MOBILE VIEW  | 

SULFUR COMPOUNDS

Classification   |    Detailed evidence-based information

Therapeutic Toxic Class

    A) ELEMENTAL SULFUR is a dry powder available for dermatologic use in four forms: sublimed sulfur, washed sulfur, precipitated sulfur, and colloidal sulfur.
    B) OTHER SULFUR COMPOUNDS included in this management are sulfurated lime and sulfurated potash.

Specific Substances

    A) GENERAL TERMS
    1) aquilite
    2) asulfa-supra
    3) atomic sulfur
    4) azufre sublimado
    5) chloride of sulfur
    6) corosul d
    7) corosul s
    8) enxofre sublimado
    9) fleur de sonfre
    10) flowers of sulfur
    11) micowetsulf
    12) netzschwefel
    13) polsulkol
    14) rc-schwefel
    15) shreesul
    16) solfa
    17) sublimierter schwefel
    18) sufran
    19) sufran d
    20) sulfer sublimatum depuratum
    21) sulfex
    22) sulfospor
    23) sulfur atom
    24) sulfur chloride, mono
    25) sulfur colloid
    26) sulfur, molten
    27) sulfur, ointment
    28) sulfur, pharmaceutical
    29) sulikol
    30) sulphur chlorides
    31) sulphur, lump
    32) sulphur, powder
    33) sultaf
    34) super six
    35) svovl
    36) thion
    37) ultra sulfur
    38) zolvis
    SUBLIMED SULFUR
    1) azufre sublimado
    2) enxofre sublimado
    3) fleur de soufre
    4) flowers of sulfur
    5) sublimed sulphur
    6) sublimierter schwefel
    7) sulfur sublimatum depuratum
    8) sulphur sublimatum
    9) sulfur, sublimed
    10) CAS 7704-34-9
    WASHED SULFUR
    1) azufre lavado
    2) enxofre lavado
    3) gewaschener schwefel
    4) purified sulphur
    5) soufre lave
    6) sulfur lotum
    7) sulfur sublimatum lotum
    PRECIPITATED SULFUR
    1) milk of sulfur
    SULFURATED LIME
    1) calcium sulfuratum solutum
    2) calcium sulphide
    3) calx sulphurata
    4) sulphurated lime
    5) Vleminckx's solution
    6) CAS 8028-82-8 (solution)
    LIME SULFUR
    1) calcium polysulfides
    2) lime sulphur
    SULFURATED POTASH
    1) foie de soufre
    2) hepar sulfuris
    3) hepar Sulph
    4) kalii sulfidum
    5) liver of sulfur
    6) potassa sulphurata
    7) schwefelleber
    8) sulphurated potash
    9) CAS 39365-88-3

Available Forms Sources

    A) FORMS
    1) Elemental sulfur is a dry powder available for dermatologic use in four forms: sublimed sulfur, washed sulfur, precipitated sulfur, and colloidal sulfur.
    2) Sulfur Lime (Calcium polysulfide), sodium sulfide, ammonium sulfide and thioacetamide release hydrogen sulfide in contact with water or acids.
    3) Washed sulfur is made by washing sublimed sulfur with ammonia.
    4) Colloidal sulfur consists of minute particles of sulfur stabilized in an aqueous medium containing a colloid, such as egg albumin or gelatin.
    5) Sulfurated lime contains not less than 50% calcium sulfide. It is a mixture of sublimed sulfur, lime, and water, resulting in formation of calcium pentasulfide and calcium thiosulfate.
    6) Sulfurated potash is a mixture of potassium polysulphides and other potassium compounds, including sulfite and thiosulfate. It contains 42% to 45% sulfur, not less than 12.8% as sulfide (S Sweetman , 2001).
    7) White lotion USP contains 4% w/v sulfurated potash and 5% zinc sulfate.
    B) USES
    1) Sulfur is used in manufacturing sulfuric acid, as an insecticide and fungicide, in medicine as a laxative, antiseptic, and antiparasitic agent. Elemental sulfur is a dry powder available for dermatologic use.
    2) Sulphurated potash is used in homeopathic medicine (for the treatment of acne) where it is known as Hepar Sulph (S Sweetman , 2001).

Life Support

    A) This overview assumes that basic life support measures have been instituted.

Clinical Effects

    0.2.1) SUMMARY OF EXPOSURE
    A) There are many types of sulfur compounds with a wide variety of clinical effects. Many are irritating to the skin, eyes, lungs, and GI tract.
    B) SUBACUTE EFFECTS of lime sulfur poisoning include: irritation of mucous membranes, respiratory tract irritation, rhinitis, and pulmonary edema are possible. Direct skin contact may produce pain and erythema. Ingestion can result in nausea, vomiting, diarrhea and central nervous system effects of giddiness, headache, vertigo, amnesia, confusion and unconsciousness. Other effects may include: tachycardia, cardiac dysrhythmias, sweating and weakness.
    C) ACUTE EFFECTS can result in sudden collapse and unconsciousness, and death from respiratory paralysis.
    D) PATHOPHYSIOLOGY - Sulfur Lime (Calcium polysulfide), sodium sulfide, ammonium sulfide and thioacetamide release hydrogen sulfide in contact with water or acids.
    E) In limited reports, ingestion of calcium polysulfide produced mucosal burns of the gastrointestinal tract and severe systemic effects which included mental status changes, coma, hypotension, dysrhythmias, hepatic and renal injury, rhabdomyolysis, metabolic acidosis and a fatal cardiac arrest. An intense odor of hydrogen sulfide (i.e., rotten eggs) was present in the gastric aspirate.
    0.2.6) RESPIRATORY
    A) Inhalation may result in shortness of breath, cough, tightness and burning of the chest, pulmonary edema, and even respiratory distress and failure. Pneumonia may occur after initial recovery.
    0.2.7) NEUROLOGIC
    A) Headache, vertigo, excitement or depression, loss of memory, and prostration may be observed. Tremors, seizures, coma, and death may result. Peripheral neuritis may follow after recovery.
    0.2.8) GASTROINTESTINAL
    A) Exposure may result in a hydrogen sulfide odor on the breath or in gastric aspirate, difficulty in swallowing, and redness of the tongue and pharynx. Lime sulfur is irritating on contact to the mucous membranes. Vomiting, abdominal pain, and diarrhea may occur.
    B) Mucosal burns of the esophagus and stomach have been reported following an ingestion of calcium polysulfide.
    0.2.9) HEPATIC
    A) Transient hepatic dysfunction was reported in a patient following an ingestion of calcium polysulfide.
    0.2.10) GENITOURINARY
    A) Urinary disturbances may occur. Renal dysfunction occurred in a patient following an ingestion of calcium polysulfide.
    0.2.11) ACID-BASE
    A) Metabolic acidosis may occur following exposures to high oral doses.
    0.2.14) DERMATOLOGIC
    A) Lime sulfur is irritating to the skin; burns have been reported following ingestion. Molten sulfur burns cause severe dermal injury.

Laboratory Monitoring

    A) No specific tests are indicated. Severe systemic effects have been reported following significant oral exposure.
    B) Monitor cardiac and respiratory function. Obtain a baseline ABG and repeat as indicated.
    C) In significant overdoses, renal and hepatic function should be observed.
    D) Obtain baseline electrolytes and acid/base balance in symptomatic patient and repeat as necessary.

Treatment Overview

    0.4.2) ORAL/PARENTERAL EXPOSURE
    A) EMESIS: Ipecac-induced emesis is not recommended because of the potential for CNS depression and seizures.
    B) GASTRIC LAVAGE: Consider after ingestion of a potentially life-threatening amount of poison if it can be performed soon after ingestion (generally within 1 hour). Protect airway by placement in the head down left lateral decubitus position or by endotracheal intubation. Control any seizures first.
    1) CONTRAINDICATIONS: Loss of airway protective reflexes or decreased level of consciousness in unintubated patients; following ingestion of corrosives; hydrocarbons (high aspiration potential); patients at risk of hemorrhage or gastrointestinal perforation; and trivial or non-toxic ingestion.
    C) ACTIVATED CHARCOAL: Administer charcoal as a slurry (240 mL water/30 g charcoal). Usual dose: 25 to 100 g in adults/adolescents, 25 to 50 g in children (1 to 12 years), and 1 g/kg in infants less than 1 year old.
    D) Patients should be monitored and treated symptomatically. Effects are variable depending on the route and amount of exposure. Hydrogen sulfide has been produced following ingestions of lime sulfur.
    E) Skin and eye irritation are possible following minor exposures. Moderate to severe effects can occur after large ingestions and result in gastrointestinal irritation and mucosal burns, as well as, cardiac, respiratory, and central nervous system effects.
    F) ACUTE LUNG INJURY: Maintain ventilation and oxygenation and evaluate with frequent arterial blood gases and/or pulse oximetry monitoring. Early use of PEEP and mechanical ventilation may be needed.
    0.4.3) INHALATION EXPOSURE
    A) INHALATION: Move patient to fresh air. Monitor for respiratory distress. If cough or difficulty breathing develops, evaluate for respiratory tract irritation, bronchitis, or pneumonitis. Administer oxygen and assist ventilation as required. Treat bronchospasm with an inhaled beta2-adrenergic agonist. Consider systemic corticosteroids in patients with significant bronchospasm.
    0.4.4) EYE EXPOSURE
    A) DECONTAMINATION: Remove contact lenses and irrigate exposed eyes with copious amounts of room temperature 0.9% saline or water for at least 15 minutes. If irritation, pain, swelling, lacrimation, or photophobia persist after 15 minutes of irrigation, the patient should be seen in a healthcare facility.
    0.4.5) DERMAL EXPOSURE
    A) OVERVIEW
    1) DECONTAMINATION: Remove contaminated clothing and jewelry and place them in plastic bags. Wash exposed areas with soap and water for 10 to 15 minutes with gentle sponging to avoid skin breakdown. A physician may need to examine the area if irritation or pain persists (Burgess et al, 1999).

Range Of Toxicity

    A) SULFUR - The acute oral toxic dose is estimated to be 10 to 15 grams in adults. Ingestions of 60 and 250 grams have been reported with recovery.
    B) SULFIDE SALTS - The alkali metal sulfide salts (sodium, potassium, calcium) are estimated to have a probable oral lethal dose of less than 5 mg/kg in humans.
    C) Fatalities have been reported following ingestion of calcium polysulfide.

Heent

    3.4.6) THROAT
    A) PHARYNGITIS - Exposure may result in a hydrogen sulfide odor on breath (i.e., rotten eggs), difficulty in swallowing and redness of the tongue and pharynx (Maddy & Edmiston, 1988). Lime sulfur is irritating on contact to the mucous membranes.

Cardiovascular

    3.5.2) CLINICAL EFFECTS
    A) ELECTROCARDIOGRAM ABNORMAL
    1) CASE REPORT
    a) ECG changes suggestive of myocardial infarction (acute ST elevations in anterior and lateral leads) were reported in a 23-year-old female 7 hours after ingesting half a cup of a fungicide containing 26% calcium polysulfide (562 mg/kg). Despite aggressive supportive care and resuscitation efforts, the patient died of a cardiac arrest 11 hours after exposure. There was no evidence of myocardial necrosis on autopsy (Horowitz et al, 1997).

