SOMAN
HAZARDTEXT ®
Information to help in the initial response for evaluating chemical incidents
-IDENTIFICATION
SYNONYMS
AGENT GD 2-BUTANOL, 3,3-DIMETHYL-, METHYLPHOSPHONOFLUORIDATE CCRIS 3417 3,3-DIMETHYL-2-BUTANOL METHYLPHOSPHONOFLUORIDATE 3,3-DIMETHYL-N-BUT-2-YL METHYLPHOSPHONOFLUORIDATE 3,3 DIMETHYL-N-BUT-2-YL METHYLPHOSPHONOFLURIDATE 3,3-DIMETHYL-2-BUTYL METHYLPHOSPHONOFLUORIDATE EA 1210 FLUOROMETHYLPINACOLYLOXYPHOSPHINE FLUOROMETHYL(1,2,2-TRIMETHYLPROPOXY)PHOSPHINE OXIDE GD 1-METHYL-2,2-DIMETHYLPROPYLMETHYLPHOSPHONOFLUORIDATE METHYLFLUOROPINACOLYLPHOSPHONATE METHYLFLUORPHOSPHOSAEUREPINAKOLYESTER (GERMAN) METHYLPHOSPHONOFLUORIDIC ACID, 3,3-DIMETHYL-2-BUTYL ESTER METHYLPHOSPHONOFLUORIDIC ACID 1,2,2-TRIMETHYLPROPYL ESTER METHYLPINACOLYLOXYFLUOROPHOSPHINE OXIDE METHYLPINACOLYLOXYPHOSPHONYL FLUORIDE METHYL PINACOLYLOXY PHOSPHORYLFLUORIDE METHYL PINACOLYL PHOSPHONOFLUORIDATE PFMP PHOSPHINE OXIDE, FLUOROMETHYL(1,2,2-TRIMETHYLPROPOXY)- PHOSPHONOFLUORIDIC ACID, METHYL-,1,2,2-TRIMETHYLPROPYL ESTER PINACOLOXYMETHYLPHOSPHORYL FLUORIDE PINACOLYL METHANEFLUOROPHOSPHONATE PINACOLYLOXYMETHYLPHOSPHONYL FLUORIDE PINACOLYL METHYLFLUOROPHOSPHONATE PINACOLYL METHYLPHOSPHONOFLUORIDATE PINACOLYL METHYLPHOSPHONOFLUORIDE PINACOLYL METHYLPHOSPHONEFLUORIDIDATE PINACOLYLOXY METHYLPHOSPHORYL FLUORIDE o-PINALCOLYL METHYLPHOSPHONOFLUORIDATE PMFP PYNACOLYL METHYLFLUOROPHOSPHONATE SOMAN T.2107 1,2,2-TRIMETHYLPROPOXYFLUOROMETHYLPHOSPHINE OXIDE 1, 2,2-TRIMETHYLPROPYLESTER KYSELINY METHYLFLUORFOSFONOVE (CZECH) 1,2,2-TRIMETHYLPROPYL METHYLPHOSPHONOFLUORIDATE O-1,2,2-TRIMETHYLPROPYL METHYLPHOSPHONOFLUORIDATE ZOMAN
IDENTIFIERS
SYNONYM REFERENCE
- (HSDB , 2001; Lewis, 1998; Lewis, 2000; (NAP, 1996); RTECS , 2001; SBCCOM , 2001)
USES/FORMS/SOURCES
Soman "is one of a class of volatile, liquid anticholinesterases used as warfare agents. Soman reacts irreversibly with the cholinesterase, permitting an accumulation of acetylcholine at nerve endings that can be fatal" (Lewis, 1998).
Soman is a colorless liquid and has a fruity odor when it is pure. The industrial product contains impurities, is a yellow-brown, and has a camphor-like odor. It gives off a colorless vapor (MTS , 2001; USACHPPM , 2001).
Germany developed nerve agents prior to and during World War II, but it has never been used in combat. The Soviet Union also produced and stockpiled the agent during the cold war. It is not part of the United States military stockpile, and therefore is probably available only in research quantities. Survey reports reveal Dugway Proving Ground may have limited quantities (MTS , 2001; Munro et al, 1999a; (Tate, 2001)).
