6.5.1) PREVENTION OF ABSORPTION/PREHOSPITAL
A) ACTIVATED CHARCOAL 1) PREHOSPITAL ACTIVATED CHARCOAL ADMINISTRATION a) Consider prehospital administration of activated charcoal as an aqueous slurry in patients with a potentially toxic ingestion who are awake and able to protect their airway. Activated charcoal is most effective when administered within one hour of ingestion. Administration in the prehospital setting has the potential to significantly decrease the time from toxin ingestion to activated charcoal administration, although it has not been shown to affect outcome (Alaspaa et al, 2005; Thakore & Murphy, 2002; Spiller & Rogers, 2002). 1) In patients who are at risk for the abrupt onset of seizures or mental status depression, activated charcoal should not be administered in the prehospital setting, due to the risk of aspiration in the event of spontaneous emesis. 2) The addition of flavoring agents (cola drinks, chocolate milk, cherry syrup) to activated charcoal improves the palatability for children and may facilitate successful administration (Guenther Skokan et al, 2001; Dagnone et al, 2002).
2) CHARCOAL DOSE a) Use a minimum of 240 milliliters of water per 30 grams charcoal (FDA, 1985). Optimum dose not established; usual dose is 25 to 100 grams in adults and adolescents; 25 to 50 grams in children aged 1 to 12 years (or 0.5 to 1 gram/kilogram body weight) ; and 0.5 to 1 gram/kilogram in infants up to 1 year old (Chyka et al, 2005). 1) Routine use of a cathartic with activated charcoal is NOT recommended as there is no evidence that cathartics reduce drug absorption and cathartics are known to cause adverse effects such as nausea, vomiting, abdominal cramps, electrolyte imbalances and occasionally hypotension (None Listed, 2004).
b) ADVERSE EFFECTS/CONTRAINDICATIONS 1) Complications: emesis, aspiration (Chyka et al, 2005). Aspiration may be complicated by acute respiratory failure, ARDS, bronchiolitis obliterans or chronic lung disease (Golej et al, 2001; Graff et al, 2002; Pollack et al, 1981; Harris & Filandrinos, 1993; Elliot et al, 1989; Rau et al, 1988; Golej et al, 2001; Graff et al, 2002). Refer to the ACTIVATED CHARCOAL/TREATMENT management for further information. 2) Contraindications: unprotected airway (increases risk/severity of aspiration) , nonfunctioning gastrointestinal tract, uncontrolled vomiting, and ingestion of most hydrocarbons (Chyka et al, 2005).
6.5.2) PREVENTION OF ABSORPTION
A) ACTIVATED CHARCOAL 1) CHARCOAL ADMINISTRATION a) Consider administration of activated charcoal after a potentially toxic ingestion (Chyka et al, 2005). Administer charcoal as an aqueous slurry; most effective when administered within one hour of ingestion.
2) CHARCOAL DOSE a) Use a minimum of 240 milliliters of water per 30 grams charcoal (FDA, 1985). Optimum dose not established; usual dose is 25 to 100 grams in adults and adolescents; 25 to 50 grams in children aged 1 to 12 years (or 0.5 to 1 gram/kilogram body weight) ; and 0.5 to 1 gram/kilogram in infants up to 1 year old (Chyka et al, 2005). 1) Routine use of a cathartic with activated charcoal is NOT recommended as there is no evidence that cathartics reduce drug absorption and cathartics are known to cause adverse effects such as nausea, vomiting, abdominal cramps, electrolyte imbalances and occasionally hypotension (None Listed, 2004).
b) ADVERSE EFFECTS/CONTRAINDICATIONS 1) Complications: emesis, aspiration (Chyka et al, 2005). Aspiration may be complicated by acute respiratory failure, ARDS, bronchiolitis obliterans or chronic lung disease (Golej et al, 2001; Graff et al, 2002; Pollack et al, 1981; Harris & Filandrinos, 1993; Elliot et al, 1989; Rau et al, 1988; Golej et al, 2001; Graff et al, 2002). Refer to the ACTIVATED CHARCOAL/TREATMENT management for further information. 2) Contraindications: unprotected airway (increases risk/severity of aspiration) , nonfunctioning gastrointestinal tract, uncontrolled vomiting, and ingestion of most hydrocarbons (Chyka et al, 2005).