Respiratory

    3.6.1) SUMMARY
    A) Inhalation may result in shortness of breath, cough, tightness and burning of the chest, pulmonary edema, and even respiratory distress and failure. Pneumonia may occur after initial recovery.
    3.6.2) CLINICAL EFFECTS
    A) COUGH
    1) Inhalation may result in shortness of breath, cough, tightness and burning in the chest (Maddy & Edmiston, 1988).
    B) ACUTE LUNG INJURY
    1) Pulmonary edema may occur.
    C) APNEA
    1) Respiratory distress and failure may develop.
    D) PNEUMONIA
    1) Pneumonia may follow after recovery.
    2) CASE REPORT
    a) A 30-year-old male developed Klebsiella pneumonia approximately 9 days after ingesting half a pint (estimated dose 891 mg/kg) of a fungicide containing 26% calcium polysulfide. The patient recovered following aggressive supportive care (Horowitz et al, 1997).

Neurologic

    3.7.1) SUMMARY
    A) Headache, vertigo, excitement or depression, loss of memory, and prostration may be observed. Tremors, seizures, coma, and death may result. Peripheral neuritis may follow after recovery.
    3.7.2) CLINICAL EFFECTS
    A) HEADACHE
    1) Headache has been reported (Maddy & Edmiston, 1988).
    B) DIZZINESS
    1) Vertigo has occurred.
    C) AMNESIA
    1) Memory loss has been reported.
    D) FATIGUE
    1) Prostration has developed.
    E) SEIZURE
    1) ANIMAL DATA - Tremors, seizures and death have been reported in animals (Greengard & Woolley, 1940).
    F) SECONDARY PERIPHERAL NEUROPATHY
    1) Peripheral neuritis may follow after recovery.
    G) COMA
    1) CASE REPORT
    a) A 23-year-old female was found comatose 30 minutes after ingesting half a cup of a fungicide containing 26% calcium polysulfide. Initial neurological findings were as follows: pupils were dilated to 6 mm and sluggish, flaccid without any response to painful stimuli. The patient died 11 hours after exposure of a cardiac arrest despite aggressive management (Horowitz et al, 1997).
    H) PSYCHOMOTOR AGITATION
    1) CASE REPORT
    a) Combativeness was reported in a 30-year-old male after being found by paramedics following ingestion of half a pint (estimated dose 891 mg/kg) of a fungicide containing 26% calcium polysulfide. The patient also had nonpurposeful movement and was unable to speak. Following aggressive supportive care the patient made a complete recovery with no permanent neurological deficits reported (Horowitz et al, 1997).

Gastrointestinal

    3.8.1) SUMMARY
    A) Exposure may result in a hydrogen sulfide odor on the breath or in gastric aspirate, difficulty in swallowing, and redness of the tongue and pharynx. Lime sulfur is irritating on contact to the mucous membranes. Vomiting, abdominal pain, and diarrhea may occur.
    B) Mucosal burns of the esophagus and stomach have been reported following an ingestion of calcium polysulfide.
    3.8.2) CLINICAL EFFECTS
    A) NAUSEA, VOMITING AND DIARRHEA
    1) Abdominal pain, nausea, vomiting and/or diarrhea may occur following toxic ingestions.
    B) VOMIT ODOR OFFENSIVE
    1) CASE REPORTS
    a) The odor of rotten eggs was present in the gastric aspirate (emesis and lavage fluid) in two patients following overdose of calcium polysulfide (fungicide product). In one case it was so intense that some healthcare personnel were overcome by the odor and had to refrain from care of that patient (Horowitz et al, 1997).
    C) BURN
    1) CASE REPORT
    a) A 30-year-old male developed mucosal burns of the esophagus and stomach following ingestion of a 26% calcium polysulfide solution (estimated dose 891 mg/kg). The patient was placed on bowel rest and upon follow-up the patient had an esophageal stricture and required dilatation (Horowitz et al, 1997).

Hepatic

    3.9.1) SUMMARY
    A) Transient hepatic dysfunction was reported in a patient following an ingestion of calcium polysulfide.
    3.9.2) CLINICAL EFFECTS
    A) ABNORMAL LIVER FUNCTION
    1) Elevated SGOT (1549 IU/L {peak}) and SGPT (2088 IU/L {peak}) were reported in a 30-year-old male who ingested half a pint of 26% calcium polysulfide solution (estimated dose 891 mg/kg). Levels peaked on hospital day 4, and bilirubin peaked on day 9 at 15.8 mg/dL. No permanent hepatic dysfunction was reported (Horowitz et al, 1997).

Genitourinary

    3.10.1) SUMMARY
    A) Urinary disturbances may occur. Renal dysfunction occurred in a patient following an ingestion of calcium polysulfide.
    3.10.2) CLINICAL EFFECTS
    A) MICTURITION FINDING
    1) Urinary disturbance may develop.
    B) ABNORMAL RENAL FUNCTION
    1) Elevated BUN (45 mg/dL) and creatinine (3.3 mg/dL) were reported, on hospital day 9, in a 30-year-old male who ingested half a pint of 26% calcium polysulfide solution (estimated dose 891 mg/kg) on hospital day 9. Renal function normalized with intravenous hydration only (Horowitz et al, 1997).

Acid-Base

    3.11.1) SUMMARY
    A) Metabolic acidosis may occur following exposures to high oral doses.
    3.11.2) CLINICAL EFFECTS
    A) ACIDOSIS
    1) CASE REPORTS
    a) Two patients developed metabolic acidosis following ingestion of a fungicide that contained 26% calcium polysulfide (i.e., fungicide). Both received aggressive decontamination and management. The first patient (a 23-year-old female) ingested approximately 562 mg/kg and died 11 hours after exposure from a cardiac arrest. The other patient was a 30-year-old male who recovered after ingesting 891 mg/kg (Horowitz et al, 1997).
    b) Metabolic acidosis with a high anion gap was reported in a 66-year-old woman who ingested 200 grams of sulfur over 2 days (Schwartz et al, 1986).
    c) Metabolic acidosis with a normal anion gap and hyperchloremia was described in a 57-year-old woman who ingested 250 grams of sulfur over 6 days (Blum & Coe, 1977).

Dermatologic

    3.14.1) SUMMARY
    A) Lime sulfur is irritating to the skin; burns have been reported following ingestion. Molten sulfur burns cause severe dermal injury.
    3.14.2) CLINICAL EFFECTS
    A) SKIN IRRITATION
    1) LIME SULFUR is irritating on contact to the skin.
    2) In concentrations above 15%, SULFUR is irritating to the skin. Prolonged application of less concentrated material may also cause irritation. Sulfur may cause progressive reddening, thickening, and scaling of the skin, with eventual erythroderma (FDA, 1982).
    3) Concentrations of 1 to 2% cause a keratoplastic effect, consisting of mild epidermal damage, followed by stimulation of keratin formation and epidermal thickening.
    a) Concentrations of 5 to 15% are keratolytic, causing peeling of the upper epidermis and stratum corneum (FDA, 1982).
    B) CHEMICAL BURN
    1) Molten sulfur burns cause severe dermal injury (Ungaro-Mancusi & Blackwell, 1983).
    2) Mucosal burns of the stomach and esophagus were reported in an adult following ingestion of a fungicide containing 26% calcium polysulfide (Horowitz et al, 1997). Esophageal stricture developed in this patient.

Carcinogenicity

    3.21.1) IARC CATEGORY
    A) IARC Carcinogenicity Ratings for CAS7704-34-9 (International Agency for Research on Cancer (IARC), 2016; International Agency for Research on Cancer, 2015; IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, 2010; IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, 2010a; IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, 2008; IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, 2007; IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, 2006; IARC, 2004):
    1) Not Listed
    B) IARC Carcinogenicity Ratings for CAS8028-82-8 (International Agency for Research on Cancer (IARC), 2016; International Agency for Research on Cancer, 2015; IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, 2010; IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, 2010a; IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, 2008; IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, 2007; IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, 2006; IARC, 2004):
    1) Not Listed

Summary Of Exposure

    A) There are many types of sulfur compounds with a wide variety of clinical effects. Many are irritating to the skin, eyes, lungs, and GI tract.
    B) SUBACUTE EFFECTS of lime sulfur poisoning include: irritation of mucous membranes, respiratory tract irritation, rhinitis, and pulmonary edema are possible. Direct skin contact may produce pain and erythema. Ingestion can result in nausea, vomiting, diarrhea and central nervous system effects of giddiness, headache, vertigo, amnesia, confusion and unconsciousness. Other effects may include: tachycardia, cardiac dysrhythmias, sweating and weakness.
    C) ACUTE EFFECTS can result in sudden collapse and unconsciousness, and death from respiratory paralysis.
    D) PATHOPHYSIOLOGY - Sulfur Lime (Calcium polysulfide), sodium sulfide, ammonium sulfide and thioacetamide release hydrogen sulfide in contact with water or acids.
    E) In limited reports, ingestion of calcium polysulfide produced mucosal burns of the gastrointestinal tract and severe systemic effects which included mental status changes, coma, hypotension, dysrhythmias, hepatic and renal injury, rhabdomyolysis, metabolic acidosis and a fatal cardiac arrest. An intense odor of hydrogen sulfide (i.e., rotten eggs) was present in the gastric aspirate.

Monitoring Parameters Levels

    4.1.1) SUMMARY
    A) No specific tests are indicated. Severe systemic effects have been reported following significant oral exposure.
    B) Monitor cardiac and respiratory function. Obtain a baseline ABG and repeat as indicated.
    C) In significant overdoses, renal and hepatic function should be observed.
    D) Obtain baseline electrolytes and acid/base balance in symptomatic patient and repeat as necessary.
    4.1.2) SERUM/BLOOD
    A) In a limited number of case reports, severe systemic effects have been reported following ingestion of lime sulfur.
    1) Monitor neurological, cardiac and respiratory function following a significant ingestion. Obtain a baseline ABG and repeat as indicated.
    2) Monitor electrolytes and renal and hepatic function as indicated in symptomatic patients.

Life Support

    A) Support respiratory and cardiovascular function.

Monitoring

    A) No specific tests are indicated. Severe systemic effects have been reported following significant oral exposure.
    B) Monitor cardiac and respiratory function. Obtain a baseline ABG and repeat as indicated.
    C) In significant overdoses, renal and hepatic function should be observed.
    D) Obtain baseline electrolytes and acid/base balance in symptomatic patient and repeat as necessary.

