilation as required. Treat bronchospasm with an inhaled beta2-adrenergic agonist. Consider systemic corticosteroids in patients with significant bronchospasm.
DERMAL EXPOSURE EYE EXPOSURE DECONTAMINATION: Remove contact lenses and irrigate exposed eyes with copious amounts of room temperature 0.9% saline or water for at least 15 minutes. If irritation, pain, swelling, lacrimation, or photophobia persist after 15 minutes of irrigation, the patient should be seen in a healthcare facility.
ORAL EXPOSURE Because of the potential for gastrointestinal tract irritation, DO NOT induce emesis. PREHOSPITAL ACTIVATED CHARCOAL ADMINISTRATION Consider prehospital administration of activated charcoal as an aqueous slurry in patients with a potentially toxic ingestion who are awake and able to protect their airway. Activated charcoal is most effective when administered within one hour of ingestion. Administration in the prehospital setting has the potential to significantly decrease the time from toxin ingestion to activated charcoal administration, although it has not been shown to affect outcome (Alaspaa et al, 2005; Thakore & Murphy, 2002; Spiller & Rogers, 2002). In patients who are at risk for the abrupt onset of seizures or mental status depression, activated charcoal should not be administered in the prehospital setting, due to the risk of aspiration in the event of spontaneous emesis. The addition of flavoring agents (cola drinks, chocolate milk, cherry syrup) to activated charcoal improves the palatability for children and may facilitate successful administration (Guenther Skokan et al, 2001; Dagnone et al, 2002).
ACTIVATED CHARCOAL: Administer charcoal as a slurry (240 mL water/30 g charcoal). Usual dose: 25 to 100 g in adults/adolescents, 25 to 50 g in children (1 to 12 years), and 1 g/kg in infants less than 1 year old. OXYGEN - Administer oxygen to all cyanotic patients. METHEMOGLOBINEMIA: Determine the methemoglobin concentration and evaluate the patient for clinical effects of methemoglobinemia (ie, dyspnea, headache, fatigue, CNS depression, tachycardia, metabolic acidosis). Treat patients with symptomatic methemoglobinemia with methylene blue (this usually occurs at methemoglobin concentrations above 20% to 30%, but may occur at lower methemoglobin concentrations in patients with anemia, or underlying pulmonary or cardiovascular disorders). Administer oxygen while preparing for methylene blue therapy. METHYLENE BLUE: INITIAL DOSE/ADULT OR CHILD: 1 mg/kg IV over 5 to 30 minutes; a repeat dose of up to 1 mg/kg may be given 1 hour after the first dose if methemoglobin levels remain greater than 30% or if signs and symptoms persist. NOTE: Methylene blue is available as follows: 50 mg/10 mL (5 mg/mL or 0.5% solution) single-dose ampules and 10 mg/1 mL (1% solution) vials. Additional doses may sometimes be required. Improvement is usually noted shortly after administration if diagnosis is correct. Consider other diagnoses or treatment options if no improvement has been observed after several doses. If intravenous access cannot be established, methylene blue may also be given by intraosseous infusion. Methylene blue should not be given by subcutaneous or intrathecal injection. NEONATES: DOSE: 0.3 to 1 mg/kg. Concomitant use of methylene blue with serotonergic drugs, including serotonin reuptake inhibitors (SRIs), selective serotonin reuptake inhibitors (SSRIs), serotonin and norepinephrine reuptake inhibitors (SNRIs), tricyclic antidepressants (TCAs), norepinephrine-dopamine reuptake inhibitors (NDRIs), triptans, and ergot alkaloids may increase the risk of potentially fatal serotonin syndrome.
-RANGE OF TOXICITY
MINIMUM LETHAL EXPOSURE
The minimum lethal human dose to this agent has not been delineated. There are no published reports of poisoning cases or epidemiological studies in workers. Please refer to the data on the xylidine mixture for further information.
ACUTE TOXICITY STUDIES For 2,6-xylidine, the LD50 is between 1050 and 1250; for mice, it is between 710 and 750 (Bingham et al, 2001).
MAXIMUM TOLERATED EXPOSURE
The maximum tolerated human exposure to this agent has not been delineated. There are no published reports of poisoning cases or epidemiological studies in workers. Please refer to the data on the xylidine mixture for further information.
ACUTE TOXICITY STUDIES Oral doses of 2,6-xylidine administered to dogs for 4 weeks caused hepatotoxicity (fatty degeneration of the liver) at doses of 2, 20, and 50 mg/kg/day (Hathaway et al, 1991).
CHRONIC TOXICITY STUDIES Chronic 2-year studies showed a significant increase in the incidences of adenomas and carcinomas of the nasal cavity in high-dose rats fed diets containing 3000 ppm of 2,6-xylidine (Hathaway et al, 1991).
IARC found inadequate evidence that 2,6-xylidine is carcinogenic to humans and sufficient evidence that it is carcinogenic to experimental animals. The organization's overall evaluation states that the compound is "possibly carcinogenic to humans" (IARC, 1993). NTP (2001) lists the status of the compound as positive for causing cancer in male and female rats.
- Carcinogenicity Ratings for CAS87-62-7 :
ACGIH (American Conference of Governmental Industrial Hygienists, 2010): Not Listed EPA (U.S. Environmental Protection Agency, 2011): Not Listed IARC (International Agency for Research on Cancer (IARC), 2016; International Agency for Research on Cancer, 2015; IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, 2010; IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, 2010a; IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, 2008; IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, 2007; IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, 2006; IARC, 2004): 2B ; Listed as: 2,6-Dimethylaniline (2,6-Xylidine) 2B : The agent (mixture) is possibly carcinogenic to humans. The exposure circumstance entails exposures that are possibly carcinogenic to humans. This category is used for agents, mixtures and exposure circumstances for which there is limited evidence of carcinogenicity in humans and less than sufficient evidence of carcinogenicity in experimental animals. It may also be used when there is inadequate evidence of carcinogenicity in humans but there is sufficient evidence of carcinogenicity in experimental animals. In some instances, an agent, mixture or exposure circumstance for which there is inadequate evidence of carcinogenicity in humans but limited evidence of carcinogenicity in experimental animals together with supporting evidence from other relevant data may be placed in this group.