6.5.3) TREATMENT
A) SUPPORT 1) MANAGEMENT OF MILD TO MODERATE TOXICITY a) Treatment is symptomatic and supportive. Rehydration (oral or IV fluids) may prevent crystalluria and nephrotoxicity reported with acyclovir. Treat significant vomiting and diarrhea with fluids as tolerated; treat with antiemetics for persistent vomiting.
2) MANAGEMENT OF SEVERE TOXICITY a) Treatment is symptomatic and supportive. Rehydration (oral or IV fluids) may prevent crystalluria and nephrotoxicity reported with acyclovir. Support respiratory and cardiovascular function as needed. Benzodiazepines should be the first line agent for agitation or seizures.
B) MONITORING OF PATIENT 1) SUMMARY a) Monitor renal function. Acute renal failure has been reported in the elderly; patients with underlying renal disease who receive higher than recommended doses; patients receiving concomitant nephrotoxic drugs; and patients inadequately hydrated during therapeutic use of valacyclovir. Precipitation of acyclovir in renal tubules may develop when the solubility (2.5 mg/m) is exceeded in the intratubular fluid. Following a significant exposure, hemodialysis may be needed until renal function can be restored (Prod Info VALTREX(R) oral caplets, 2010). b) Monitor CBC, platelet count and renal and liver function tests in patients with suspected hemolytic uremic syndrome or thrombotic thrombocytopenic purpura.
2) HYDRATION a) Intravenous fluid hydration may aid in solubilizing crystals and, therefore, prevent or minimize crystal deposits in renal tubules and collecting ducts (McDonald et al, 1989).
3) FLUID/ELECTROLYTE a) Fluid and electrolytes should be monitored during intravenous hydration to prevent fluid overload and electrolyte abnormalities. Patients may require fluid replacement following significant vomiting and/or diarrhea.
C) SEIZURE 1) CNS adverse events, including seizures, have been reported in both adults and children with or without reduced renal function and in patients with underlying rental disease when given valacyclovir in higher than recommended doses for their level of renal function (Prod Info VALTREX(R) oral caplets, 2010). The incidence of this event is unknown following overdose. 2) SUMMARY a) Attempt initial control with a benzodiazepine (eg, diazepam, lorazepam). If seizures persist or recur, administer phenobarbital or propofol. b) Monitor for respiratory depression, hypotension, and dysrhythmias. Endotracheal intubation should be performed in patients with persistent seizures. c) Evaluate for hypoxia, electrolyte disturbances, and hypoglycemia (or, if immediate bedside glucose testing is not available, treat with intravenous dextrose).
3) DIAZEPAM a) ADULT DOSE: Initially 5 to 10 mg IV, OR 0.15 mg/kg IV up to 10 mg per dose up to a rate of 5 mg/minute; may be repeated every 5 to 20 minutes as needed (Brophy et al, 2012; Prod Info diazepam IM, IV injection, 2008; Manno, 2003). b) PEDIATRIC DOSE: 0.1 to 0.5 mg/kg IV over 2 to 5 minutes; up to a maximum of 10 mg/dose. May repeat dose every 5 to 10 minutes as needed (Loddenkemper & Goodkin, 2011; Hegenbarth & American Academy of Pediatrics Committee on Drugs, 2008). c) Monitor for hypotension, respiratory depression, and the need for endotracheal intubation. Consider a second agent if seizures persist or recur after repeated doses of diazepam .