-CLINICAL EFFECTS
GENERAL CLINICAL EFFECTS
- Soman is a nerve gas. It is a typical cholinesterase inhibitor with an especially rapid onset of action. On a weight basis it is less potent than VX, but more potent than sarin or tabun. It can be hazardous by any route of exposure.
- Soman poisoning is characterized by rapid aging and slow reactivation of cholinesterase, CNS effects, and possible direct toxicity other than anticholinergic effects.
- Three drugs are generally used to treat nerve agent (Soman) or organophosphate poisoning: atropine, pralidoxime chloride and diazepam. Atropine is effective in controlling cholinergic effects. Pralidoxime Chloride (2-PAM Chloride, 2-PAM, PROTOPAM) is a cholinesterase reactivator. Diazepam appears to play a critical role in the control of CNS effects. Because Soman rapidly binds and irreversibly deactivates acetylcholinesterase, begin antidote therapy as soon as possible in symptomatic patients.
- The following are symptoms from organophosphates in general, which are due to the anticholinesterase activity of this class of compounds. All of these effects may not be documented for soman, but could potentially occur in individual cases.
- MUSCARINIC (PARASYMPATHETIC) EFFECTS may include bradycardia, bronchospasm, bronchorrhea, salivation, lacrimation, diaphoresis, vomiting, diarrhea, and miosis.
- NICOTINIC (SYMPATHETIC AND MOTOR) EFFECTS may include tachycardia, hypertension, fasciculations, muscle cramps, weakness, and RESPIRATORY PARALYSIS.
- CENTRAL EFFECTS may include CNS depression, agitation, confusion, psychosis, delirium, coma, and seizures. CNS effects may be slowly reversible or irreversible.
- POTENTIAL HEALTH HAZARDS - EMERGENCY RESPONSE GUIDEBOOK, GUIDE 153 (ERG, 2004)
TOXIC; inhalation, ingestion or skin contact with material may cause severe injury or death. Contact with molten substance may cause severe burns to skin and eyes. Avoid any skin contact. Effects of contact or inhalation may be delayed. Fire may produce irritating, corrosive and/or toxic gases. Runoff from fire control or dilution water may be corrosive and/or toxic and cause pollution.
-MEDICAL TREATMENT
LIFE SUPPORT
- Support respiratory and cardiovascular function.
SUMMARY
- FIRST AID - EMERGENCY RESPONSE GUIDEBOOK, GUIDE 153 (ERG, 2004)
Move victim to fresh air. Call 911 or emergency medical service. Give artificial respiration if victim is not breathing. Do not use mouth-to-mouth method if victim ingested or inhaled the substance; give artificial respiration with the aid of a pocket mask equipped with a one-way valve or other proper respiratory medical device. Administer oxygen if breathing is difficult. Remove and isolate contaminated clothing and shoes. In case of contact with substance, immediately flush skin or eyes with running water for at least 20 minutes. For minor skin contact, avoid spreading material on unaffected skin. Keep victim warm and quiet. Effects of exposure (inhalation, ingestion or skin contact) to substance may be delayed. Ensure that medical personnel are aware of the material(s) involved and take precautions to protect themselves.
SUMMARY The following information is for Organophosphate Compounds in general. Severe toxicity may develop rapidly following exposure or may be delayed by 12 hours or more. Rapid removal from toxic environments, decontamination procedures, and specific therapy if required are essential. First responders, emergency medical, and emergency department personnel should take proper precautions (wear rubber gowns, rubber aprons, rubber gloves, etc) when treating patients with organophosphate poisoning to avoid contamination. Emesis containing organophosphates should be placed in closed impervious containers for proper disposal.