NIOSH (National Institute for Occupational Safety and Health, 2007): Not Listed MAK (DFG, 2002): Category 2 ; Listed as: 2,6-Xylidine NTP (U.S. Department of Health and Human Services, Public Health Service, National Toxicology Project ): Not Listed
TOXICITY AND RISK ASSESSMENT VALUES
- EPA Risk Assessment Values for CAS87-62-7 (U.S. Environmental Protection Agency, 2011):
-STANDARDS AND LABELS
WORKPLACE STANDARDS
- ACGIH TLV Values for CAS87-62-7 (American Conference of Governmental Industrial Hygienists, 2010):
- AIHA WEEL Values for CAS87-62-7 (AIHA, 2006):
- NIOSH REL and IDLH Values for CAS87-62-7 (National Institute for Occupational Safety and Health, 2007):
- OSHA PEL Values for CAS87-62-7 (U.S. Occupational Safety, and Health Administration (OSHA), 2010):
- OSHA List of Highly Hazardous Chemicals, Toxics, and Reactives for CAS87-62-7 (U.S. Occupational Safety and Health Administration, 2010):
ENVIRONMENTAL STANDARDS
- EPA CERCLA, Hazardous Substances and Reportable Quantities for CAS87-62-7 (U.S. Environmental Protection Agency, 2010):
- EPA CERCLA, Hazardous Substances and Reportable Quantities, Radionuclides for CAS87-62-7 (U.S. Environmental Protection Agency, 2010):
- EPA RCRA Hazardous Waste Number for CAS87-62-7 (U.S. Environmental Protection Agency, 2010b):
- EPA SARA Title III, Extremely Hazardous Substance List for CAS87-62-7 (U.S. Environmental Protection Agency, 2010):
- EPA SARA Title III, Community Right-to-Know for CAS87-62-7 (40 CFR 372.65, 2006; 40 CFR 372.28, 2006):
- DOT List of Marine Pollutants for CAS87-62-7 (49 CFR 172.101 - App. B, 2005):
- EPA TSCA Inventory for CAS87-62-7 (EPA, 2005):
SHIPPING REGULATIONS
- DOT -- Table of Hazardous Materials and Special Provisions for UN/NA Number 1711 (49 CFR 172.101, 2005):
- ICAO International Shipping Name for UN1711 (ICAO, 2002):
Proper Shipping Name: Xylidines, liquid UN Number: 1711 Proper Shipping Name: Xylidines, solid UN Number: 1711
LABELS
- NFPA Hazard Ratings for CAS87-62-7 (NFPA, 2002):
-HANDLING AND STORAGE
SUMMARY
Because IARC classifies 2,6-xylidine as a possible human carcinogen, those handling or working with the substance may want to consult the "Preventative Measures" and "Other Safety and Handling" sections in the 2,6-Xylidine HSDB document (2002). These sections include detailed information under the heading "Precautions for Carcinogens."
HANDLING
- Wear recommended protective clothing, including a respirator (self-contained breathing apparatus) when working with this chemical (HSDB , 2002; NTP , 2001).
STORAGE
- ROOM/CABINET RECOMMENDATIONS
Store 2,6-xylidine "under refrigerated temperatures" and away from ignition sources (NTP , 2001). 2,6-Xylidine solutions remain stable in "normal lab conditions" for 24 hours (NTP , 2001). Pohanish & Greene (1997) report, however, that in air the compound forms explosive mixtures. Store in a cool, dry, well-ventilated location (NFPA, 1991). Outside or detached storage is preferred (NFPA, 1991).
Keep separate from strong oxidizers, acids, acid anhydrides, acid chlorides, isocyanates, aldehydes, hypochlorites, chloroformates, and halogens (NTP , 2001; Pohanish & Greene, 1997).
-PERSONAL PROTECTION
SUMMARY
- RECOMMENDED PROTECTIVE CLOTHING - EMERGENCY RESPONSE GUIDEBOOK, GUIDE 153 (ERG, 2004)
Wear positive pressure self-contained breathing apparatus (SCBA). Wear chemical protective clothing that is specifically recommended by the manufacturer. It may provide little or no thermal protection. Structural firefighters' protective clothing provides limited protection. fire situations ONLY; it is not effective in spill situations where direct contact with the substance is possible.
- Contact with 2,6-xylidine can result in burns to the skin and eyes (HSDB , 2002).
- Wear appropriate personal protective clothing and equipment to prevent contact with 2,6-xylidine, including chemical protective suit and gloves, rubber boots, and positive pressure breathing apparatus (CHRIS, 2002; HSDB , 2002; NFPA, 2002a).
- Stay upwind and do not breathe 2,6-xylidine vapors. Wear chemical protective clothing that is appropriate for the situation along with a positive pressure self-contained breathing apparatus. Wear appropriate protective equipment when handling broken packages of the compound. Use large quantities of soap and water to wash any parts of the body that have come into contact with the compound (AAR, 2000).
- If 2,6-xylidine contacts the skin, flush the affected area for at least 15 minutes with running water (HSDB , 2002).
- Contaminated clothing or shoes should be removed and replaced at the work site (HSDB , 2002).
- Segregate and identify protective clothing that has been in contact with the compound so those who handle or clean the clothing take appropriate precautions (HSDB , 2002).
EYE/FACE PROTECTION
- If 2,6-xylidine contacts the eyes, flush the affected area for at least 15 minutes with running water. To ensure adequate flushing, separate the eyelids with the finger while washing (CHRIS, 2002; HSDB , 2002).
RESPIRATORY PROTECTION
- Refer to "Recommendations for respirator selection" in the NIOSH Pocket Guide to Chemical Hazards on TOMES Plus(R) for respirator information.
- Wear a positive pressure breathing apparatus when the possibility of over-exposure 2,6-xylidine exists (HSDB , 2002).
PROTECTIVE CLOTHING
- CHEMICAL PROTECTIVE CLOTHING. Search results for CAS 87-62-7.
-PHYSICAL HAZARDS
FIRE HAZARD
POTENTIAL FIRE OR EXPLOSION HAZARDS - EMERGENCY RESPONSE GUIDEBOOK, GUIDE 153 (ERG, 2004) Combustible material: may burn but does not ignite readily. When heated, vapors may form explosive mixtures with air: indoors, outdoors and sewers explosion hazards. Those substances designated with a "P" may polymerize explosively when heated or involved in a fire. Contact with metals may evolve flammable hydrogen gas. Containers may explode when heated. Runoff may pollute waterways. Substance may be transported in a molten form.
2,6-Xylidine is combustible (CHRIS, 2002; NTP , 2001). Fire may result when 2,6-xylidine contacts strong acids (Pohanish & Greene, 1997).
- FLAMMABILITY CLASSIFICATION
- NFPA Flammability Rating for CAS87-62-7 (NFPA, 2002):
- FIRE CONTROL/EXTINGUISHING AGENTS
- SMALL FIRE PRECAUTIONS - EMERGENCY RESPONSE GUIDEBOOK, GUIDE 153 (ERG, 2004)
- LARGE FIRE PRECAUTIONS - EMERGENCY RESPONSE GUIDEBOOK, GUIDE 153 (ERG, 2004)
Dry chemical, CO2, alcohol-resistant foam or water spray. Move containers from fire area if you can do it without risk. Dike fire control water for later disposal; do not scatter the material.
- TANK OR CAR/TRAILER LOAD FIRE PRECAUTIONS - EMERGENCY RESPONSE GUIDEBOOK, GUIDE 153 (ERG, 2004)
Fight fire from maximum distance or use unmanned hose holders or monitor nozzles. Do not get water inside containers. Cool containers with flooding quantities of water until well after fire is out. Withdraw immediately in case of rising sound from venting safety devices or discoloration of tank. ALWAYS stay away from tanks engulfed in fire.
- NFPA Extinguishing Methods for CAS87-62-7 (NFPA, 2002):
- As water may be ineffective, use carbon dioxide, dry chemical, or alcohol foam to extinguish a 2,6-xylidine fire (CHRIS, 2002).