4) NO INTRAVENOUS ACCESS a) DIAZEPAM may be given rectally or intramuscularly (Manno, 2003). RECTAL DOSE: CHILD: Greater than 12 years: 0.2 mg/kg; 6 to 11 years: 0.3 mg/kg; 2 to 5 years: 0.5 mg/kg (Brophy et al, 2012). b) MIDAZOLAM has been used intramuscularly and intranasally, particularly in children when intravenous access has not been established. ADULT DOSE: 0.2 mg/kg IM, up to a maximum dose of 10 mg (Brophy et al, 2012). PEDIATRIC DOSE: INTRAMUSCULAR: 0.2 mg/kg IM, up to a maximum dose of 7 mg (Chamberlain et al, 1997) OR 10 mg IM (weight greater than 40 kg); 5 mg IM (weight 13 to 40 kg); INTRANASAL: 0.2 to 0.5 mg/kg up to a maximum of 10 mg/dose (Loddenkemper & Goodkin, 2011; Brophy et al, 2012). BUCCAL midazolam, 10 mg, has been used in adolescents and older children (5-years-old or more) to control seizures when intravenous access was not established (Scott et al, 1999).
5) LORAZEPAM a) MAXIMUM RATE: The rate of intravenous administration of lorazepam should not exceed 2 mg/min (Brophy et al, 2012; Prod Info lorazepam IM, IV injection, 2008). b) ADULT DOSE: 2 to 4 mg IV initially; repeat every 5 to 10 minutes as needed, if seizures persist (Manno, 2003; Brophy et al, 2012). c) PEDIATRIC DOSE: 0.05 to 0.1 mg/kg IV over 2 to 5 minutes, up to a maximum of 4 mg/dose; may repeat in 5 to 15 minutes as needed, if seizures continue (Brophy et al, 2012; Loddenkemper & Goodkin, 2011; Hegenbarth & American Academy of Pediatrics Committee on Drugs, 2008; Sreenath et al, 2009; Chin et al, 2008).
6) PHENOBARBITAL a) ADULT LOADING DOSE: 20 mg/kg IV at an infusion rate of 50 to 100 mg/minute IV. An additional 5 to 10 mg/kg dose may be given 10 minutes after loading infusion if seizures persist or recur (Brophy et al, 2012). b) Patients receiving high doses will require endotracheal intubation and may require vasopressor support (Brophy et al, 2012). c) PEDIATRIC LOADING DOSE: 20 mg/kg may be given as single or divided application (2 mg/kg/minute in children weighing less than 40 kg up to 100 mg/min in children weighing greater than 40 kg). A plasma concentration of about 20 mg/L will be achieved by this dose (Loddenkemper & Goodkin, 2011). d) REPEAT PEDIATRIC DOSE: Repeat doses of 5 to 20 mg/kg may be given every 15 to 20 minutes if seizures persist, with cardiorespiratory monitoring (Loddenkemper & Goodkin, 2011). e) MONITOR: For hypotension, respiratory depression, and the need for endotracheal intubation (Loddenkemper & Goodkin, 2011; Manno, 2003). f) SERUM CONCENTRATION MONITORING: Monitor serum concentrations over the next 12 to 24 hours. Therapeutic serum concentrations of phenobarbital range from 10 to 40 mcg/mL, although the optimal plasma concentration for some individuals may vary outside this range (Hvidberg & Dam, 1976; Choonara & Rane, 1990; AMA Department of Drugs, 1992).