Oral Exposure

    6.5.1) PREVENTION OF ABSORPTION/PREHOSPITAL
    A) EMESIS/ NOT RECOMMENDED -
    1) EMESIS: Ipecac-induced emesis is not recommended because of the potential for CNS depression and seizures.
    B) ACTIVATED CHARCOAL -
    1) PREHOSPITAL ACTIVATED CHARCOAL ADMINISTRATION
    a) Consider prehospital administration of activated charcoal as an aqueous slurry in patients with a potentially toxic ingestion who are awake and able to protect their airway. Activated charcoal is most effective when administered within one hour of ingestion. Administration in the prehospital setting has the potential to significantly decrease the time from toxin ingestion to activated charcoal administration, although it has not been shown to affect outcome (Alaspaa et al, 2005; Thakore & Murphy, 2002; Spiller & Rogers, 2002).
    1) In patients who are at risk for the abrupt onset of seizures or mental status depression, activated charcoal should not be administered in the prehospital setting, due to the risk of aspiration in the event of spontaneous emesis.
    2) The addition of flavoring agents (cola drinks, chocolate milk, cherry syrup) to activated charcoal improves the palatability for children and may facilitate successful administration (Guenther Skokan et al, 2001; Dagnone et al, 2002).
    2) CHARCOAL DOSE
    a) Use a minimum of 240 milliliters of water per 30 grams charcoal (FDA, 1985). Optimum dose not established; usual dose is 25 to 100 grams in adults and adolescents; 25 to 50 grams in children aged 1 to 12 years (or 0.5 to 1 gram/kilogram body weight) ; and 0.5 to 1 gram/kilogram in infants up to 1 year old (Chyka et al, 2005).
    1) Routine use of a cathartic with activated charcoal is NOT recommended as there is no evidence that cathartics reduce drug absorption and cathartics are known to cause adverse effects such as nausea, vomiting, abdominal cramps, electrolyte imbalances and occasionally hypotension (None Listed, 2004).
    b) ADVERSE EFFECTS/CONTRAINDICATIONS
    1) Complications: emesis, aspiration (Chyka et al, 2005). Aspiration may be complicated by acute respiratory failure, ARDS, bronchiolitis obliterans or chronic lung disease (Golej et al, 2001; Graff et al, 2002; Pollack et al, 1981; Harris & Filandrinos, 1993; Elliot et al, 1989; Rau et al, 1988; Golej et al, 2001; Graff et al, 2002). Refer to the ACTIVATED CHARCOAL/TREATMENT management for further information.
    2) Contraindications: unprotected airway (increases risk/severity of aspiration) , nonfunctioning gastrointestinal tract, uncontrolled vomiting, and ingestion of most hydrocarbons (Chyka et al, 2005).
    6.5.2) PREVENTION OF ABSORPTION
    A) EMESIS
    1) EMESIS: Ipecac-induced emesis is not recommended because of the potential for CNS depression and seizures.
    B) GASTRIC LAVAGE
    1) INDICATIONS: Consider gastric lavage with a large-bore orogastric tube (ADULT: 36 to 40 French or 30 English gauge tube {external diameter 12 to 13.3 mm}; CHILD: 24 to 28 French {diameter 7.8 to 9.3 mm}) after a potentially life threatening ingestion if it can be performed soon after ingestion (generally within 60 minutes).
    a) Consider lavage more than 60 minutes after ingestion of sustained-release formulations and substances known to form bezoars or concretions.
    2) PRECAUTIONS:
    a) SEIZURE CONTROL: Is mandatory prior to gastric lavage.
    b) AIRWAY PROTECTION: Place patients in the head down left lateral decubitus position, with suction available. Patients with depressed mental status should be intubated with a cuffed endotracheal tube prior to lavage.
    3) LAVAGE FLUID:
    a) Use small aliquots of liquid. Lavage with 200 to 300 milliliters warm tap water (preferably 38 degrees Celsius) or saline per wash (in older children or adults) and 10 milliliters/kilogram body weight of normal saline in young children(Vale et al, 2004) and repeat until lavage return is clear.
    b) The volume of lavage return should approximate amount of fluid given to avoid fluid-electrolyte imbalance.
    c) CAUTION: Water should be avoided in young children because of the risk of electrolyte imbalance and water intoxication. Warm fluids avoid the risk of hypothermia in very young children and the elderly.
    4) COMPLICATIONS:
    a) Complications of gastric lavage have included: aspiration pneumonia, hypoxia, hypercapnia, mechanical injury to the throat, esophagus, or stomach, fluid and electrolyte imbalance (Vale, 1997). Combative patients may be at greater risk for complications (Caravati et al, 2001).
    b) Gastric lavage can cause significant morbidity; it should NOT be performed routinely in all poisoned patients (Vale, 1997).
    5) CONTRAINDICATIONS:
    a) Loss of airway protective reflexes or decreased level of consciousness if patient is not intubated, following ingestion of corrosive substances, hydrocarbons (high aspiration potential), patients at risk of hemorrhage or gastrointestinal perforation, or trivial or non-toxic ingestion.
    C) ACTIVATED CHARCOAL
    1) CHARCOAL ADMINISTRATION
    a) Consider administration of activated charcoal after a potentially toxic ingestion (Chyka et al, 2005). Administer charcoal as an aqueous slurry; most effective when administered within one hour of ingestion.
    2) CHARCOAL DOSE
    a) Use a minimum of 240 milliliters of water per 30 grams charcoal (FDA, 1985). Optimum dose not established; usual dose is 25 to 100 grams in adults and adolescents; 25 to 50 grams in children aged 1 to 12 years (or 0.5 to 1 gram/kilogram body weight) ; and 0.5 to 1 gram/kilogram in infants up to 1 year old (Chyka et al, 2005).
    1) Routine use of a cathartic with activated charcoal is NOT recommended as there is no evidence that cathartics reduce drug absorption and cathartics are known to cause adverse effects such as nausea, vomiting, abdominal cramps, electrolyte imbalances and occasionally hypotension (None Listed, 2004).
    b) ADVERSE EFFECTS/CONTRAINDICATIONS
    1) Complications: emesis, aspiration (Chyka et al, 2005). Aspiration may be complicated by acute respiratory failure, ARDS, bronchiolitis obliterans or chronic lung disease (Golej et al, 2001; Graff et al, 2002; Pollack et al, 1981; Harris & Filandrinos, 1993; Elliot et al, 1989; Rau et al, 1988; Golej et al, 2001; Graff et al, 2002). Refer to the ACTIVATED CHARCOAL/TREATMENT management for further information.
    2) Contraindications: unprotected airway (increases risk/severity of aspiration) , nonfunctioning gastrointestinal tract, uncontrolled vomiting, and ingestion of most hydrocarbons (Chyka et al, 2005).
    6.5.3) TREATMENT
    A) SUPPORT
    1) Treatment is symptomatic and supportive. Monitor cardiac and respiratory function following a significant ingestion. Obtain electrolyte and renal and hepatic function levels as indicated.
    B) ACUTE LUNG INJURY
    1) ONSET: Onset of acute lung injury after toxic exposure may be delayed up to 24 to 72 hours after exposure in some cases.
    2) NON-PHARMACOLOGIC TREATMENT: The treatment of acute lung injury is primarily supportive (Cataletto, 2012). Maintain adequate ventilation and oxygenation with frequent monitoring of arterial blood gases and/or pulse oximetry. If a high FIO2 is required to maintain adequate oxygenation, mechanical ventilation and positive-end-expiratory pressure (PEEP) may be required; ventilation with small tidal volumes (6 mL/kg) is preferred if ARDS develops (Haas, 2011; Stolbach & Hoffman, 2011).
    a) To minimize barotrauma and other complications, use the lowest amount of PEEP possible while maintaining adequate oxygenation. Use of smaller tidal volumes (6 mL/kg) and lower plateau pressures (30 cm water or less) has been associated with decreased mortality and more rapid weaning from mechanical ventilation in patients with ARDS (Brower et al, 2000). More treatment information may be obtained from ARDS Clinical Network website, NIH NHLBI ARDS Clinical Network Mechanical Ventilation Protocol Summary, http://www.ardsnet.org/node/77791 (NHLBI ARDS Network, 2008)
    3) FLUIDS: Crystalloid solutions must be administered judiciously. Pulmonary artery monitoring may help. In general the pulmonary artery wedge pressure should be kept relatively low while still maintaining adequate cardiac output, blood pressure and urine output (Stolbach & Hoffman, 2011).
    4) ANTIBIOTICS: Indicated only when there is evidence of infection (Artigas et al, 1998).
    5) EXPERIMENTAL THERAPY: Partial liquid ventilation has shown promise in preliminary studies (Kollef & Schuster, 1995).
    6) CALFACTANT: In a multicenter, randomized, blinded trial, endotracheal instillation of 2 doses of 80 mL/m(2) calfactant (35 mg/mL of phospholipid suspension in saline) in infants, children, and adolescents with acute lung injury resulted in acute improvement in oxygenation and lower mortality; however, no significant decrease in the course of respiratory failure measured by duration of ventilator therapy, intensive care unit, or hospital stay was noted. Adverse effects (transient hypoxia and hypotension) were more frequent in calfactant patients, but these effects were mild and did not require withdrawal from the study (Wilson et al, 2005).
    7) However, in a multicenter, randomized, controlled, and masked trial, endotracheal instillation of up to 3 doses of calfactant (30 mg) in adults only with acute lung injury/ARDS due to direct lung injury was not associated with improved oxygenation and longer term benefits compared to the placebo group. It was also associated with significant increases in hypoxia and hypotension (Willson et al, 2015).
    C) ACIDOSIS
    1) Large doses of sulfur may produce metabolic acidosis (Blum & Coe, 1977; Schwartz et al, 1986).
    2) METABOLIC ACIDOSIS: Treat severe metabolic acidosis (pH less than 7.1) with sodium bicarbonate, 1 to 2 mEq/kg is a reasonable starting dose(Kraut & Madias, 2010). Monitor serum electrolytes and arterial or venous blood gases to guide further therapy.
    3) In patients with renal failure, hemodialysis may be required to correct electrolyte abnormalities.
    D) ABNORMAL BODY ODOR
    1) Hydrogen sulfide can be produced following normal decomposition of lime sulfur in the stomach. Provide adequate ventilation during care. Healthcare personnel have been overcome by the odor following two separate cases of lime sulfur ingestion (Horowitz et al, 1997). See the HYDROGEN SULFIDE management for further information as indicated.
    E) BURN
    1) SUMMARY - Mucosal burns of the esophagus and stomach have been reported following limited reports of oral exposure to lime sulfur (calcium polysulfide). Endoscopy may be indicated following significant ingestions.
    F) ENDOSCOPIC PROCEDURE
    1) SUMMARY: Obtain consultation concerning endoscopy as soon as possible and perform endoscopy within the first 24 hours when indicated.
    2) INDICATIONS: Most studies associating the presence or absence of gastrointestinal burns with signs and symptoms after caustic ingestion have involved primarily alkaline ingestions. Because acid ingestion may cause severe gastric injury with fewer associated initial signs and symptoms, endoscopic evaluation is recommended in any patient with a definite history of ingestion of a strong acid, even if asymptomatic.
    3) RISKS: Numerous large case series attest to the relative safety and utility of early endoscopy in the management of caustic ingestion.
    a) REFERENCES: Gaudreault et al, 1983; Symbas et al, 1983; Crain et al, 1984; (Schild, 1985; Moazam et al, 1987; Sugawa & Lucas, 1989; Previtera et al, 1990; Zargar et al, 1991; Vergauwen et al, 1991; Gorman et al, 1992; Nuutinen et al, 1994)
    4) The risk of perforation during endoscopy is minimized by (Zargar et al, 1991):
    a) Advancing across the cricopharynx under direct vision
    b) Gently advancing with minimal air insufflation
    c) Never retroverting or retroflexing the endoscope
    d) Using a pediatric flexible endoscope
    e) Using extreme caution in advancing beyond burn lesion areas
    f) Most authors recommend endoscopy within the first 24 hours of injury, not advancing the endoscope beyond areas of severe esophageal burns, and avoiding endoscopy during the subacute phase of healing when tissue slough increases the risk of perforation (5 to 15 days after ingestion) (Zargar et al, 1991).
    5) GRADING
    a) Several scales for grading caustic injury exist. The likelihood of complications such as strictures, obstruction, bleeding and perforation is related to the severity of the initial burn (Zargar et al, 1991):
    b) Grade 0 - Normal examination
    c) Grade 1 - Edema and hyperemia of the mucosa; strictures unlikely.
    d) Grade 2A - Friability, hemorrhages, erosions, blisters, whitish membranes, exudates and superficial ulcerations; strictures unlikely.
    e) Grade 2B - Grade 2A plus deep discreet or circumferential ulceration; strictures may develop.
    f) Grade 3A - Multiple ulcerations and small scattered areas of necrosis; strictures are common, complications such as perforation, fistula formation, or gastrointestinal bleeding may occur.
    g) Grade 3B - Extensive necrosis through visceral wall; strictures are common, complications such as perforation, fistula formation, or gastrointestinal bleeding are more likely than with 3A.
    6) FOLLOW UP - If burns are found, follow 10 to 20 days later with barium swallow or esophagram.
    G) CORTICOSTEROID
    1) CORROSIVE INGESTION/SUMMARY: The use of corticosteroids for the treatment of caustic ingestion is controversial. Most animal studies have involved alkali-induced injury (Haller & Bachman, 1964; Saedi et al, 1973). Most human studies have been retrospective and generally involve more alkali than acid-induced injury and small numbers of patients with documented second or third degree mucosal injury.
    2) FIRST DEGREE BURNS: These burns generally heal well and rarely result in stricture formation (Zargar et al, 1989; Howell et al, 1992). Corticosteroids are generally not beneficial in these patients (Howell et al, 1992).
    3) SECOND DEGREE BURNS: Some authors recommend corticosteroid treatment to prevent stricture formation in patients with a second degree, deep-partial thickness burn (Howell et al, 1992). However, no well controlled human study has documented efficacy. Corticosteroids are generally not beneficial in patients with a second degree, superficial-partial thickness burn (Caravati, 2004; Howell et al, 1992).
    4) THIRD DEGREE BURNS: Some authors have recommended steroids in this group as well (Howell et al, 1992). A high percentage of patients with third degree burns go on to develop strictures with or without corticosteroid therapy and the risk of infection and perforation may be increased by corticosteroid use. Most authors feel that the risk outweighs any potential benefit and routine use is not recommended (Boukthir et al, 2004; Oakes et al, 1982; Pelclova & Navratil, 2005).
    5) CONTRAINDICATIONS: Include active gastrointestinal bleeding and evidence of gastric or esophageal perforation. Corticosteroids are thought to be ineffective if initiated more than 48 hours after a burn (Howell, 1987).
    6) DOSE: Administer daily oral doses of 0.1 milligram/kilogram of dexamethasone or 1 to 2 milligrams/kilogram of prednisone. Continue therapy for a total of 3 weeks and then taper (Haller et al, 1971; Marshall, 1979). An alternative regimen in children is intravenous prednisolone 2 milligrams/kilogram/day followed by 2.5 milligrams/kilogram/day of oral prednisone for a total of 3 weeks then tapered (Anderson et al, 1990).
    7) ANTIBIOTICS: Animal studies suggest that the addition of antibiotics can prevent the infectious complications associated with corticosteroid use in the setting of caustic burns. Antibiotics are recommended if corticosteroids are used or if perforation or infection is suspected. Agents that cover anaerobes and oral flora such as penicillin, ampicillin, or clindamycin are appropriate (Rosenberg et al, 1953).
    8) STUDIES
    a) ANIMAL
    1) Some animal studies have suggested that corticosteroid therapy may reduce the incidence of stricture formation after severe alkaline corrosive injury (Haller & Bachman, 1964; Saedi et al, 1973a).
    2) Animals treated with steroids and antibiotics appear to do better than animals treated with steroids alone (Haller & Bachman, 1964).
    3) Other studies have shown no evidence of reduced stricture formation in steroid treated animals (Reyes et al, 1974). An increased rate of esophageal perforation related to steroid treatment has been found in animal studies (Knox et al, 1967).
    b) HUMAN
    1) Most human studies have been retrospective and/or uncontrolled and generally involve small numbers of patients with documented second or third degree mucosal injury. No study has proven a reduced incidence of stricture formation from steroid use in human caustic ingestions (Haller et al, 1971; Hawkins et al, 1980; Yarington & Heatly, 1963; Adam & Brick, 1982).
    2) META ANALYSIS
    a) Howell et al (1992), analyzed reports concerning 361 patients with corrosive esophageal injury published in the English language literature since 1956 (10 retrospective and 3 prospective studies). No patients with first degree burns developed strictures. Of 228 patients with second or third degree burns treated with corticosteroids and antibiotics, 54 (24%) developed strictures. Of 25 patients with similar burn severity treated without steroids or antibiotics, 13 (52%) developed strictures (Howell et al, 1992).
    b) Another meta-analysis of 10 studies found that in patients with second degree esophageal burns from caustics, the overall rate of stricture formation was 14.8% in patients who received corticosteroids compared with 36% in patients who did not receive corticosteroids (LoVecchio et al, 1996).
    c) Another study combined results of 10 papers evaluating therapy for corrosive esophageal injury in humans published between January 1991 and June 2004. There were a total of 572 patients, all patients received corticosteroids in 6 studies, in 2 studies no patients received steroids, and in 2 studies, treatment with and without corticosteroids was compared. Of 109 patients with grade 2 esophageal burns who were treated with corticosteroids, 15 (13.8%) developed strictures, compared with 2 of 32 (6.3%) patients with second degree burns who did not receive steroids (Pelclova & Navratil, 2005).
    3) Smaller studies have questioned the value of steroids (Ferguson et al, 1989; Anderson et al, 1990), thus they should be used with caution.
    4) Ferguson et al (1989) retrospectively compared 10 patients who did not receive antibiotics or steroids with 31 patients who received both antibiotics and steroids in a study of caustic ingestion and found no difference in the incidence of esophageal stricture between the two groups (Ferguson et al, 1989).
    5) A randomized, controlled, prospective clinical trial involving 60 children with lye or acid induced esophageal injury did not find an effect of corticosteroids on the incidence of stricture formation (Anderson et al, 1990).
    a) These 60 children were among 131 patients who were managed and followed-up for ingestion of caustic material from 1971 through 1988; 88% of them were between 1 and 3 years old (Anderson et al, 1990).
    b) All patients underwent rigid esophagoscopy after being randomized to receive either no steroids or a course consisting initially of intravenous prednisolone (2 milligrams/kilogram per day) followed by 2.5 milligrams/kilogram/day of oral prednisone for a total of 3 weeks prior to tapering and discontinuation (Anderson et al, 1990).
    c) Six (19%), 15 (48%), and 10 (32%) of those in the treatment group had first, second and third degree esophageal burns, respectively. In contrast, 13 (45%), 5 (17%), and 11 (38%) of the control group had the same levels of injury (Anderson et al, 1990).
    d) Ten (32%) of those receiving steroids and 11 (38%) of the control group developed strictures. Four (13%) of those receiving steroids and 7 (24%) of the control group required esophageal replacement. All but 1 of the 21 children who developed strictures had severe circumferential burns on initial esophagoscopy (Anderson et al, 1990).
    e) Because of the small numbers of patients in this study, it lacked the power to reliably detect meaningful differences in outcome between the treatment groups (Anderson et al, 1990).
    6) ADVERSE EFFECTS
    a) The use of corticosteroids in the treatment of caustic ingestion in humans has been associated with gastric perforation (Cleveland et al, 1963) and fatal pulmonary embolism (Aceto et al, 1970).
    H) FOLLOW-UP VISIT
    1) Obtain a follow-up esophagram and upper GI series to evaluate presence or absence of secondary scarring and/or stricture formation about 2 to 4 weeks following ingestion.
    2) CASE REPORT - Two and half weeks after exposure, a 30-year-old male developed esophageal stricture requiring dilatation following ingestion of 26% calcium polysulfide (estimated dose: 891 mg/kg) (Horowitz et al, 1997).

