6.5.1) PREVENTION OF ABSORPTION/PREHOSPITAL
A) PREHOSPITAL: Removal of obvious granules or gels, and dilution/irrigation of exposed areas can be initiated. B) DILUTION 1) If no respiratory compromise is present, administer milk or water as soon as possible after ingestion. The exact ideal amount is unknown; no more than 8 ounces (240 mL) in adults and 4 ounces (120 mL) in children is recommended to minimize the risk of vomiting (Caravati, 2004). 2) USE OF DILUENTS IS CONTROVERSIAL: While experimental models have suggested that immediate dilution may lessen caustic injury (Homan et al, 1993; Homan et al, 1994; Homan et al, 1995), this has not been adequately studied in humans. 3) DILUENT TYPE: Use any readily available nontoxic, cool liquid. Both milk and water have been shown to be effective in experimental studies of caustic ingestion (Maull et al, 1985; Rumack & Burrington, 1977; Homan et al, 1995; Homan et al, 1994; Homan et al, 1993). 4) ADVERSE EFFECTS: Potential adverse effects include vomiting and airway compromise (Caravati, 2004). 5) CONTRAINDICATIONS: Do NOT attempt dilution in patients with respiratory distress, altered mental status, severe abdominal pain, nausea or vomiting, or patients who are unable to swallow or protect their airway. Diluents should not be force fed to any patient who refuses to swallow (Rao & Hoffman, 2002).
6.5.2) PREVENTION OF ABSORPTION
A) SUMMARY 1) After an ingestion, rinse mouth and administer small amounts of water. Lavage and activated charcoal are not indicated as toxicity is secondary to local tissue injury.
B) DILUTION 1) Immediately remove any obvious granules from the lips and oral mucosa and dilute with milk or water, whichever is most accessible. The goal of dilution is to rinse the product from the mouth and pharynx. 2) If no respiratory compromise is present, administer milk or water as soon as possible after ingestion. The exact ideal amount is unknown; no more than 8 ounces (240 mL) in adults and 4 ounces (120 mL) in children is recommended to minimize the risk of vomiting (Caravati, 2004). 3) USE OF DILUENTS IS CONTROVERSIAL: While experimental models have suggested that immediate dilution may lessen caustic injury (Homan et al, 1993; Homan et al, 1994; Homan et al, 1995), this has not been adequately studied in humans. 4) DILUENT TYPE: Use any readily available nontoxic, cool liquid. Both milk and water have been shown to be effective in experimental studies of caustic ingestion (Maull et al, 1985; Rumack & Burrington, 1977; Homan et al, 1995; Homan et al, 1994; Homan et al, 1993). 5) ADVERSE EFFECTS: Potential adverse effects include vomiting and airway compromise (Caravati, 2004). 6) CONTRAINDICATIONS: Do NOT attempt dilution in patients with respiratory distress, altered mental status, severe abdominal pain, nausea or vomiting, or patients who are unable to swallow or protect their airway. Diluents should not be force fed to any patient who refuses to swallow (Rao & Hoffman, 2002). 7) Following immediate dilution the patient should remain NPO until a thorough ENT evaluation is completed. Excessive fluid intake may promote emesis and aggravation of existing injury.
C) GASTRIC LAVAGE 1) Spontaneous emesis may occur. Induced emesis and gastric lavage are not indicated. Emesis or lavage may aggravate an existing corrosive injury.
D) ACTIVATED CHARCOAL 1) Avoid activated charcoal since it may interfere with visualization of oral, esophageal, and gastric irritation/necrosis.
6.5.3) TREATMENT
A) MONITORING OF PATIENT 1) In significant ingestions, monitor CBC, serum electrolytes, and blood gases. 2) In significant ingestions, radiographs should be considered to evaluate for perforation or aspiration.
B) DILUTION 1) Immediately remove any obvious granules from the lips and oral mucosa and dilute with milk or water, whichever is most accessible. 2) Following immediate dilution the patient should remain NPO until a thorough ENT evaluation is completed. Excessive fluid intake may promote emesis and aggravation of existing injury. 3) NEUTRALIZATION a) Avoid this procedure. It may accentuate preexisting pathology and waste time that could be dedicated to proper therapy.