- To fight fire, use dry chemical, foam, carbon dioxide, or water spray. Water may be ineffective. Water or foam may cause frothing. Approach fire from upwind to avoid hazardous vapors and toxic decomposition products (NFPA, 2002a).
EXPLOSION HAZARD
- Explosions may result following contact between 2,6-xylidine and strong acids (Pohanish & Greene, 1997).
- Explosive chloroamines are produced when the compound is in contact with hypochlorite bleach (Pohanish & Greene, 1997).
- Containers exposed to fire may explode (CHRIS, 2002).
DUST/VAPOR HAZARD
- Exposure to 2,6-xylidine vapors and mist can occur and can be irritating to throat, nose, and eyes and is deemed generally "poisonous" by inhalation (CHRIS, 2002).
- Hazardous nitrogen oxide vapors are emitted when 2,6-xylidine is heated to decomposition (Lewis, 2000).
- Combustion by-products include oxides of nitrogen and other irritants and toxic gases (NFPA, 2002a).
REACTIVITY HAZARD
- A violent reaction may occur on contact with the following: strong oxidizers, acids, acid anhydrides, acid chlorides, isocyanates, aldehydes, hypochlorites, chloroformates, and halogens (NTP , 2001; Pohanish & Greene, 1997).
- Fire or explosions may result when 2,6-xylidine contacts strong acids (Pohanish & Greene, 1997).
- Hazardous nitrogen oxide vapors are emitted when 2,6-xylidine is heated to decomposition (Lewis, 2000).
- Explosive chloroamines are produced when the compound is in contact with hypochlorite bleach (Pohanish & Greene, 1997).
- Containers exposed to fire may explode (CHRIS, 2002).
- 2,6-Xylidine is combustible (CHRIS, 2002; NTP , 2001).
EVACUATION PROCEDURES
- Editor's Note: This material is not listed in the Table of Initial Isolation and Protective Action Distances.
- SPILL - PUBLIC SAFETY EVACUATION DISTANCES - EMERGENCY RESPONSE GUIDEBOOK, GUIDE 153 (ERG, 2004)
Increase, in the downwind direction, as necessary, the isolation distance of at least 50 meters (150 feet) for liquids and at least 25 meters (75 feet) for solids in all directions.
- FIRE - PUBLIC SAFETY EVACUATION DISTANCES - EMERGENCY RESPONSE GUIDEBOOK, GUIDE 153 (ERG, 2004)
If tank, rail car or tank truck is involved in a fire, ISOLATE for 800 meters (1/2 mile) in all directions; also, consider initial evacuation for 800 meters (1/2 mile) in all directions.
- PUBLIC SAFETY MEASURES - EMERGENCY RESPONSE GUIDEBOOK, GUIDE 153 (ERG, 2004)
CALL Emergency Response Telephone Number on Shipping Paper first. If Shipping Paper not available or no answer, refer to appropriate telephone number: MEXICO: SETIQ: 01-800-00-214-00 in the Mexican Republic; For calls originating in Mexico City and the Metropolitan Area: 5559-1588; For calls originating elsewhere, call: 011-52-555-559-1588.
CENACOM: 01-800-00-413-00 in the Mexican Republic; For calls originating in Mexico City and the Metropolitan Area: 5550-1496, 5550-1552, 5550-1485, or 5550-4885; For calls originating elsewhere, call: 011-52-555-550-1496, or 011-52-555-550-1552; 011-52-555-550-1485, or 011-52-555-550-4885.
ARGENTINA: CIQUIME: 0-800-222-2933 in the Republic of Argentina; For calls originating elsewhere, call: +54-11-4613-1100.
BRAZIL: PRÓ-QUÍMICA: 0-800-118270 (Toll-free in Brazil); For calls originating elsewhere, call: +55-11-232-1144 (Collect calls are accepted).
COLUMBIA: CISPROQUIM: 01-800-091-6012 in Colombia; For calls originating in Bogotá, Colombia, call: 288-6012; For calls originating elsewhere, call: 011-57-1-288-6012.
CANADA: UNITED STATES:
For additional details see the section entitled "WHO TO CALL FOR ASSISTANCE" under the ERG Instructions. As an immediate precautionary measure, isolate spill or leak area in all directions for at least 50 meters (150 feet) for liquids and at least 25 meters (75 feet) for solids. Keep unauthorized personnel away. Stay upwind. Keep out of low areas. Ventilate enclosed areas.
- AIHA ERPG Values for CAS87-62-7 (AIHA, 2006):
- DOE TEEL Values for CAS87-62-7 (U.S. Department of Energy, Office of Emergency Management, 2010):
- AEGL Values for CAS87-62-7 (National Research Council, 2010; National Research Council, 2009; National Research Council, 2008; National Research Council, 2007; NRC, 2001; NRC, 2002; NRC, 2003; NRC, 2004; NRC, 2004; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2006; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2007; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2005; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2005; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2007; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2006; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2006; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2006; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2006; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2006; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2006; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2006; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2006; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2006; United States Environmental Protection Agency Office of Pollution Prevention and Toxics, 2006; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2006; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2007; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2007; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2008; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2008; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2007; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2008; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2007; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2008; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2007; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2009; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2009; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2009; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2009; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2009; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2009; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2009; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2009; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2009; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2009; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2009; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2008; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2008; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2008; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2008; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2008; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2008; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2008; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2009; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2008; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2008; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2008; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2009; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2008; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2008; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2008; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2008; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2008; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2008; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2008; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2007; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2006; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2006; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2006; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2007; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2007; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2007; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2007; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2007; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2005; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2005; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2005; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2005; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2005; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2005; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2005; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2005; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2007; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2005; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2006; 62 FR 58840, 1997; 65 FR 14186, 2000; 65 FR 39264, 2000; 65 FR 77866, 2000; 66 FR 21940, 2001; 67 FR 7164, 2002; 68 FR 42710, 2003; 69 FR 54144, 2004):
- NIOSH IDLH Values for CAS87-62-7 (National Institute for Occupational Safety and Health, 2007):
CONTAINMENT/WASTE TREATMENT OPTIONS
SPILL OR LEAK PRECAUTIONS - EMERGENCY RESPONSE GUIDEBOOK, GUIDE 153 (ERG, 2004) ELIMINATE all ignition sources (no smoking, flares, sparks or flames in immediate area). Do not touch damaged containers or spilled material unless wearing appropriate protective clothing. Stop leak if you can do it without risk. Prevent entry into waterways, sewers, basements or confined areas. Absorb or cover with dry earth, sand or other non-combustible material and transfer to containers. DO NOT GET WATER INSIDE CONTAINERS.
RECOMMENDED PROTECTIVE CLOTHING - EMERGENCY RESPONSE GUIDEBOOK, GUIDE 153 (ERG, 2004) Wear positive pressure self-contained breathing apparatus (SCBA). Wear chemical protective clothing that is specifically recommended by the manufacturer. It may provide little or no thermal protection. Structural firefighters' protective clothing provides limited protection. fire situations ONLY; it is not effective in spill situations where direct contact with the substance is possible.