Inhalation Exposure

    6.7.1) DECONTAMINATION
    A) Move patient from the toxic environment to fresh air. Monitor for respiratory distress. If cough or difficulty in breathing develops, evaluate for hypoxia, respiratory tract irritation, bronchitis, or pneumonitis.
    B) OBSERVATION: Carefully observe patients with inhalation exposure for the development of any systemic signs or symptoms and administer symptomatic treatment as necessary.
    C) INITIAL TREATMENT: Administer 100% humidified supplemental oxygen, perform endotracheal intubation and provide assisted ventilation as required. Administer inhaled beta-2 adrenergic agonists, if bronchospasm develops. Consider systemic corticosteroids in patients with significant bronchospasm (National Heart,Lung,and Blood Institute, 2007). Exposed skin and eyes should be flushed with copious amounts of water.
    6.7.2) TREATMENT
    A) ABNORMAL BODY ODOR
    1) Hydrogen sulfide can be produced following normal decomposition of lime sulfur in the stomach. Provide adequate ventilation during care. Healthcare personnel have been overcome by the odor following two separate cases of lime sulfur ingestion (Horowitz et al, 1997). See the HYDROGEN SULFIDE management for further information as indicated.
    B) Treatment should include recommendations listed in the ORAL EXPOSURE section when appropriate.

Eye Exposure

    6.8.1) DECONTAMINATION
    A) EYE IRRIGATION, ROUTINE: Remove contact lenses and irrigate exposed eyes with copious amounts of room temperature 0.9% saline or water for at least 15 minutes. If irritation, pain, swelling, lacrimation, or photophobia persist after 15 minutes of irrigation, an ophthalmologic examination should be performed (Peate, 2007; Naradzay & Barish, 2006).