C) ENDOSCOPIC PROCEDURE 1) SUMMARY: Obtain consultation concerning endoscopy as soon as possible, and perform endoscopy within the first 24 hours when indicated. 2) INDICATIONS: Endoscopy should be performed in adults with a history of deliberate ingestion, adults with any signs or symptoms attributable to inadvertent ingestion, and in children with stridor, vomiting, or drooling after unintentional ingestion (Crain et al, 1984). Endoscopy should also be performed in children with dysphagia or refusal to swallow, significant oral burns, or abdominal pain after unintentional ingestion (Gaudreault et al, 1983; Nuutinen et al, 1994). Children and adults who are asymptomatic after accidental ingestion do not require endoscopy (Gupta et al, 2001; Lamireau et al, 2001; Gorman et al, 1992). 3) RISKS: Numerous large case series attest to the relative safety and utility of early endoscopy in the management of caustic ingestion. a) REFERENCES: (Dogan et al, 2006; Symbas et al, 1983; Crain et al, 1984a; Gaudreault et al, 1983a; Schild, 1985; Moazam et al, 1987; Sugawa & Lucas, 1989; Previtera et al, 1990; Zargar et al, 1991; Vergauwen et al, 1991; Gorman et al, 1992)
4) The risk of perforation during endoscopy is minimized by (Zargar et al, 1991): a) Advancing across the cricopharynx under direct vision b) Gently advancing with minimal air insufflation c) Never retroverting or retroflexing the endoscope d) Using a pediatric flexible endoscope e) Using extreme caution in advancing beyond burn lesion areas f) Most authors recommend endoscopy within the first 24 hours of injury, not advancing the endoscope beyond areas of severe esophageal burns, and avoiding endoscopy during the subacute phase of healing when tissue slough increases the risk of perforation (5 to 15 days after ingestion) (Zargar et al, 1991).
5) GRADING a) Several scales for grading caustic injury exist. The likelihood of complications such as strictures, obstruction, bleeding, and perforation is related to the severity of the initial burn (Zargar et al, 1991): b) Grade 0 - Normal examination c) Grade 1 - Edema and hyperemia of the mucosa; strictures unlikely. d) Grade 2A - Friability, hemorrhages, erosions, blisters, whitish membranes, exudates and superficial ulcerations; strictures unlikely. e) Grade 2B - Grade 2A plus deep discreet or circumferential ulceration; strictures may develop. f) Grade 3A - Multiple ulcerations and small scattered areas of necrosis; strictures are common, complications such as perforation, fistula formation or gastrointestinal bleeding may occur. g) Grade 3B - Extensive necrosis through visceral wall; strictures are common, complications such as perforation, fistula formation, or gastrointestinal bleeding are more likely than with 3A.
6) FOLLOW UP - If burns are found, follow 10 to 20 days later with barium swallow or esophagram. 7) SCINTIGRAPHY - Scans utilizing radioisotope labelled sucralfate (technetium 99m) were performed in 22 patients with caustic ingestion and compared with endoscopy for the detection of esophageal burns. Two patients had minimal residual isotope activity on scanning but normal endoscopy and two patients had normal activity on scan but very mild erythema on endoscopy. Overall the radiolabeled sucralfate scan had a sensitivity of 100%, specificity of 81%, positive predictive value of 84% and negative predictive value of 100% for detecting clinically significant burns in this population (Millar et al, 2001). This may represent an alternative to endoscopy, particularly in young children, as no sedation is required for this procedure. Further study is required. 8) MINIPROBE ULTRASONOGRAPHY - was performed in 11 patients with corrosive ingestion . Findings were categorized as grade 0 (distinct muscular layers without thickening, grade I (distinct muscular layers with thickening), grade II (obscured muscular layers with indistinct margins) and grade III (muscular layers that could not be differentiated). Findings were further categorized as to whether the worst appearing image involved part of the circumference (type a) or the whole circumference (type b). Strictures did not develop in patients with grade 0 (5 patients) or grade I (4 patients) lesions. Transient stricture formation developed in the only patient with grade IIa lesions, and stricture requiring repeated dilatation developed in the only patient with grade IIIb lesions (Kamijo et al, 2004). D) CORTICOSTEROID 1) The use of corticosteroids to prevent stricture formation is controversial. Corticosteroids should not be used in patients with grade I or grade III injury, as there is no evidence that they are effective. Evidence for grade II burns is conflicting, and the risk of perforation and infection is increased with steroid use, so routine use is not recommended. 