Immediately remove all ignition sources after a 2,6-xylidine spill. Clean up liquids with absorbent paper and then seal in a vapor-tight plastic bag. Use a 60-70% ethanol solution and then soap and water to wash all contaminated surfaces. Ensure that safety officer inspects area before other personnel are permitted to re-enter (NTP , 2001). Stop or control the leak, if this can be done without undue risk to personnel. Use appropriate foam to blanket release and suppress vapors. Approach release from upwind. Absorb in noncombustible material for proper disposal. Control runoff and isolate discharged material for proper disposal (NFPA, 2002a). If 2,6-xylidine is spilled in a water body, attempt to stop the discharge and contain the spill. Skim the water surface to collect the spilled material. Avoid burning. Clean material from shoreline (CHRIS, 2002). Notify wildlife and health officials and water plant operators of a 2,6-xylidine spill (CHRIS, 2002). "At the time of this review, criteria for land treatment or burial (sanitary landfill) disposal practices are subject to significant revision. Prior to implementing land disposal of waste residue (including waste sludge), consult with environmental regulatory agencies for guidance on acceptable disposal practices" (HSDB , 2002). Consult local, state, and federal hazardous waste disposal regulations before disposing this chemical (NTP , 2001). Though 2,6-xylidine is not classified as a carcinogen by IARC (1993), but as "possibly carcinogenic to humans," the user may want to consult the "Other Safety and Handling Methods" section of the 2,6-Xylidine HSDB (2002) document, which contains detailed cleanup and disposal information under "Precautions for Carcinogens" headings.
Materials contaminated with 2,6-xylidine may be candidates for incineration in a facility with temperatures exceeding 2000 degrees F (NTP , 2001). Incineration is a possible form of disposal for xylidines (HSDB , 2002). Waste management activities associated with material disposition are unique to individual situations. Proper waste characterization and decisions regarding waste management should be coordinated with the appropriate local, state, or federal authorities to ensure compliance with all applicable rules and regulations.
-ENVIRONMENTAL HAZARD MANAGEMENT
POLLUTION HAZARD
- 2,6-Xylidine is released to the environment via waste streams associated with the chemical's production, its use in the manufacture of various substances including pesticides and dyestuffs, and its existence as an organic product in the coke production process (HSDB , 2002).
- 2,6-Xylidine has been detected in tobacco smoke (HSDB , 2002).
ENVIRONMENTAL FATE AND KINETICS
A research model suggests that, in the ambient atmosphere, 2,6-xylidine exists as a vapor only (HSDB , 2002). Half-life in air: High: 3.3 hours; Low: 0.33 hours (estimation based on the estimated photooxidation half-lives in air) (Howard et al, 1991). Photooxidation half-life (air): High: 3.3 hours; Low: 0.33 hours (estimation based upon estimated reaction rate constant with hydroxyl radicals in air) (Howard et al, 1991).
SURFACE WATER Research studies indicate that volatilization of 2,6-xylidine from water surfaces is possible. 2,6-Xylidine may not adsorb significantly to sediment and suspended solids in water, though the compound will strongly adsorb to organic matter in water (HSDB , 2002). Half-life in surface water: High: 3480 hours (145 days); Low: 62.4 hours (2.6 days) (estimation based on the estimated photooxidation half-lives in water) (Howard et al, 1991). Half-life in groundwater: High: 8640 hours (12 months); Low: 1344 hours (8 weeks) (estimation based upon estimated aqueous aerobic biodegradation half-lives) (Howard et al, 1991). Aqueous Biodegradation (unacclimated) (Howard et al, 1991): Aerobic half-life: High: 4320 hours (6 months); Low: 672 hours (4 weeks) (estimation based on biological screening study and a soil degradation study) Anaerobic half-life: High: 17,280 hours (24 months); Low: 2688 hours (16 weeks) (estimation based upon estimated aqueous biodegradation half-lives)
Photooxidation half-life (water): High: 3480 hours (145 days); Low: 62.4 hours (2.6 days) (estimation based upon reaction rate constants of the aromatic amine class with reactive oxygen species and hydroxyl radicals) (Howard et al, 1991).
TERRESTRIAL In soil, 2,6-xylidine is expected to be highly mobile; however, in some soils, this may not be the case, as the reactive nature of the aromatic amino group causes anilines to adsorb to organic matter or humus (HSDB , 2002). It also is expected that the compound will volatilize from moist soil surfaces (HSDB , 2002). Results of one study showed that within 24 hours, 66% of the 2,6-xylidine applied to soil was adsorbed (HSDB , 2002). In a laboratory study using 2 kg of chernozem loam soil, within 3 days, all of the compound (500 mg/kg soil) degraded (HSDB , 2002). Half-life in soil: High: 7584 hours (316 days); Low: 72 hours (3 days) (High value based upon radio-labeled transformation to carbon dioxide in a soil degradation study. Low value based upon measured soil persistence in a soil which may have been acclimated to chemicals from the coke industry) (Howard et al, 1991).
ABIOTIC DEGRADATION
- In the water column, significant photooxidation of the compound due to hydroxyl and peroxy radicals may occur (half-life: 19-30 sunlight hours) (HSDB , 2002).
- In air, the compound in its vapor phase degrades via reaction with hydroxyl radicals that are photochemically produced (half-life: 2.4 hours; atmospheric concentration: 5X10(5) hydroxyl radicals/cm(3)) (HSDB , 2002).
- Direct photolysis is possible because, in the environmental spectrum, 2,6-xylidine absorbs ultraviolet light (HSDB , 2002).
- The compound is not expected to hydrolyze in the environment (HSDB , 2002).
- Based on an estimated Henry's Law constant of 2.5X10(-6) atm-m(3)/mol, "the volatilization half-life from a model river (1 m deep, flowing 1 m/sec, wind velocity of 3 m/sec) is estimated as approximately 16 days. The volatilization half-life from a model lake (1 m deep, flowing 0.05 m/sec, wind velocity of 0.5 m/sec) is estimated as approximately 120 days" (HSDB , 2002).
BIODEGRADATION
- A depletion rate of 33-37% 2,6-xylidine at a 20 ppm concentration occurred after 6 hours of incubation in activated sludge seed (HSDB , 2002).
- "In a 6 week soil degradation study using (14)C-labelled 2,6-xylidine, 8.4% of applied radioactivity was recovered via carbon CO2 evolution in non-autoclaved soil while 0% CO2 evolution occurred in autoclaved soil" (HSDB , 2002).
BIOACCUMULATION
ENVIRONMENTAL TOXICITY
- No information found at the time of this review.
-PHYSICAL/CHEMICAL PROPERTIES
MOLECULAR WEIGHT
DESCRIPTION/PHYSICAL STATE
- 2,6-Xylidine has been described as a yellow liquid or a clear, colorless to reddish-yellow liquid with an aromatic amine odor (HSDB , 2002; NTP , 2001). It floats on water (CHRIS, 2002).