Dermal Exposure

    6.9.1) DECONTAMINATION
    A) DERMAL DECONTAMINATION
    1) DECONTAMINATION: Remove contaminated clothing and wash exposed area thoroughly with soap and water for 10 to 15 minutes. A physician may need to examine the area if irritation or pain persists (Burgess et al, 1999).
    6.9.2) TREATMENT
    A) BURN
    1) Molten sulfur burns cooled on exposure to air forms a "cast." Debridement with a petrolatum-based antibiotic ointment leaves a protective emollient film between the sulfur and skin.
    2) Apply accepted standard of therapy for thermal or scald burns when sulfur cast separates.
    B) Treatment should include recommendations listed in the ORAL EXPOSURE section when appropriate.

Case Reports

    A) SPECIFIC AGENT
    1) SUBLIMED SULFUR - A 57-year-old woman was reported to ingest 250 grams of sublimed sulfur over 6 days. She presented with progressive lethargy and confusion.
    a) She was noted to have a metabolic acidosis with normal anion gap (pH 7.19, sodium 126 mEq/L, potassium 8.6 mEq/L, chloride 104 mEq/L, and CO2 12 mmol/L).
    b) She was treated with intravenous hydration, sodium bicarbonate, and enemas, and recovered rapidly and uneventfully within 72 hours (Blum & Coe, 1977).
    2) SUBLIMED SULFUR - A 66-year-old woman with end-stage renal failure ingested 200 grams of sublimed sulfur over 2 days. She presented with chest pain, delirium, agitation, and disorientation.
    a) High anion gap metabolic acidosis was present (pH 6.72, sodium 150 mEq/L, potassium 9.1 mEq/L, chloride 107 mEq/L, and CO2 2.3 mEq/L). Serum chemistries were corrected with sodium bicarbonate and dialysis, and her sensorium cleared (Schwartz et al, 1986).

Summary

    A) SULFUR - The acute oral toxic dose is estimated to be 10 to 15 grams in adults. Ingestions of 60 and 250 grams have been reported with recovery.
    B) SULFIDE SALTS - The alkali metal sulfide salts (sodium, potassium, calcium) are estimated to have a probable oral lethal dose of less than 5 mg/kg in humans.
    C) Fatalities have been reported following ingestion of calcium polysulfide.

Therapeutic Dose

    7.2.1) ADULT
    A) GENERAL
    1) The purgative dose is 2 to 4 grams for adults (Hayes, 1982).

Minimum Lethal Exposure

    A) CASE REPORTS
    1) SPECIFIC SUBSTANCE
    a) CALCIUM POLYSULFIDE SOLUTION - A 22-year-old student died after ingestion of 400 mL of calcium polysulfide solution (Hayes, 1982).
    b) CALCIUM POLYSULFIDE (26%) SOLUTION - A 23-year-old female died 11 hours after ingesting half a cup of a fungicide containing 26% calcium polysulfide (562 mg/kg) (Horowitz et al, 1997).
    c) SULFIDE SALTS - The alkali metal sulfide salts (sodium, potassium, calcium) are estimated to have a probable oral lethal dose of less than 5 milligrams/kilogram in humans (Gosselin, 1984).

Maximum Tolerated Exposure

    A) GENERAL/SUMMARY
    1) SULFUR/NON-TOXIC DOSE - 500 to 750 milligrams daily of colloidal sulfur produced no toxic effects when given to adult volunteers for 10 days (Greengard & Woolley, 1940).
    2) SULFUR/TOXIC DOSE - The acute oral toxic dose of sulfur has been estimated at 10 to 15 grams in adults (Deichmann & Gerarde, 1969) Council on Pharmacy and Chemistry, 1955).
    B) CASE REPORTS
    1) SULFUR/TOXIC-
    a) Ingestion of 250 grams of sulfur over 6 days produced acidosis and recovery in a 57-year-old woman (Blum & Coe, 1977).
    b) In one adult male, 60 grams of sulfur was ingested within 24 hours, which produced toxicity and complete recovery (Hodge et al, 1951).
    2) CALCIUM POLYSULFIDE (26%) SOLUTION-
    a) A 30-year-old male survived an ingestion of half a pint (estimated dose 891 mg/kg) of a fungicide containing 26% calcium polysulfide. Following aggressive supportive care the patient made a complete recovery with no permanent neurological deficits reported. Esophageal stricture was found after initial recovery (Horowitz et al, 1997).

Serum Plasma Blood Concentrations

    7.5.2) TOXIC CONCENTRATIONS
    A) TOXIC CONCENTRATION LEVELS
    1) GENERAL
    a) NORMAL LEVELS - The normal serum sulfate is 0.5 to 1.5 milliequivalents/liter.
    b) TOXIC LEVELS -
    1) In a patient with metabolic acidosis secondary to sublimed sulfur ingestion, the serum sulfate was 2.3 milliequivalents/liter (Blum & Coe, 1977).
    2) In another case of sublimed sulfur-induced acidosis, the serum sulfate was 24.6 milliequivalents/liter (Schwartz et al, 1986).

Workplace Standards

    A) ACGIH TLV Values for CAS7704-34-9 (American Conference of Governmental Industrial Hygienists, 2010):
    1) Not Listed

    B) ACGIH TLV Values for CAS8028-82-8 (American Conference of Governmental Industrial Hygienists, 2010):
    1) Not Listed

    C) NIOSH REL and IDLH Values for CAS7704-34-9 (National Institute for Occupational Safety and Health, 2007):
    1) Not Listed

    D) NIOSH REL and IDLH Values for CAS8028-82-8 (National Institute for Occupational Safety and Health, 2007):
    1) Not Listed

    E) Carcinogenicity Ratings for CAS7704-34-9 :
    1) ACGIH (American Conference of Governmental Industrial Hygienists, 2010): Not Listed
    2) EPA (U.S. Environmental Protection Agency, 2011): Not Listed
    3) IARC (International Agency for Research on Cancer (IARC), 2016; International Agency for Research on Cancer, 2015; IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, 2010; IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, 2010a; IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, 2008; IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, 2007; IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, 2006; IARC, 2004): Not Listed
    4) NIOSH (National Institute for Occupational Safety and Health, 2007): Not Listed
    5) MAK (DFG, 2002): Not Listed
    6) NTP (U.S. Department of Health and Human Services, Public Health Service, National Toxicology Project ): Not Listed

    F) Carcinogenicity Ratings for CAS8028-82-8 :
    1) ACGIH (American Conference of Governmental Industrial Hygienists, 2010): Not Listed
    2) EPA (U.S. Environmental Protection Agency, 2011): Not Listed
    3) IARC (International Agency for Research on Cancer (IARC), 2016; International Agency for Research on Cancer, 2015; IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, 2010; IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, 2010a; IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, 2008; IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, 2007; IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, 2006; IARC, 2004): Not Listed
    4) NIOSH (National Institute for Occupational Safety and Health, 2007): Not Listed
    5) MAK (DFG, 2002): Not Listed
    6) NTP (U.S. Department of Health and Human Services, Public Health Service, National Toxicology Project ): Not Listed

    G) OSHA PEL Values for CAS7704-34-9 (U.S. Occupational Safety, and Health Administration (OSHA), 2010):
    1) Not Listed

    H) OSHA PEL Values for CAS8028-82-8 (U.S. Occupational Safety, and Health Administration (OSHA), 2010):
    1) Not Listed

Toxicity Information

    7.7.1) TOXICITY VALUES
    A) SULFUR

Pharmacologic Mechanism

    A) In ruminants it is changed partly to hydrogen sulfide. Ingestion may cause hydrogen sulfide production due to bacteria in the colon.
    B) Sulfur has a keratolytic action when applied to the skin, secondary to the interaction of sulfur with cysteine present in keratinocytes. Sulfur is broken down to form hydrogen sulfide on the skin.
    1) When applied at high concentrations, the hydrogen sulfide breaks down keratin and causes dissolution of the stratum corneum (Lin et al, 1988).

Toxicologic Mechanism

    A) In limited case reports lime sulfur was able to produce severe systemic effects (i.e., coma, myocardial infarction, cardiac arrest, confusion, agitation rhabdomyolysis, and transient renal and hepatic dysfunction) following ingestion of a fungicide containing 26% calcium polysulfide (Horowitz et al, 1997).
    1) SUBACUTE poisoning can produce irritation to eyes, skin and respiratory tract. Neurological effects can include: giddiness, headache, confusion and amnesia. Pulmonary edema with dyspnea may occur. The following gastrointestinal effects have been reported: nausea, vomiting, and diarrhea (HSDB , 2001).
    2) ACUTE poisoning can result in sudden collapse and unconsciousness; death may occur from respiratory paralysis; cardiac dysrhythmias may be present. Recovery is generally slow (HSDB , 2001).

Physical Characteristics

    A) LIME SULFUR: deep orange malodorous liquid
    B) SUBLIMED SULFUR: fine yellow, crystalline powder with a faint odor and taste
    C) WASHED SULFUR: fine odorless, tasteless, yellow crystalline powder
    D) PRECIPITATED SULFUR: fine, yellowish-white, amorphous, odorless powder with a smooth texture
    E) SULFURATED POTASH: greenish-yellow fragments with an odor of hydrogen sulfide

Molecular Weight

    A) Elemental sulfur: 32.07

Clinical Effects

    11.1.2) BOVINE/CATTLE
    A) Steers fed excessive sodium sulfate had excess sulfide production in the rumen and developed polioencephalomalacia (Gould et al, 1991).