7) OTHER AGENTS a) If seizures persist after phenobarbital, propofol or pentobarbital infusion, or neuromuscular paralysis with general anesthesia (isoflurane) and continuous EEG monitoring should be considered (Manno, 2003). Other anticonvulsants can be considered (eg, valproate sodium, levetiracetam, lacosamide, topiramate) if seizures persist or recur; however, there is very little data regarding their use in toxin induced seizures, controlled trials are not available to define the optimal dosage ranges for these agents in status epilepticus (Brophy et al, 2012): 1) VALPROATE SODIUM: ADULT DOSE: An initial dose of 20 to 40 mg/kg IV, at a rate of 3 to 6 mg/kg/minute; may give an additional dose of 20 mg/kg 10 minutes after loading infusion. PEDIATRIC DOSE: 1.5 to 3 mg/kg/minute (Brophy et al, 2012). 2) LEVETIRACETAM: ADULT DOSE: 1000 to 3000 mg IV, at a rate of 2 to 5 mg/kg/min IV. PEDIATRIC DOSE: 20 to 60 mg/kg IV (Brophy et al, 2012; Loddenkemper & Goodkin, 2011). 3) LACOSAMIDE: ADULT DOSE: 200 to 400 mg IV; 200 mg IV over 15 minutes (Brophy et al, 2012). PEDIATRIC DOSE: In one study, median starting doses of 1.3 mg/kg/day and maintenance doses of 4.7 mg/kg/day were used in children 8 years and older (Loddenkemper & Goodkin, 2011). 4) TOPIRAMATE: ADULT DOSE: 200 to 400 mg nasogastric/orally OR 300 to 1600 mg/day orally divided in 2 to 4 times daily (Brophy et al, 2012).
8) RECURRING SEIZURES a) If seizures are not controlled by the above measures, patients will require endotracheal intubation, mechanical ventilation, continuous EEG monitoring, a continuous infusion of an anticonvulsant, and may require neuromuscular paralysis and vasopressor support. Consider continuous infusions of the following agents: 1) MIDAZOLAM: ADULT DOSE: An initial dose of 0.2 mg/kg slow bolus, at an infusion rate of 2 mg/minute; maintenance doses of 0.05 to 2 mg/kg/hour continuous infusion dosing, titrated to EEG (Brophy et al, 2012). PEDIATRIC DOSE: 0.1 to 0.3 mg/kg followed by a continuous infusion starting at 1 mcg/kg/minute, titrated upwards every 5 minutes as needed (Loddenkemper & Goodkin, 2011). 2) PROPOFOL: ADULT DOSE: Start at 20 mcg/kg/min with 1 to 2 mg/kg loading dose; maintenance doses of 30 to 200 mcg/kg/minute continuous infusion dosing, titrated to EEG; caution with high doses greater than 80 mcg/kg/minute in adults for extended periods of time (ie, longer than 48 hours) (Brophy et al, 2012); PEDIATRIC DOSE: IV loading dose of up to 2 mg/kg; maintenance doses of 2 to 5 mg/kg/hour may be used in older adolescents; avoid doses of 5 mg/kg/hour over prolonged periods because of propofol infusion syndrome (Loddenkemper & Goodkin, 2011); caution with high doses greater than 65 mcg/kg/min in children for extended periods of time; contraindicated in small children (Brophy et al, 2012). 3) PENTOBARBITAL: ADULT DOSE: A loading dose of 5 to 15 mg/kg at an infusion rate of 50 mg/minute or lower; may administer additional 5 to 10 mg/kg. Maintenance dose of 0.5 to 5 mg/kg/hour continuous infusion dosing, titrated to EEG (Brophy et al, 2012). PEDIATRIC DOSE: A loading dose of 3 to 15 mg/kg followed by a maintenance dose of 1 to 5 mg/kg/hour (Loddenkemper & Goodkin, 2011). 4) THIOPENTAL: ADULT DOSE: 2 to 7 mg/kg, at an infusion rate of 50 mg/minute or lower. Maintenance dose of 0.5 to 5 mg/kg/hour continuous infusing dosing, titrated to EEG (Brophy et al, 2012)
b) Endotracheal intubation, mechanical ventilation, and vasopressors will be required (Brophy et al, 2012) and consultation with a neurologist is strongly advised. c) Neuromuscular paralysis (eg, rocuronium bromide, a short-acting nondepolarizing agent) may be required to avoid hyperthermia, severe acidosis, and rhabdomyolysis. If rhabdomyolysis is possible, avoid succinylcholine chloride, because of the risk of hyperkalemic-induced cardiac dysrhythmias. Continuous EEG monitoring is mandatory if neuromuscular paralysis is used (Manno, 2003). |