PH
- 2,6-XYLIDINE (of water extract): 7.05 (NTP , 2001)
VAPOR PRESSURE
- 1 mmHg (at 44 degrees C) (NTP , 2001)
- 5 mmHg (at 72.6 degrees C) (NTP , 2001)
- 100 mmHg (at 146 degrees C) (NTP , 2001)
- 0.125 mmHg (at 25 degrees C) (HSDB , 2002)
SPECIFIC GRAVITY
- OTHER TEMPERATURE AND/OR PRESSURE
0.974 (at 23 degrees C) (NTP , 2001) 0.9842 (at 20 degrees C) (HSDB , 2002)
- TEMPERATURE AND/OR PRESSURE NOT LISTED
<1.0 (NFPA, 2002a) 0.984 (CHRIS, 2002)
DENSITY
- OTHER TEMPERATURE AND/OR PRESSURE
0.9842 g/cm(3)(at 20 degrees C) (Bingham et al, 2001) 0.980 g/cm(3)(at 15 degrees C) (Lewis, 2000) 0.98 kg/L (at 20 degrees C) (Ashford, 1994)
- TEMPERATURE AND/OR PRESSURE NOT LISTED
FREEZING/MELTING POINT
10-12 degrees C; 50-53.6 degrees F; 283-285 Kelvin (CHRIS, 2002) Solidifies at temperatures <11 degrees C (53 degrees F) (NTP , 2001)
8.4 degrees C (Bingham et al, 2001) 10-12 degrees C (Lewis, 2000) 11 degrees C (Ashford, 1994) 11.2 degrees C (HSDB , 2002)
BOILING POINT
- 214 degrees C; 417.2 degrees F; 487.2 Kelvin (at 1 atm and 739 mmHg) (CHRIS, 2002)
- 214 degrees C (at 739 mmHg) (Bingham et al, 2001; HSDB , 2002)
- 216 degrees C (Ashford, 1994)
- 216-217 degrees C (Lewis, 2000)
- 224 degrees C; 435 degrees F (NFPA, 2002a)
FLASH POINT
- 91 degrees C; 196 F (closed cup) (Ashford, 1994; CHRIS, 2002)
- 97 degrees C; 206 degrees F (NFPA, 2002a)
- 96.7 degrees C; 206 degrees F (Pohanish & Greene, 1997)
AUTOIGNITION TEMPERATURE
- 405 degrees C; 761 degrees F (NTP , 2001)
EXPLOSIVE LIMITS
1% (NFPA, 2002a) 1.5% (NTP , 2001)
SOLUBILITY
"Sparingly soluble in water" (CHRIS, 2002) Not soluble in water (NFPA, 2002a) <1 mg/mL (at 24 degrees C) (NTP , 2001) 8240 ppm (at 25 degrees C) (HSDB , 2002)
Xylidines are sparingly soluble in water (S Budavari , 2001).
OCTANOL/WATER PARTITION COEFFICIENT
- log Kow = 1.84 (HSDB , 2002)
HENRY'S CONSTANT
- 2.5X10(-6) atm-m(3)/mol (HSDB , 2002)
SPECTRAL CONSTANTS
OTHER/PHYSICAL
-REFERENCES
GENERAL BIBLIOGRAPHY- 40 CFR 372.28: Environmental Protection Agency - Toxic Chemical Release Reporting, Community Right-To-Know, Lower thresholds for chemicals of special concern. National Archives and Records Administration (NARA) and the Government Printing Office (GPO). Washington, DC. Final rules current as of Apr 3, 2006.
- 40 CFR 372.65: Environmental Protection Agency - Toxic Chemical Release Reporting, Community Right-To-Know, Chemicals and Chemical Categories to which this part applies. National Archives and Records Association (NARA) and the Government Printing Office (GPO), Washington, DC. Final rules current as of Apr 3, 2006.
- 49 CFR 172.101 - App. B: Department of Transportation - Table of Hazardous Materials, Appendix B: List of Marine Pollutants. National Archives and Records Administration (NARA) and the Government Printing Office (GPO), Washington, DC. Final rules current as of Aug 29, 2005.
- 49 CFR 172.101: Department of Transportation - Table of Hazardous Materials. National Archives and Records Administration (NARA) and the Government Printing Office (GPO), Washington, DC. Final rules current as of Aug 11, 2005.
- 62 FR 58840: Notice of the National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances - Proposed AEGL Values, Environmental Protection Agency, NAC/AEGL Committee. National Archives and Records Administration (NARA) and the Government Publishing Office (GPO), Washington, DC, 1997.
- 65 FR 14186: Notice of the National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances - Proposed AEGL Values, Environmental Protection Agency, NAC/AEGL Committee. National Archives and Records Administration (NARA) and the Government Publishing Office (GPO), Washington, DC, 2000.
- 65 FR 39264: Notice of the National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances - Proposed AEGL Values, Environmental Protection Agency, NAC/AEGL Committee. National Archives and Records Administration (NARA) and the Government Publishing Office (GPO), Washington, DC, 2000.
- 65 FR 77866: Notice of the National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances - Proposed AEGL Values, Environmental Protection Agency, NAC/AEGL Committee. National Archives and Records Administration (NARA) and the Government Publishing Office (GPO), Washington, DC, 2000.
- 66 FR 21940: Notice of the National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances - Proposed AEGL Values, Environmental Protection Agency, NAC/AEGL Committee. National Archives and Records Administration (NARA) and the Government Publishing Office (GPO), Washington, DC, 2001.
- 67 FR 7164: Notice of the National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances - Proposed AEGL Values, Environmental Protection Agency, NAC/AEGL Committee. National Archives and Records Administration (NARA) and the Government Publishing Office (GPO), Washington, DC, 2002.
- 68 FR 42710: Notice of the National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances - Proposed AEGL Values, Environmental Protection Agency, NAC/AEGL Committee. National Archives and Records Administration (NARA) and the Government Publishing Office (GPO), Washington, DC, 2003.
- 69 FR 54144: Notice of the National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances - Proposed AEGL Values, Environmental Protection Agency, NAC/AEGL Committee. National Archives and Records Administration (NARA) and the Government Publishing Office (GPO), Washington, DC, 2004.
- AIHA: 2006 Emergency Response Planning Guidelines and Workplace Environmental Exposure Level Guides Handbook, American Industrial Hygiene Association, Fairfax, VA, 2006.
- Alaspaa AO, Kuisma MJ, Hoppu K, et al: Out-of-hospital administration of activated charcoal by emergency medical services. Ann Emerg Med 2005; 45:207-12.
- American Conference of Governmental Industrial Hygienists : ACGIH 2010 Threshold Limit Values (TLVs(R)) for Chemical Substances and Physical Agents and Biological Exposure Indices (BEIs(R)), American Conference of Governmental Industrial Hygienists, Cincinnati, OH, 2010.
- Ashford R: Ashford's Dictionary of Industrial Chemicals, Wavelength Publications Ltd, London, England, 1994.
- Bingham E, Cohrssen B, & Powell CH: Patty's Toxicology, Vol 4. 5th ed, John Wiley & Sons, New York, NY, 2001.
- Burgess JL, Kirk M, Borron SW, et al: Emergency department hazardous materials protocol for contaminated patients. Ann Emerg Med 1999; 34(2):205-212.