General Bibliography

    1) 40 CFR 372.28: Environmental Protection Agency - Toxic Chemical Release Reporting, Community Right-To-Know, Lower thresholds for chemicals of special concern. National Archives and Records Administration (NARA) and the Government Printing Office (GPO). Washington, DC. Final rules current as of Apr 3, 2006.
    2) 40 CFR 372.65: Environmental Protection Agency - Toxic Chemical Release Reporting, Community Right-To-Know, Chemicals and Chemical Categories to which this part applies. National Archives and Records Association (NARA) and the Government Printing Office (GPO), Washington, DC. Final rules current as of Apr 3, 2006.
    3) 49 CFR 172.101 - App. B: Department of Transportation - Table of Hazardous Materials, Appendix B: List of Marine Pollutants. National Archives and Records Administration (NARA) and the Government Printing Office (GPO), Washington, DC. Final rules current as of Aug 29, 2005.
    4) 62 FR 58840: Notice of the National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances - Proposed AEGL Values, Environmental Protection Agency, NAC/AEGL Committee. National Archives and Records Administration (NARA) and the Government Publishing Office (GPO), Washington, DC, 1997.
    5) 65 FR 14186: Notice of the National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances - Proposed AEGL Values, Environmental Protection Agency, NAC/AEGL Committee. National Archives and Records Administration (NARA) and the Government Publishing Office (GPO), Washington, DC, 2000.
    6) 65 FR 39264: Notice of the National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances - Proposed AEGL Values, Environmental Protection Agency, NAC/AEGL Committee. National Archives and Records Administration (NARA) and the Government Publishing Office (GPO), Washington, DC, 2000.
    7) 65 FR 77866: Notice of the National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances - Proposed AEGL Values, Environmental Protection Agency, NAC/AEGL Committee. National Archives and Records Administration (NARA) and the Government Publishing Office (GPO), Washington, DC, 2000.
    8) 66 FR 21940: Notice of the National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances - Proposed AEGL Values, Environmental Protection Agency, NAC/AEGL Committee. National Archives and Records Administration (NARA) and the Government Publishing Office (GPO), Washington, DC, 2001.
    9) 67 FR 7164: Notice of the National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances - Proposed AEGL Values, Environmental Protection Agency, NAC/AEGL Committee. National Archives and Records Administration (NARA) and the Government Publishing Office (GPO), Washington, DC, 2002.
    10) 68 FR 42710: Notice of the National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances - Proposed AEGL Values, Environmental Protection Agency, NAC/AEGL Committee. National Archives and Records Administration (NARA) and the Government Publishing Office (GPO), Washington, DC, 2003.
    11) 69 FR 54144: Notice of the National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances - Proposed AEGL Values, Environmental Protection Agency, NAC/AEGL Committee. National Archives and Records Administration (NARA) and the Government Publishing Office (GPO), Washington, DC, 2004.
    12) AIHA: 2006 Emergency Response Planning Guidelines and Workplace Environmental Exposure Level Guides Handbook, American Industrial Hygiene Association, Fairfax, VA, 2006.
    13) Aceto T Jr, Terplan K, & Fiore RR: Chemical burns of the esophagus in children and glucocorticoid therapy. J Med 1970; 1:101-109.
    14) Adam JS & Brick HG: Pediatric caustic ingestion. Ann Otol Laryngol 1982; 91:656-658.
    15) Alaspaa AO, Kuisma MJ, Hoppu K, et al: Out-of-hospital administration of activated charcoal by emergency medical services. Ann Emerg Med 2005; 45:207-12.
    16) American Conference of Governmental Industrial Hygienists : ACGIH 2010 Threshold Limit Values (TLVs(R)) for Chemical Substances and Physical Agents and Biological Exposure Indices (BEIs(R)), American Conference of Governmental Industrial Hygienists, Cincinnati, OH, 2010.
    17) Anderson KD, Touse TM, & Randolph JG: A controlled trial of corticosteroids in children with corrosive injury of the esophagus. N Engl J Med 1990; 323:637-640.
    18) Artigas A, Bernard GR, Carlet J, et al: The American-European consensus conference on ARDS, part 2: ventilatory, pharmacologic, supportive therapy, study design strategies, and issues related to recovery and remodeling.. Am J Respir Crit Care Med 1998; 157:1332-1347.
    19) Blum J & Coe F: Metabolic acidosis after sulfur ingestion. Med Intell 1977; 297:869-870.
    20) Boukthir S, Fetni I, Mrad SM, et al: [High doses of steroids in the management of caustic esophageal burns in children]. Arch Pediatr 2004; 11(1):13-17.
    21) Brower RG, Matthay AM, & Morris A: Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Eng J Med 2000; 342:1301-1308.
    22) Burgess JL, Kirk M, Borron SW, et al: Emergency department hazardous materials protocol for contaminated patients. Ann Emerg Med 1999; 34(2):205-212.
    23) Caravati EM, Knight HH, & Linscott MS: Esophageal laceration and charcoal mediastinum complicating gastric lavage. J Emerg Med 2001; 20:273-276.
    24) Caravati EM: Alkali. In: Dart RC, ed. Medical Toxicology, Lippincott Williams & Wilkins, Philadelphia, PA, 2004.
    25) Cataletto M: Respiratory Distress Syndrome, Acute(ARDS). In: Domino FJ, ed. The 5-Minute Clinical Consult 2012, 20th ed. Lippincott Williams & Wilkins, Philadelphia, PA, 2012.
    26) Chyka PA, Seger D, Krenzelok EP, et al: Position paper: Single-dose activated charcoal. Clin Toxicol (Phila) 2005; 43(2):61-87.
    27) Cleveland WW, Chandler JR, & Lawson RB: Treatment of caustic burns of the esophagus. JAMA 1963; 186:182-183.
    28) DFG: List of MAK and BAT Values 2002, Report No. 38, Deutsche Forschungsgemeinschaft, Commission for the Investigation of Health Hazards of Chemical Compounds in the Work Area, Wiley-VCH, Weinheim, Federal Republic of Germany, 2002.
    29) Dagnone D, Matsui D, & Rieder MJ: Assessment of the palatability of vehicles for activated charcoal in pediatric volunteers. Pediatr Emerg Care 2002; 18:19-21.
    30) Deichmann WB & Gerarde HW: Toxicology of Drugs and Chemicals, Academic Press, New York, NY, 1969.
    31) EPA: Search results for Toxic Substances Control Act (TSCA) Inventory Chemicals. US Environmental Protection Agency, Substance Registry System, U.S. EPA's Office of Pollution Prevention and Toxics. Washington, DC. 2005. Available from URL: http://www.epa.gov/srs/.
    32) Elliot CG, Colby TV, & Kelly TM: Charcoal lung. Bronchiolitis obliterans after aspiration of activated charcoal. Chest 1989; 96:672-674.
    33) FDA: Federal Register: Proposed rules, 47, US Food & Drug Administration, Rockville, MD, 1982, pp 12551-12552.
    34) FDA: Poison treatment drug product for over-the-counter human use; tentative final monograph. FDA: Fed Register 1985; 50:2244-2262.
    35) Ferguson MK, Migliore M, & Staszak VM: Early evaluation and therapy for caustic esophageal injury. Am J Surg 1989; 157:116-120.
    36) Golej J, Boigner H, Burda G, et al: Severe respiratory failure following charcoal application in a toddler. Resuscitation 2001; 49:315-318.
    37) Gorman RL, Khin-Maung-Gyi MT, & Klein-Schwartz W: Initial symptoms as predictors of esophageal injury in alkaline corrosive ingestions. Am J Emerg Med 1992; 10:89-94.
    38) Gould DH, McAllister MM, & Savage JC: High sulfide concentrations in rumen fluid associated with nutritionally induced polioencephalomalacia in calves. Am J Vet Res 1991; 52:1164-1169.
    39) Graff GR, Stark J, & Berkenbosch JW: Chronic lung disease after activated charcoal aspiration. Pediatrics 2002; 109:959-961.
    40) Greengard H & Woolley JR: Studies on colloidal sulfur-polysulfide mixture. J Biol Chem 1940; 132:83-89.
    41) Guenther Skokan E, Junkins EP, & Corneli HM: Taste test: children rate flavoring agents used with activated charcoal. Arch Pediatr Adolesc Med 2001; 155:683-686.
    42) HSDB : Hazardous Substances Data Bank. National Library of Medicine. Bethesda, MD (Internet Version). Edition expires 2001; provided by Truven Health Analytics Inc., Greenwood Village, CO.
    43) Haas CF: Mechanical ventilation with lung protective strategies: what works?. Crit Care Clin 2011; 27(3):469-486.
    44) Haller JA & Bachman K: The comparative effect of current therapy on experimental caustic burns of the esophagus. Pediatrics 1964; 236-245.
    45) Haller JA, Andrews HG, & White JJ: Pathophysiology and management of acute corrosive burns of the esophagus. J Pediatr Surg 1971; 6:578-584.
    46) Harris CR & Filandrinos D: Accidental administration of activated charcoal into the lung: aspiration by proxy. Ann Emerg Med 1993; 22:1470-1473.
    47) Hawkins DB, Demeter MJ, & Barnett TE: Caustic ingestion: controversies in management. A review of 214 cases. Laryngoscope 1980; 90:98-109.
    48) Hayes WJ Jr: Pesticides Studied in Man, Williams & Wilkins, Baltimore, MD, 1982.
    49) Hodge HC, Maynard EA, & Hawkins DR: Acute and short-term toxicity studies of fused bentonite sulfur preparations. J Am Pharm Assoc 1951; 40:503-509.
    50) Horowitz BZ, Marquardt K, & Swenson E: Calcium polysulfide overdose: a report of two cases. Clin Toxicol 1997; 35:299-303.
    51) Howell JM, Dalsey WC, & Hartsell FW: Steroids for the treatment of corrosive esophageal injury: a statistical analysis of past studies. Am J Emerg Med 1992; 10:421-425.
    52) Howell JM: Alkaline ingestions. Ann Emerg Med 1987; 15:820-825.
    53) IARC Working Group on the Evaluation of Carcinogenic Risks to Humans : IARC Monographs on the Evaluation of Carcinogenic Risks to Humans: 1,3-Butadiene, Ethylene Oxide and Vinyl Halides (Vinyl Fluoride, Vinyl Chloride and Vinyl Bromide), 97, International Agency for Research on Cancer, Lyon, France, 2008.
    54) IARC Working Group on the Evaluation of Carcinogenic Risks to Humans : IARC Monographs on the Evaluation of Carcinogenic Risks to Humans: Formaldehyde, 2-Butoxyethanol and 1-tert-Butoxypropan-2-ol, 88, International Agency for Research on Cancer, Lyon, France, 2006.
    55) IARC Working Group on the Evaluation of Carcinogenic Risks to Humans : IARC Monographs on the Evaluation of Carcinogenic Risks to Humans: Household Use of Solid Fuels and High-temperature Frying, 95, International Agency for Research on Cancer, Lyon, France, 2010a.
    56) IARC Working Group on the Evaluation of Carcinogenic Risks to Humans : IARC Monographs on the Evaluation of Carcinogenic Risks to Humans: Smokeless Tobacco and Some Tobacco-specific N-Nitrosamines, 89, International Agency for Research on Cancer, Lyon, France, 2007.
    57) IARC Working Group on the Evaluation of Carcinogenic Risks to Humans : IARC Monographs on the Evaluation of Carcinogenic Risks to Humans: Some Non-heterocyclic Polycyclic Aromatic Hydrocarbons and Some Related Exposures, 92, International Agency for Research on Cancer, Lyon, France, 2010.
    58) IARC: List of all agents, mixtures and exposures evaluated to date - IARC Monographs: Overall Evaluations of Carcinogenicity to Humans, Volumes 1-88, 1972-PRESENT. World Health Organization, International Agency for Research on Cancer. Lyon, FranceAvailable from URL: http://monographs.iarc.fr/monoeval/crthall.html. As accessed Oct 07, 2004.
    59) International Agency for Research on Cancer (IARC): IARC monographs on the evaluation of carcinogenic risks to humans: list of classifications, volumes 1-116. International Agency for Research on Cancer (IARC). Lyon, France. 2016. Available from URL: http://monographs.iarc.fr/ENG/Classification/latest_classif.php. As accessed 2016-08-24.
    60) International Agency for Research on Cancer: IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. World Health Organization. Geneva, Switzerland. 2015. Available from URL: http://monographs.iarc.fr/ENG/Classification/. As accessed 2015-08-06.
    61) Knox WG, Scott JR, & Zintel HA: Bouginage and steroids used singly or in combination in experimental corrosive esophagitis. Ann Surg 1967; 166:930-941.
    62) Kollef MH & Schuster DP: The acute respiratory distress syndrome. N Engl J Med 1995; 332:27-37.
    63) Kraut JA & Madias NE: Metabolic acidosis: pathophysiology, diagnosis and management. Nat Rev Nephrol 2010; 6(5):274-285.
    64) Lin AN, Reimer RJ, & Carter DM: Sulfur revisited. J Am Acad Dermatol 1988; 18:553-558.
    65) LoVecchio F, Hamilton R, & Sturman K: A meta-analysis of the use of steroids in the prevention of stricture formation from second degree caustic burns of the esophagus (abstract). J Toxicol-Clin Toxicol 1996; 35:579-580.
    66) Maddy KT & Edmiston S: Selected incidents of illnesses and injuries related to exposure to pesticides reported by physicians in California in 1986. Vet Hum Toxicol 1988; 30:246-254.
    67) Marshall F II: Caustic burns of the esophagus: ten year results of aggressive care. South Med J 1979; 72:1236-1237.
    68) Moazam F, Talbert JL, & Miller D: Caustic ingestion and its sequelae in children. South Med J 1987; 80:187-188.
    69) NFPA: Fire Protection Guide to Hazardous Materials, 13th ed., National Fire Protection Association, Quincy, MA, 2002.
    70) NHLBI ARDS Network: Mechanical ventilation protocol summary. Massachusetts General Hospital. Boston, MA. 2008. Available from URL: http://www.ardsnet.org/system/files/6mlcardsmall_2008update_final_JULY2008.pdf. As accessed 2013-08-07.
    71) NRC: Acute Exposure Guideline Levels for Selected Airborne Chemicals - Volume 1, Subcommittee on Acute Exposure Guideline Levels, Committee on Toxicology, Board on Environmental Studies and Toxicology, Commission of Life Sciences, National Research Council. National Academy Press, Washington, DC, 2001.
    72) NRC: Acute Exposure Guideline Levels for Selected Airborne Chemicals - Volume 2, Subcommittee on Acute Exposure Guideline Levels, Committee on Toxicology, Board on Environmental Studies and Toxicology, Commission of Life Sciences, National Research Council. National Academy Press, Washington, DC, 2002.
    73) NRC: Acute Exposure Guideline Levels for Selected Airborne Chemicals - Volume 3, Subcommittee on Acute Exposure Guideline Levels, Committee on Toxicology, Board on Environmental Studies and Toxicology, Commission of Life Sciences, National Research Council. National Academy Press, Washington, DC, 2003.