2) CORROSIVE INGESTION/SUMMARY: The use of corticosteroids for the treatment of caustic ingestion is controversial. Most animal studies have involved alkali-induced injury (Haller & Bachman, 1964; Saedi et al, 1973). Most human studies have been retrospective and generally involve more alkali than acid-induced injury and small numbers of patients with documented second or third degree mucosal injury. 3) FIRST DEGREE BURNS: These burns generally heal well and rarely result in stricture formation (Zargar et al, 1989; Howell et al, 1992). Corticosteroids are generally not beneficial in these patients (Howell et al, 1992). 4) SECOND DEGREE BURNS: Some authors recommend corticosteroid treatment to prevent stricture formation in patients with a second degree, deep-partial thickness burn (Howell et al, 1992). However, no well controlled human study has documented efficacy. Corticosteroids are generally not beneficial in patients with a second degree, superficial-partial thickness burn (Caravati, 2004; Howell et al, 1992). 5) THIRD DEGREE BURNS: Some authors have recommended steroids in this group as well (Howell et al, 1992). A high percentage of patients with third degree burns go on to develop strictures with or without corticosteroid therapy and the risk of infection and perforation may be increased by corticosteroid use. Most authors feel that the risk outweighs any potential benefit and routine use is not recommended (Boukthir et al, 2004; Oakes et al, 1982; Pelclova & Navratil, 2005). 6) CONTRAINDICATIONS: Include active gastrointestinal bleeding and evidence of gastric or esophageal perforation. Corticosteroids are thought to be ineffective if initiated more than 48 hours after a burn (Howell, 1987). 7) DOSE: Administer daily oral doses of 0.1 milligram/kilogram of dexamethasone or 1 to 2 milligrams/kilogram of prednisone. Continue therapy for a total of 3 weeks and then taper (Haller et al, 1971; Marshall, 1979). An alternative regimen in children is intravenous prednisolone 2 milligrams/kilogram/day followed by 2.5 milligrams/kilogram/day of oral prednisone for a total of 3 weeks then tapered (Anderson et al, 1990). 8) ANTIBIOTICS: Animal studies suggest that the addition of antibiotics can prevent the infectious complications associated with corticosteroid use in the setting of caustic burns. Antibiotics are recommended if corticosteroids are used or if perforation or infection is suspected. Agents that cover anaerobes and oral flora such as penicillin, ampicillin, or clindamycin are appropriate (Rosenberg et al, 1953). 9) STUDIES a) ANIMAL 1) Some animal studies have suggested that corticosteroid therapy may reduce the incidence of stricture formation after severe alkaline corrosive injury (Haller & Bachman, 1964; Saedi et al, 1973a). 2) Animals treated with steroids and antibiotics appear to do better than animals treated with steroids alone (Haller & Bachman, 1964). 3) Other studies have shown no evidence of reduced stricture formation in steroid treated animals (Reyes et al, 1974). An increased rate of esophageal perforation related to steroid treatment has been found in animal studies (Knox et al, 1967).
b) HUMAN 1) Most human studies have been retrospective and/or uncontrolled and generally involve small numbers of patients with documented second or third degree mucosal injury. No study has proven a reduced incidence of stricture formation from steroid use in human caustic ingestions (Haller et al, 1971; Hawkins et al, 1980; Yarington & Heatly, 1963; Adam & Brick, 1982). 2) META ANALYSIS a) Howell et al (1992), analyzed reports concerning 361 patients with corrosive esophageal injury published in the English language literature since 1956 (10 retrospective and 3 prospective studies). No patients with first degree burns developed strictures. Of 228 patients with second or third degree burns treated with corticosteroids and antibiotics, 54 (24%) developed strictures. Of 25 patients with similar burn severity treated without steroids or antibiotics, 13 (52%) developed strictures (Howell et al, 1992). b) Another meta-analysis of 10 studies found that in patients with second degree esophageal burns from caustics, the overall rate of stricture formation was 14.8% in patients who received corticosteroids compared with 36% in patients who did not receive corticosteroids (LoVecchio et al, 1996). c) Another study combined results of 10 papers evaluating therapy for corrosive esophageal injury in humans published between January 1991 and June 2004. There were a total of 572 patients, all patients received corticosteroids in 6 studies, in 2 studies no patients received steroids, and in 2 studies, treatment with and without corticosteroids was compared. Of 109 patients with grade 2 esophageal burns who were treated with corticosteroids, 15 (13.8%) developed strictures, compared with 2 of 32 (6.3%) patients with second degree burns who did not receive steroids (Pelclova & Navratil, 2005).