- CHRIS: CHRIS Hazardous Chemical Data. US Department of Transportation, US Coast Guard. Washington, DC (Internet Version). Edition expires 2002; provided by Truven Health Analytics Inc., Greenwood Village, CO.
- CRS: Results for Benzenamine, 2,6-dimethyl.. US Environmental Protection Agency's Chemical Registry System. Washington, DC, USA. 2002. Available from URL: http://www.oaspub.epa.gov/crs/crs_proc_qry.navigate?P_CHEM_ID=11296. As accessed Accessed 2002 Aug 15.
- DFG: List of MAK and BAT Values 2002, Report No. 38, Deutsche Forschungsgemeinschaft, Commission for the Investigation of Health Hazards of Chemical Compounds in the Work Area, Wiley-VCH, Weinheim, Federal Republic of Germany, 2002.
- Dagnone D, Matsui D, & Rieder MJ: Assessment of the palatability of vehicles for activated charcoal in pediatric volunteers. Pediatr Emerg Care 2002; 18:19-21.
- EPA: Search results for Toxic Substances Control Act (TSCA) Inventory Chemicals. US Environmental Protection Agency, Substance Registry System, U.S. EPA's Office of Pollution Prevention and Toxics. Washington, DC. 2005. Available from URL: http://www.epa.gov/srs/.
- ERG: Emergency Response Guidebook. A Guidebook for First Responders During the Initial Phase of a Dangerous Goods/Hazardous Materials Incident, U.S. Department of Transportation, Research and Special Programs Administration, Washington, DC, 2004.
- Guenther Skokan E, Junkins EP, & Corneli HM: Taste test: children rate flavoring agents used with activated charcoal. Arch Pediatr Adolesc Med 2001; 155:683-686.
- HSDB : Hazardous Substances Data Bank. National Library of Medicine. Bethesda, MD (Internet Version). Edition expires 2002; provided by Truven Health Analytics Inc., Greenwood Village, CO.
- Hathaway GJ, Proctor NH, & Hughes JP: Chemical Hazards of the Workplace, 3rd ed, Van Nostrand Reinhold Company, New York, NY, 1991, pp 590.
- Howard PH, Boethling RS, & Jarvis WF: Handbook of Environmental Degradation Rates, Lewis Publishers, Chelsea, MI, 1991.
- IARC Working Group on the Evaluation of Carcinogenic Risks to Humans : IARC Monographs on the Evaluation of Carcinogenic Risks to Humans: 1,3-Butadiene, Ethylene Oxide and Vinyl Halides (Vinyl Fluoride, Vinyl Chloride and Vinyl Bromide), 97, International Agency for Research on Cancer, Lyon, France, 2008.
- IARC Working Group on the Evaluation of Carcinogenic Risks to Humans : IARC Monographs on the Evaluation of Carcinogenic Risks to Humans: Formaldehyde, 2-Butoxyethanol and 1-tert-Butoxypropan-2-ol, 88, International Agency for Research on Cancer, Lyon, France, 2006.
- IARC Working Group on the Evaluation of Carcinogenic Risks to Humans : IARC Monographs on the Evaluation of Carcinogenic Risks to Humans: Household Use of Solid Fuels and High-temperature Frying, 95, International Agency for Research on Cancer, Lyon, France, 2010a.
- IARC Working Group on the Evaluation of Carcinogenic Risks to Humans : IARC Monographs on the Evaluation of Carcinogenic Risks to Humans: Smokeless Tobacco and Some Tobacco-specific N-Nitrosamines, 89, International Agency for Research on Cancer, Lyon, France, 2007.
- IARC Working Group on the Evaluation of Carcinogenic Risks to Humans : IARC Monographs on the Evaluation of Carcinogenic Risks to Humans: Some Non-heterocyclic Polycyclic Aromatic Hydrocarbons and Some Related Exposures, 92, International Agency for Research on Cancer, Lyon, France, 2010.
- IARC: List of all agents, mixtures and exposures evaluated to date - IARC Monographs: Overall Evaluations of Carcinogenicity to Humans, Volumes 1-88, 1972-PRESENT. World Health Organization, International Agency for Research on Cancer. Lyon, FranceAvailable from URL: http://monographs.iarc.fr/monoeval/crthall.html. As accessed Oct 07, 2004.
- IARC: Monographs on the Evaluation of Carcinogenicity of Chemicals to Humans. 2,6-Dimethylaniline (2,6-Xylidine), CAS No.: <87-62-7. 1972-PRESENT (Multivolume work). International Agency for Research on Cancer, World Health Organization. Geneva, Switzerland. 1993. Available from URL: http://193.51.164.11/htdocs/Monographs/Vol57/17-26DIM.HTM. As accessed Accessed March 1, 2002.
- ICAO: Technical Instructions for the Safe Transport of Dangerous Goods by Air, 2003-2004. International Civil Aviation Organization, Montreal, Quebec, Canada, 2002.
- International Agency for Research on Cancer (IARC): IARC monographs on the evaluation of carcinogenic risks to humans: list of classifications, volumes 1-116. International Agency for Research on Cancer (IARC). Lyon, France. 2016. Available from URL: http://monographs.iarc.fr/ENG/Classification/latest_classif.php. As accessed 2016-08-24.
- International Agency for Research on Cancer: IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. World Health Organization. Geneva, Switzerland. 2015. Available from URL: http://monographs.iarc.fr/ENG/Classification/. As accessed 2015-08-06.
- Lewis RJ: Sax's Dangerous Properties of Industrial Materials, 10th ed, Van Nostrand Reinhold Company, New York, NY, 2000.
- NFPA: Fire Protection Guide to Hazardous Materials, 13th ed, National Fire Protection Association, Quincy, MA, 2002a.
- NFPA: Fire Protection Guide to Hazardous Materials, 13th ed., National Fire Protection Association, Quincy, MA, 2002.
- NRC: Acute Exposure Guideline Levels for Selected Airborne Chemicals - Volume 1, Subcommittee on Acute Exposure Guideline Levels, Committee on Toxicology, Board on Environmental Studies and Toxicology, Commission of Life Sciences, National Research Council. National Academy Press, Washington, DC, 2001.
- NRC: Acute Exposure Guideline Levels for Selected Airborne Chemicals - Volume 2, Subcommittee on Acute Exposure Guideline Levels, Committee on Toxicology, Board on Environmental Studies and Toxicology, Commission of Life Sciences, National Research Council. National Academy Press, Washington, DC, 2002.
- NRC: Acute Exposure Guideline Levels for Selected Airborne Chemicals - Volume 3, Subcommittee on Acute Exposure Guideline Levels, Committee on Toxicology, Board on Environmental Studies and Toxicology, Commission of Life Sciences, National Research Council. National Academy Press, Washington, DC, 2003.
- NRC: Acute Exposure Guideline Levels for Selected Airborne Chemicals - Volume 4, Subcommittee on Acute Exposure Guideline Levels, Committee on Toxicology, Board on Environmental Studies and Toxicology, Commission of Life Sciences, National Research Council. National Academy Press, Washington, DC, 2004.