    74) NRC: Acute Exposure Guideline Levels for Selected Airborne Chemicals - Volume 4, Subcommittee on Acute Exposure Guideline Levels, Committee on Toxicology, Board on Environmental Studies and Toxicology, Commission of Life Sciences, National Research Council. National Academy Press, Washington, DC, 2004.
    75) Naradzay J & Barish RA: Approach to ophthalmologic emergencies. Med Clin North Am 2006; 90(2):305-328.
    76) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for 1,2,3-Trimethylbenzene (Proposed). United States Environmental Protection Agency. Washington, DC. 2006k. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d68a&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    77) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for 1,2,4-Trimethylbenzene (Proposed). United States Environmental Protection Agency. Washington, DC. 2006m. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d68a&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    78) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for 1,2-Butylene Oxide (Proposed). United States Environmental Protection Agency. Washington, DC. 2008d. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648083cdbb&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    79) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for 1,2-Dibromoethane (Proposed). United States Environmental Protection Agency. Washington, DC. 2007g. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064802796db&disposition=attachment&contentType=pdf. As accessed 2010-08-18.
    80) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for 1,3,5-Trimethylbenzene (Proposed). United States Environmental Protection Agency. Washington, DC. 2006l. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d68a&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    81) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for 2-Ethylhexyl Chloroformate (Proposed). United States Environmental Protection Agency. Washington, DC. 2007b. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648037904e&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    82) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Acrylonitrile (Proposed). United States Environmental Protection Agency. Washington, DC. 2007c. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648028e6a3&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    83) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Adamsite (Proposed). United States Environmental Protection Agency. Washington, DC. 2007h. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020fd29&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    84) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Agent BZ (3-quinuclidinyl benzilate) (Proposed). United States Environmental Protection Agency. Washington, DC. 2007f. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064803ad507&disposition=attachment&contentType=pdf. As accessed 2010-08-18.
    85) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Allyl Chloride (Proposed). United States Environmental Protection Agency. Washington, DC. 2008. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648039d9ee&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    86) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Aluminum Phosphide (Proposed). United States Environmental Protection Agency. Washington, DC. 2005b. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c5ed&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    87) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Arsenic Trioxide (Proposed). United States Environmental Protection Agency. Washington, DC. 2007m. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480220305&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    88) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Automotive Gasoline Unleaded (Proposed). United States Environmental Protection Agency. Washington, DC. 2009a. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a7cc17&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    89) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Biphenyl (Proposed). United States Environmental Protection Agency. Washington, DC. 2005j. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064801ea1b7&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    90) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Bis-Chloromethyl Ether (BCME) (Proposed). United States Environmental Protection Agency. Washington, DC. 2006n. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648022db11&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    91) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Boron Tribromide (Proposed). United States Environmental Protection Agency. Washington, DC. 2008a. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064803ae1d3&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    92) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Bromine Chloride (Proposed). United States Environmental Protection Agency. Washington, DC. 2007d. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648039732a&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    93) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Bromoacetone (Proposed). United States Environmental Protection Agency. Washington, DC. 2008e. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064809187bf&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    94) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Calcium Phosphide (Proposed). United States Environmental Protection Agency. Washington, DC. 2005d. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c5ed&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    95) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Carbonyl Fluoride (Proposed). United States Environmental Protection Agency. Washington, DC. 2008b. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064803ae328&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    96) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Carbonyl Sulfide (Proposed). United States Environmental Protection Agency. Washington, DC. 2007e. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648037ff26&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    97) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Chlorobenzene (Proposed). United States Environmental Protection Agency. Washington, DC. 2008c. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064803a52bb&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    98) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Cyanogen (Proposed). United States Environmental Protection Agency. Washington, DC. 2008f. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064809187fe&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    99) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Dimethyl Phosphite (Proposed). United States Environmental Protection Agency. Washington, DC. 2009. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a7cbf3&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    100) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Diphenylchloroarsine (Proposed). United States Environmental Protection Agency. Washington, DC. 2007l. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020fd29&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    101) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Ethyl Isocyanate (Proposed). United States Environmental Protection Agency. Washington, DC. 2008h. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648091884e&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    102) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Ethyl Phosphorodichloridate (Proposed). United States Environmental Protection Agency. Washington, DC. 2008i. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480920347&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    103) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Ethylbenzene (Proposed). United States Environmental Protection Agency. Washington, DC. 2008g. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064809203e7&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    104) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Ethyldichloroarsine (Proposed). United States Environmental Protection Agency. Washington, DC. 2007j. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020fd29&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    105) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Germane (Proposed). United States Environmental Protection Agency. Washington, DC. 2008j. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480963906&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    106) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Hexafluoropropylene (Proposed). United States Environmental Protection Agency. Washington, DC. 2006. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064801ea1f5&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    107) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Ketene (Proposed). United States Environmental Protection Agency. Washington, DC. 2007. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020ee7c&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    108) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Magnesium Aluminum Phosphide (Proposed). United States Environmental Protection Agency. Washington, DC. 2005h. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c5ed&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    109) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Magnesium Phosphide (Proposed). United States Environmental Protection Agency. Washington, DC. 2005g. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c5ed&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    110) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Malathion (Proposed). United States Environmental Protection Agency. Washington, DC. 2009k. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064809639df&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    111) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Mercury Vapor (Proposed). United States Environmental Protection Agency. Washington, DC. 2009b. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a8a087&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    112) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Methyl Isothiocyanate (Proposed). United States Environmental Protection Agency. Washington, DC. 2008k. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480963a03&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    113) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Methyl Parathion (Proposed). United States Environmental Protection Agency. Washington, DC. 2008l. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480963a57&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    114) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Methyl tertiary-butyl ether (Proposed). United States Environmental Protection Agency. Washington, DC. 2007a. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064802a4985&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    115) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Methylchlorosilane (Proposed). United States Environmental Protection Agency. Washington, DC. 2005. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c5f4&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    116) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Methyldichloroarsine (Proposed). United States Environmental Protection Agency. Washington, DC. 2007i. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020fd29&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    117) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Methyldichlorosilane (Proposed). United States Environmental Protection Agency. Washington, DC. 2005a. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c646&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    118) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Nitrogen Mustard (HN1 CAS Reg. No. 538-07-8) (Proposed). United States Environmental Protection Agency. Washington, DC. 2006a. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d6cb&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    119) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Nitrogen Mustard (HN2 CAS Reg. No. 51-75-2) (Proposed). United States Environmental Protection Agency. Washington, DC. 2006b. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d6cb&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    120) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Nitrogen Mustard (HN3 CAS Reg. No. 555-77-1) (Proposed). United States Environmental Protection Agency. Washington, DC. 2006c. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d6cb&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    121) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Nitrogen Tetroxide (Proposed). United States Environmental Protection Agency. Washington, DC. 2008n. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648091855b&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    122) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Nitrogen Trifluoride (Proposed). United States Environmental Protection Agency. Washington, DC. 2009l. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480963e0c&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    123) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Parathion (Proposed). United States Environmental Protection Agency. Washington, DC. 2008o. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480963e32&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    124) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Perchloryl Fluoride (Proposed). United States Environmental Protection Agency. Washington, DC. 2009c. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a7e268&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    125) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Perfluoroisobutylene (Proposed). United States Environmental Protection Agency. Washington, DC. 2009d. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a7e26a&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    126) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Phenyl Isocyanate (Proposed). United States Environmental Protection Agency. Washington, DC. 2008p. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648096dd58&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    127) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Phenyl Mercaptan (Proposed). United States Environmental Protection Agency. Washington, DC. 2006d. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020cc0c&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    128) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Phenyldichloroarsine (Proposed). United States Environmental Protection Agency. Washington, DC. 2007k. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020fd29&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    129) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Phorate (Proposed). United States Environmental Protection Agency. Washington, DC. 2008q. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648096dcc8&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    130) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Phosgene (Draft-Revised). United States Environmental Protection Agency. Washington, DC. 2009e. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a8a08a&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    131) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Phosgene Oxime (Proposed). United States Environmental Protection Agency. Washington, DC. 2009f. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a7e26d&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    132) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Potassium Cyanide (Proposed). United States Environmental Protection Agency. Washington, DC. 2009g. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a7cbb9&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    133) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Potassium Phosphide (Proposed). United States Environmental Protection Agency. Washington, DC. 2005c. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c5ed&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    134) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Propargyl Alcohol (Proposed). United States Environmental Protection Agency. Washington, DC. 2006e. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020ec91&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    135) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Selenium Hexafluoride (Proposed). United States Environmental Protection Agency. Washington, DC. 2006f. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020ec55&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    136) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Silane (Proposed). United States Environmental Protection Agency. Washington, DC. 2006g. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d523&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    137) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Sodium Cyanide (Proposed). United States Environmental Protection Agency. Washington, DC. 2009h. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a7cbb9&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    138) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Sodium Phosphide (Proposed). United States Environmental Protection Agency. Washington, DC. 2005i. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c5ed&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    139) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Strontium Phosphide (Proposed). United States Environmental Protection Agency. Washington, DC. 2005f. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c5ed&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    140) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Sulfuryl Chloride (Proposed). United States Environmental Protection Agency. Washington, DC. 2006h. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020ec7a&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    141) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Tear Gas (Proposed). United States Environmental Protection Agency. Washington, DC. 2008s. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648096e551&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    142) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Tellurium Hexafluoride (Proposed). United States Environmental Protection Agency. Washington, DC. 2009i. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a7e2a1&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    143) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Tert-Octyl Mercaptan (Proposed). United States Environmental Protection Agency. Washington, DC. 2008r. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648096e5c7&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    144) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Tetramethoxysilane (Proposed). United States Environmental Protection Agency. Washington, DC. 2006j. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d632&disposition=attachment&contentType=pdf. As accessed 2010-08-17.
    145) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Trimethoxysilane (Proposed). United States Environmental Protection Agency. Washington, DC. 2006i. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d632&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    146) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Trimethyl Phosphite (Proposed). United States Environmental Protection Agency. Washington, DC. 2009j. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a7d608&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    147) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Trimethylacetyl Chloride (Proposed). United States Environmental Protection Agency. Washington, DC. 2008t. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648096e5cc&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    148) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Zinc Phosphide (Proposed). United States Environmental Protection Agency. Washington, DC. 2005e. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c5ed&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    149) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for n-Butyl Isocyanate (Proposed). United States Environmental Protection Agency. Washington, DC. 2008m. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064808f9591&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    150) National Heart,Lung,and Blood Institute: Expert panel report 3: guidelines for the diagnosis and management of asthma. National Heart,Lung,and Blood Institute. Bethesda, MD. 2007. Available from URL: http://www.nhlbi.nih.gov/guidelines/asthma/asthgdln.pdf.
    151) National Institute for Occupational Safety and Health: NIOSH Pocket Guide to Chemical Hazards, U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, Cincinnati, OH, 2007.
    152) National Research Council : Acute exposure guideline levels for selected airborne chemicals, 5, National Academies Press, Washington, DC, 2007.
    153) National Research Council: Acute exposure guideline levels for selected airborne chemicals, 6, National Academies Press, Washington, DC, 2008.
    154) National Research Council: Acute exposure guideline levels for selected airborne chemicals, 7, National Academies Press, Washington, DC, 2009.
    155) National Research Council: Acute exposure guideline levels for selected airborne chemicals, 8, National Academies Press, Washington, DC, 2010.
    156) None Listed: Position paper: cathartics. J Toxicol Clin Toxicol 2004; 42(3):243-253.
    157) Nuutinen M, Uhari M, & Karvali T: Consequences of caustic ingestions in children. Acta Paediatr 1994; 83:1200-1205.
    158) Oakes DD, Sherck JP, & Mark JBD: Lye ingestion. J Thorac Cardiovasc Surg 1982; 83:194-204.
    159) Peate WF: Work-related eye injuries and illnesses. Am Fam Physician 2007; 75(7):1017-1022.
    160) Pelclova D & Navratil T: Do corticosteroids prevent oesophageal stricture after corrosive ingestion?. Toxicol Rev 2005; 24(2):125-129.
    161) Pollack MM, Dunbar BS, & Holbrook PR: Aspiration of activated charcoal and gastric contents. Ann Emerg Med 1981; 10:528-529.
    162) Previtera C, Giusti F, & Gugliemi M: Predictive value of visible lesions (cheeks, lips, oropharynx) in suspected caustic ingestion: may endoscopy reasonably be omitted in completely negative pediatric patients?. Pediatr Emerg Care 1990; 6:176-178.
    163) Rau NR, Nagaraj MV, Prakash PS, et al: Fatal pulmonary aspiration of oral activated charcoal. Br Med J 1988; 297:918-919.
    164) Reyes HM, Lin CY, & Schluhk FF: Experimental treatment of corrosive esophageal burns. J Pediatr Surg 1974; 9:317-327.
    165) Rosenberg N, Kunderman PJ, & Vroman L: Prevention of experimental esophageal stricture by cortisone II. Arch Surg 1953; 66:593-598.
    166) S Sweetman : Martindale: The Complete Drug Reference. London: Pharmaceutical Press. Electronic version. The Pharmaceutical Press. London, UK (Internet Version). Edition expires 2001; provided by Truven Health Analytics Inc., Greenwood Village, CO.
    167) Saedi S, Nyhus LM, & Gabrys BF: Pharmacological prevention of esophageal stricture: an experimental study in the cat. Am Surg 1973a; 39:465-469.
    168) Saedi S, Nyhust LM, & Gabrys BF: Pharmacological prevention of esophageal stricture: an experimental study in the cat. Am Surg 1973; 39:465-469.
    169) Schild JA: Caustic ingestion in adult patients. Laryngoscope 1985; 95:1199-1201.
    170) Schwartz SM, Carroll HM, & Scharschmidt LA: Sublimed (inorganic) sulfur ingestion: a cause of life-threatening metabolic acidosis with a high anion gap. Arch Intern Med 1986; 146:1437-1438.
    171) Spiller HA & Rogers GC: Evaluation of administration of activated charcoal in the home. Pediatrics 2002; 108:E100.
    172) Stolbach A & Hoffman RS: Respiratory Principles. In: Nelson LS, Hoffman RS, Lewin NA, et al, eds. Goldfrank's Toxicologic Emergencies, 9th ed. McGraw Hill Medical, New York, NY, 2011.
    173) Sugawa C & Lucas CE: Caustic injury of the upper gastrointestinal tract in adults: a clinical and endoscopic study. Surgery 1989; 106:802-807.
    174) Thakore S & Murphy N: The potential role of prehospital administration of activated charcoal. Emerg Med J 2002; 19:63-65.
    175) U.S. Department of Energy, Office of Emergency Management: Protective Action Criteria (PAC) with AEGLs, ERPGs, & TEELs: Rev. 26 for chemicals of concern. U.S. Department of Energy, Office of Emergency Management. Washington, DC. 2010. Available from URL: http://www.hss.doe.gov/HealthSafety/WSHP/Chem_Safety/teel.html. As accessed 2011-06-27.
    176) U.S. Department of Health and Human Services, Public Health Service, National Toxicology Project : 11th Report on Carcinogens. U.S. Department of Health and Human Services, Public Health Service, National Toxicology Program. Washington, DC. 2005. Available from URL: http://ntp.niehs.nih.gov/INDEXA5E1.HTM?objectid=32BA9724-F1F6-975E-7FCE50709CB4C932. As accessed 2011-06-27.
    177) U.S. Environmental Protection Agency: Discarded commercial chemical products, off-specification species, container residues, and spill residues thereof. Environmental Protection Agency's (EPA) Resource Conservation and Recovery Act (RCRA); List of hazardous substances and reportable quantities 2010b; 40CFR(261.33, e-f):77-.
    178) U.S. Environmental Protection Agency: Integrated Risk Information System (IRIS). U.S. Environmental Protection Agency. Washington, DC. 2011. Available from URL: http://cfpub.epa.gov/ncea/iris/index.cfm?fuseaction=iris.showSubstanceList&list_type=date. As accessed 2011-06-21.
    179) U.S. Environmental Protection Agency: List of Radionuclides. U.S. Environmental Protection Agency. Washington, DC. 2010a. Available from URL: http://www.gpo.gov/fdsys/pkg/CFR-2010-title40-vol27/pdf/CFR-2010-title40-vol27-sec302-4.pdf. As accessed 2011-06-17.
    180) U.S. Environmental Protection Agency: List of hazardous substances and reportable quantities. U.S. Environmental Protection Agency. Washington, DC. 2010. Available from URL: http://www.gpo.gov/fdsys/pkg/CFR-2010-title40-vol27/pdf/CFR-2010-title40-vol27-sec302-4.pdf. As accessed 2011-06-17.
    181) U.S. Environmental Protection Agency: The list of extremely hazardous substances and their threshold planning quantities (CAS Number Order). U.S. Environmental Protection Agency. Washington, DC. 2010c. Available from URL: http://www.gpo.gov/fdsys/pkg/CFR-2010-title40-vol27/pdf/CFR-2010-title40-vol27-part355.pdf. As accessed 2011-06-17.
    182) U.S. Occupational Safety and Health Administration: Part 1910 - Occupational safety and health standards (continued) Occupational Safety, and Health Administration's (OSHA) list of highly hazardous chemicals, toxics and reactives. Subpart Z - toxic and hazardous substances. CFR 2010 2010; Vol6(SEC1910):7-.
    183) U.S. Occupational Safety, and Health Administration (OSHA): Process safety management of highly hazardous chemicals. 29 CFR 2010 2010; 29(1910.119):348-.
    184) Ungaro-Mancusi HR & Blackwell SJ: Care of burns from molten sulfur. J Burn Care Rehab 1983; 280-281.
    185) United States Environmental Protection Agency Office of Pollution Prevention and Toxics: Acute Exposure Guideline Levels (AEGLs) for Vinyl Acetate (Proposed). United States Environmental Protection Agency. Washington, DC. 2006. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d6af&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    186) Vale JA, Kulig K, American Academy of Clinical Toxicology, et al: Position paper: Gastric lavage. J Toxicol Clin Toxicol 2004; 42:933-943.
    187) Vale JA: Position Statement: gastric lavage. American Academy of Clinical Toxicology; European Association of Poisons Centres and Clinical Toxicologists. J Toxicol Clin Toxicol 1997; 35:711-719.
    188) Vergauwen P, Moulin D, & Buts JP: Caustic burns of the upper digestive and respiratory tracts. Eur J Pediatr 1991; 150:700-703.
    189) Willson DF, Truwit JD, Conaway MR, et al: The adult calfactant in acute respiratory distress syndrome (CARDS) trial. Chest 2015; 148(2):356-364.
    190) Wilson DF, Thomas NJ, Markovitz BP, et al: Effect of exogenous surfactant (calfactant) in pediatric acute lung injury. A randomized controlled trial. JAMA 2005; 293:470-476.
    191) Yarington CT & Heatly CA: Steroids, antibiotics, and early esophagoscopy in caustic esophageal trauma. N Y State J Med 1963; 63:2960-2963.
    192) Zargar SA, Kochhar R, & Mehta S: The role of fiberoptic endoscopy in the management of corrosive ingestion and modified endoscopic classification of burns. Gastrointest Endosc 1991; 37:165-169.
    193) Zargar SA, Kochhar R, & Nagi B: Ingestion of corrosive acids: spectrum of injury to upper gastrointestinal tract and natural history. Gastroenterology 1989; 97:702-707.