3) Smaller studies have questioned the value of steroids (Ferguson et al, 1989; Anderson et al, 1990), thus they should be used with caution. 4) Ferguson et al (1989) retrospectively compared 10 patients who did not receive antibiotics or steroids with 31 patients who received both antibiotics and steroids in a study of caustic ingestion and found no difference in the incidence of esophageal stricture between the two groups (Ferguson et al, 1989). 5) A randomized, controlled, prospective clinical trial involving 60 children with lye or acid induced esophageal injury did not find an effect of corticosteroids on the incidence of stricture formation (Anderson et al, 1990). a) These 60 children were among 131 patients who were managed and followed-up for ingestion of caustic material from 1971 through 1988; 88% of them were between 1 and 3 years old (Anderson et al, 1990). b) All patients underwent rigid esophagoscopy after being randomized to receive either no steroids or a course consisting initially of intravenous prednisolone (2 milligrams/kilogram per day) followed by 2.5 milligrams/kilogram/day of oral prednisone for a total of 3 weeks prior to tapering and discontinuation (Anderson et al, 1990). c) Six (19%), 15 (48%), and 10 (32%) of those in the treatment group had first, second and third degree esophageal burns, respectively. In contrast, 13 (45%), 5 (17%), and 11 (38%) of the control group had the same levels of injury (Anderson et al, 1990). d) Ten (32%) of those receiving steroids and 11 (38%) of the control group developed strictures. Four (13%) of those receiving steroids and 7 (24%) of the control group required esophageal replacement. All but 1 of the 21 children who developed strictures had severe circumferential burns on initial esophagoscopy (Anderson et al, 1990). e) Because of the small numbers of patients in this study, it lacked the power to reliably detect meaningful differences in outcome between the treatment groups (Anderson et al, 1990).
6) ADVERSE EFFECTS a) The use of corticosteroids in the treatment of caustic ingestion in humans has been associated with gastric perforation (Cleveland et al, 1963) and fatal pulmonary embolism (Aceto et al, 1970).
E) SURGICAL PROCEDURE 1) SUMMARY: Initially if severe esophageal burns are found a string may be placed in the stomach to facilitate later dilation. Insertion of a specialized nasogastric tube after confirmation of a circumferential burn may prevent strictures. Dilation is indicated after 2 to 4 weeks if strictures are confirmed. If dilation is unsuccessful colonic intraposition or gastric tube placement may be needed. Early laparotomy should be considered in patients with evidence of severe esophageal or gastric burns on endoscopy. 2) STRING - If a second degree or circumferential burn of the esophagus is found a string may be placed in the stomach to avoid false channel and to provide a guide for later dilation procedures (Gandhi et al, 1989). 3) STENT - The insertion of a specialized nasogastric tube or stent immediately after endoscopically proven deep circumferential burns is preferred by some surgeons to prevent stricture formation (Mills et al, 1978; (Wijburg et al, 1985; Coln & Chang, 1986). a) STUDY - In a study of 11 children with deep circumferential esophageal burns after caustic ingestion, insertion of a silicone rubber nasogastric tube for 5 to 6 weeks without steroids or antibiotics was associated with stricture formation in only one case (Wijburg et al, 1989).
4) DILATION - Dilation should be performed at 1 to 4 week intervals when stricture is present(Gundogdu et al, 1992). Repeated dilation may be required over many months to years in some patients. Successful dilation of gastric antral strictures has also been reported (Hogan & Polter, 1986; Treem et al, 1987). 5) COLONIC REPLACEMENT - Intraposition of colon may be necessary if dilation fails to provide an adequate sized esophagus (Chiene et al, 1974; Little et al, 1988; Huy & Celerier, 1988). 6) LAPAROTOMY/LAPAROSCOPY - Several authors advocate laparotomy or laparoscopy in patients with endoscopic evidence of severe esophageal or gastric burns to evaluate for the presence of transmural gastric or esophageal necrosis (Cattan et al, 2000; Estrera et al, 1986; Meredith et al, 1988; Wu & Lai, 1993). a) STUDY - In a retrospective study of patients with extensive transmural esophageal necrosis after caustic ingestion, all 4 patients treated in the conventional manner (esophagoscopy, steroids, antibiotics, and repeated evaluation for the occurrence of esophagogastric necrosis and perforation) died while all 3 patients treated with early laparotomy and immediate esophagogastric resection survived (Estrera et al, 1986).
F) ANTIBIOTIC 1) Should not be used prophylactically but should be used only for specific indications of infection. Intravenous antibiotics should be considered in patients with evidence of esophageal or gastric perforation (Howell, 1986).
G) SUCRALFATE 1) CASE REPORT: The administration of 1 gram in 100 milliliters of water was reported to decrease odynophagia by 50 percent within 24 hours in a woman who ingested crystalline Drano(R); however, stricture formation was not prevented and cimetidine was given concurrently, making assessment of any therapeutic benefit from sucralfate difficult (Reddy & Budhraja, 1988). 2) CONCLUSION - More studies will be needed before sucralfate can be recommended for treatment of caustic ingestions.
|