- NTP : National Toxicology Program Chemical Repository. National Toxicology Program, US Department of Human Health Services, National Institutes of Health, Prepared by Radian Corporation. Research Triangle Park, NC. 2001. Available from URL: http://ntp-server.niehs.nih.gov/htdocs/CHEM_H&S/NTP_Chem8/Radian87-62-7.html. As accessed URL is active - 6/18/03.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for 1,2,3-Trimethylbenzene (Proposed). United States Environmental Protection Agency. Washington, DC. 2006k. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d68a&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for 1,2,4-Trimethylbenzene (Proposed). United States Environmental Protection Agency. Washington, DC. 2006m. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d68a&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for 1,2-Butylene Oxide (Proposed). United States Environmental Protection Agency. Washington, DC. 2008d. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648083cdbb&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for 1,2-Dibromoethane (Proposed). United States Environmental Protection Agency. Washington, DC. 2007g. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064802796db&disposition=attachment&contentType=pdf. As accessed 2010-08-18.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for 1,3,5-Trimethylbenzene (Proposed). United States Environmental Protection Agency. Washington, DC. 2006l. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d68a&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for 2-Ethylhexyl Chloroformate (Proposed). United States Environmental Protection Agency. Washington, DC. 2007b. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648037904e&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Acrylonitrile (Proposed). United States Environmental Protection Agency. Washington, DC. 2007c. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648028e6a3&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Adamsite (Proposed). United States Environmental Protection Agency. Washington, DC. 2007h. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020fd29&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Agent BZ (3-quinuclidinyl benzilate) (Proposed). United States Environmental Protection Agency. Washington, DC. 2007f. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064803ad507&disposition=attachment&contentType=pdf. As accessed 2010-08-18.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Allyl Chloride (Proposed). United States Environmental Protection Agency. Washington, DC. 2008. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648039d9ee&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Aluminum Phosphide (Proposed). United States Environmental Protection Agency. Washington, DC. 2005b. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c5ed&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Arsenic Trioxide (Proposed). United States Environmental Protection Agency. Washington, DC. 2007m. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480220305&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Automotive Gasoline Unleaded (Proposed). United States Environmental Protection Agency. Washington, DC. 2009a. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a7cc17&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Biphenyl (Proposed). United States Environmental Protection Agency. Washington, DC. 2005j. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064801ea1b7&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Bis-Chloromethyl Ether (BCME) (Proposed). United States Environmental Protection Agency. Washington, DC. 2006n. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648022db11&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Boron Tribromide (Proposed). United States Environmental Protection Agency. Washington, DC. 2008a. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064803ae1d3&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Bromine Chloride (Proposed). United States Environmental Protection Agency. Washington, DC. 2007d. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648039732a&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Bromoacetone (Proposed). United States Environmental Protection Agency. Washington, DC. 2008e. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064809187bf&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Calcium Phosphide (Proposed). United States Environmental Protection Agency. Washington, DC. 2005d. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c5ed&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Carbonyl Fluoride (Proposed). United States Environmental Protection Agency. Washington, DC. 2008b. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064803ae328&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Carbonyl Sulfide (Proposed). United States Environmental Protection Agency. Washington, DC. 2007e. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648037ff26&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Chlorobenzene (Proposed). United States Environmental Protection Agency. Washington, DC. 2008c. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064803a52bb&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Cyanogen (Proposed). United States Environmental Protection Agency. Washington, DC. 2008f. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064809187fe&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Dimethyl Phosphite (Proposed). United States Environmental Protection Agency. Washington, DC. 2009. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a7cbf3&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Diphenylchloroarsine (Proposed). United States Environmental Protection Agency. Washington, DC. 2007l. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020fd29&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Ethyl Isocyanate (Proposed). United States Environmental Protection Agency. Washington, DC. 2008h. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648091884e&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Ethyl Phosphorodichloridate (Proposed). United States Environmental Protection Agency. Washington, DC. 2008i. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480920347&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Ethylbenzene (Proposed). United States Environmental Protection Agency. Washington, DC. 2008g. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064809203e7&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Ethyldichloroarsine (Proposed). United States Environmental Protection Agency. Washington, DC. 2007j. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020fd29&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Germane (Proposed). United States Environmental Protection Agency. Washington, DC. 2008j. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480963906&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Hexafluoropropylene (Proposed). United States Environmental Protection Agency. Washington, DC. 2006. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064801ea1f5&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Ketene (Proposed). United States Environmental Protection Agency. Washington, DC. 2007. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020ee7c&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Magnesium Aluminum Phosphide (Proposed). United States Environmental Protection Agency. Washington, DC. 2005h. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c5ed&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Magnesium Phosphide (Proposed). United States Environmental Protection Agency. Washington, DC. 2005g. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c5ed&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Malathion (Proposed). United States Environmental Protection Agency. Washington, DC. 2009k. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064809639df&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Mercury Vapor (Proposed). United States Environmental Protection Agency. Washington, DC. 2009b. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a8a087&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Methyl Isothiocyanate (Proposed). United States Environmental Protection Agency. Washington, DC. 2008k. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480963a03&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Methyl Parathion (Proposed). United States Environmental Protection Agency. Washington, DC. 2008l. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480963a57&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Methyl tertiary-butyl ether (Proposed). United States Environmental Protection Agency. Washington, DC. 2007a. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064802a4985&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Methylchlorosilane (Proposed). United States Environmental Protection Agency. Washington, DC. 2005. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c5f4&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Methyldichloroarsine (Proposed). United States Environmental Protection Agency. Washington, DC. 2007i. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020fd29&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Methyldichlorosilane (Proposed). United States Environmental Protection Agency. Washington, DC. 2005a. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c646&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Nitrogen Mustard (HN1 CAS Reg. No. 538-07-8) (Proposed). United States Environmental Protection Agency. Washington, DC. 2006a. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d6cb&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Nitrogen Mustard (HN2 CAS Reg. No. 51-75-2) (Proposed). United States Environmental Protection Agency. Washington, DC. 2006b. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d6cb&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Nitrogen Mustard (HN3 CAS Reg. No. 555-77-1) (Proposed). United States Environmental Protection Agency. Washington, DC. 2006c. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d6cb&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Nitrogen Tetroxide (Proposed). United States Environmental Protection Agency. Washington, DC. 2008n. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648091855b&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Nitrogen Trifluoride (Proposed). United States Environmental Protection Agency. Washington, DC. 2009l. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480963e0c&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Parathion (Proposed). United States Environmental Protection Agency. Washington, DC. 2008o. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480963e32&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Perchloryl Fluoride (Proposed). United States Environmental Protection Agency. Washington, DC. 2009c. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a7e268&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Perfluoroisobutylene (Proposed). United States Environmental Protection Agency. Washington, DC. 2009d. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a7e26a&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Phenyl Isocyanate (Proposed). United States Environmental Protection Agency. Washington, DC. 2008p. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648096dd58&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Phenyl Mercaptan (Proposed). United States Environmental Protection Agency. Washington, DC. 2006d. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020cc0c&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Phenyldichloroarsine (Proposed). United States Environmental Protection Agency. Washington, DC. 2007k. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020fd29&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Phorate (Proposed). United States Environmental Protection Agency. Washington, DC. 2008q. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648096dcc8&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Phosgene (Draft-Revised). United States Environmental Protection Agency. Washington, DC. 2009e. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a8a08a&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Phosgene Oxime (Proposed). United States Environmental Protection Agency. Washington, DC. 2009f. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a7e26d&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Potassium Cyanide (Proposed). United States Environmental Protection Agency. Washington, DC. 2009g. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a7cbb9&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Potassium Phosphide (Proposed). United States Environmental Protection Agency. Washington, DC. 2005c. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c5ed&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Propargyl Alcohol (Proposed). United States Environmental Protection Agency. Washington, DC. 2006e. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020ec91&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Selenium Hexafluoride (Proposed). United States Environmental Protection Agency. Washington, DC. 2006f. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020ec55&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Silane (Proposed). United States Environmental Protection Agency. Washington, DC. 2006g. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d523&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Sodium Cyanide (Proposed). United States Environmental Protection Agency. Washington, DC. 2009h. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a7cbb9&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Sodium Phosphide (Proposed). United States Environmental Protection Agency. Washington, DC. 2005i. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c5ed&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Strontium Phosphide (Proposed). United States Environmental Protection Agency. Washington, DC. 2005f. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c5ed&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Sulfuryl Chloride (Proposed). United States Environmental Protection Agency. Washington, DC. 2006h. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020ec7a&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Tear Gas (Proposed). United States Environmental Protection Agency. Washington, DC. 2008s. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648096e551&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Tellurium Hexafluoride (Proposed). United States Environmental Protection Agency. Washington, DC. 2009i. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a7e2a1&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Tert-Octyl Mercaptan (Proposed). United States Environmental Protection Agency. Washington, DC. 2008r. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648096e5c7&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Tetramethoxysilane (Proposed). United States Environmental Protection Agency. Washington, DC. 2006j. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d632&disposition=attachment&contentType=pdf. As accessed 2010-08-17.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Trimethoxysilane (Proposed). United States Environmental Protection Agency. Washington, DC. 2006i. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d632&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Trimethyl Phosphite (Proposed). United States Environmental Protection Agency. Washington, DC. 2009j. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a7d608&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Trimethylacetyl Chloride (Proposed). United States Environmental Protection Agency. Washington, DC. 2008t. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648096e5cc&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Zinc Phosphide (Proposed). United States Environmental Protection Agency. Washington, DC. 2005e. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c5ed&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for n-Butyl Isocyanate (Proposed). United States Environmental Protection Agency. Washington, DC. 2008m. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064808f9591&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Institute for Occupational Safety and Health: NIOSH Pocket Guide to Chemical Hazards, U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, Cincinnati, OH, 2007.
- National Research Council : Acute exposure guideline levels for selected airborne chemicals, 5, National Academies Press, Washington, DC, 2007.
- National Research Council: Acute exposure guideline levels for selected airborne chemicals, 6, National Academies Press, Washington, DC, 2008.
- National Research Council: Acute exposure guideline levels for selected airborne chemicals, 7, National Academies Press, Washington, DC, 2009.
- National Research Council: Acute exposure guideline levels for selected airborne chemicals, 8, National Academies Press, Washington, DC, 2010.
- Pohanish RP & Greene SA: Rapid Guide to Chemical Incompatibilities, Van Nostrand Reinhold Company, New York, NY, 1997.
- RTECS : Registry of Toxic Effects of Chemical Substances. National Institute for Occupational Safety and Health. Cincinnati, OH (Internet Version). Edition expires 2002; provided by Truven Health Analytics Inc., Greenwood Village, CO.
- S Budavari : The Merck Index, 13th ed. on CD-ROM. Merck & Co. Inc. Whitehouse Station, NJ. 2001.
- Spiller HA & Rogers GC: Evaluation of administration of activated charcoal in the home. Pediatrics 2002; 108:E100.
- Thakore S & Murphy N: The potential role of prehospital administration of activated charcoal. Emerg Med J 2002; 19:63-65.
- U.S. Department of Energy, Office of Emergency Management: Protective Action Criteria (PAC) with AEGLs, ERPGs, & TEELs: Rev. 26 for chemicals of concern. U.S. Department of Energy, Office of Emergency Management. Washington, DC. 2010. Available from URL: http://www.hss.doe.gov/HealthSafety/WSHP/Chem_Safety/teel.html. As accessed 2011-06-27.
- U.S. Department of Health and Human Services, Public Health Service, National Toxicology Project : 11th Report on Carcinogens. U.S. Department of Health and Human Services, Public Health Service, National Toxicology Program. Washington, DC. 2005. Available from URL: http://ntp.niehs.nih.gov/INDEXA5E1.HTM?objectid=32BA9724-F1F6-975E-7FCE50709CB4C932. As accessed 2011-06-27.
- U.S. Environmental Protection Agency: Discarded commercial chemical products, off-specification species, container residues, and spill residues thereof. Environmental Protection Agency's (EPA) Resource Conservation and Recovery Act (RCRA); List of hazardous substances and reportable quantities 2010b; 40CFR(261.33, e-f):77-.
- U.S. Environmental Protection Agency: Integrated Risk Information System (IRIS). U.S. Environmental Protection Agency. Washington, DC. 2011. Available from URL: http://cfpub.epa.gov/ncea/iris/index.cfm?fuseaction=iris.showSubstanceList&list_type=date. As accessed 2011-06-21.
- U.S. Environmental Protection Agency: List of Radionuclides. U.S. Environmental Protection Agency. Washington, DC. 2010a. Available from URL: http://www.gpo.gov/fdsys/pkg/CFR-2010-title40-vol27/pdf/CFR-2010-title40-vol27-sec302-4.pdf. As accessed 2011-06-17.
- U.S. Environmental Protection Agency: List of hazardous substances and reportable quantities. U.S. Environmental Protection Agency. Washington, DC. 2010. Available from URL: http://www.gpo.gov/fdsys/pkg/CFR-2010-title40-vol27/pdf/CFR-2010-title40-vol27-sec302-4.pdf. As accessed 2011-06-17.
- U.S. Environmental Protection Agency: The list of extremely hazardous substances and their threshold planning quantities (CAS Number Order). U.S. Environmental Protection Agency. Washington, DC. 2010c. Available from URL: http://www.gpo.gov/fdsys/pkg/CFR-2010-title40-vol27/pdf/CFR-2010-title40-vol27-part355.pdf. As accessed 2011-06-17.
- U.S. Occupational Safety and Health Administration: Part 1910 - Occupational safety and health standards (continued) Occupational Safety, and Health Administration's (OSHA) list of highly hazardous chemicals, toxics and reactives. Subpart Z - toxic and hazardous substances. CFR 2010 2010; Vol6(SEC1910):7-.
- U.S. Occupational Safety, and Health Administration (OSHA): Process safety management of highly hazardous chemicals. 29 CFR 2010 2010; 29(1910.119):348-.
- United States Environmental Protection Agency Office of Pollution Prevention and Toxics: Acute Exposure Guideline Levels (AEGLs) for Vinyl Acetate (Proposed). United States Environmental Protection Agency. Washington, DC. 2006. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d6af&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
|