INHALATION EXPOSURE INHALATION: Move patient to fresh air. Monitor for respiratory distress. If cough or difficulty breathing develops, evaluate for respiratory tract irritation, bronchitis, or pneumonitis. Administer oxygen and assist ventilation as required. Treat bronchospasm with an inhaled beta2-adrenergic agonist. Consider systemic corticosteroids in patients with significant bronchospasm. If respiratory tract irritation or respiratory depression is evident, monitor arterial blood gases, chest x-ray, and pulmonary function tests. Carefully observe patients with inhalation exposure for the development of any systemic signs or symptoms and administer symptomatic treatment as necessary.
DERMAL EXPOSURE Systemic effects can occur from dermal exposure to organophosphates. DECONTAMINATION: Remove contaminated clothing and jewelry and place them in plastic bags. Wash exposed areas with soap and water for 10 to 15 minutes with gentle sponging to avoid skin breakdown. A physician may need to examine the area if irritation or pain persists (Burgess et al, 1999). Some chemicals can produce systemic poisoning by absorption through intact skin. Carefully observe patients with dermal exposure for the development of any systemic signs or symptoms and administer symptomatic treatment as necessary. The US military is currently using the M291 Skin Decontamination Kit, which is though to be the best universal dry skin decontamination kit. This kit is replacing the M258A1 kit. A 0.5% hypochlorite solution may also be used for skin decontamination and is the most effective liquid decontamination solution. The M291 contains applicator pads impregnated with AMBERGARD 555 ion-exchange resin, which leaves a black residue mapping areas that have been decontaminated. To be effective, self-decontamination should be done within the first minute or two after the exposure. Nerve agent skin decontamination within 1 minute after contamination is ten times more effective than if delayed 5 minutes.
EYE EXPOSURE DECONTAMINATION: Remove contact lenses and irrigate exposed eyes with copious amounts of room temperature 0.9% saline or water for at least 15 minutes. If irritation, pain, swelling, lacrimation, or photophobia persist after 15 minutes of irrigation, the patient should be seen in a healthcare facility. Patients symptomatic following exposure should be observed in a controlled setting until all signs and symptoms have fully resolved.
ORAL/PARENTERAL EXPOSURE Inducing emesis is contraindicated because of possible early onset of respiratory depression and seizures. PREHOSPITAL ACTIVATED CHARCOAL ADMINISTRATION Consider prehospital administration of activated charcoal as an aqueous slurry in patients with a potentially toxic ingestion who are awake and able to protect their airway. Activated charcoal is most effective when administered within one hour of ingestion. Administration in the prehospital setting has the potential to significantly decrease the time from toxin ingestion to activated charcoal administration, although it has not been shown to affect outcome (Alaspaa et al, 2005; Thakore & Murphy, 2002; Spiller & Rogers, 2002). In patients who are at risk for the abrupt onset of seizures or mental status depression, activated charcoal should not be administered in the prehospital setting, due to the risk of aspiration in the event of spontaneous emesis. The addition of flavoring agents (cola drinks, chocolate milk, cherry syrup) to activated charcoal improves the palatability for children and may facilitate successful administration (Guenther Skokan et al, 2001; Dagnone et al, 2002).
ACTIVATED CHARCOAL: Administer charcoal as a slurry (240 mL water/30 g charcoal). Usual dose: 25 to 100 g in adults/adolescents, 25 to 50 g in children (1 to 12 years), and 1 g/kg in infants less than 1 year old. Suction oral secretions. ANTIDOTES Pralidoxime may not be effective against soman poisoning, because of the rapid aging of the cholinesterase enzyme. The experimental oxime HI-6 has been well tolerated in humans at doses of 250 to 500 mg given IM, and shows promise as a more effective oxime treatment for poisoning by soman, sarin, and VX. Multiple treatments may be necessary. SEIZURES: Administer a benzodiazepine; DIAZEPAM (ADULT: 5 to 10 mg IV initially; repeat every 5 to 20 minutes as needed. CHILD: 0.1 to 0.5 mg/kg IV over 2 to 5 minutes; up to a maximum of 10 mg/dose. May repeat dose every 5 to 10 minutes as needed) or LORAZEPAM (ADULT: 2 to 4 mg IV initially; repeat every 5 to 10 minutes as needed, if seizures persist. CHILD: 0.05 to 0.1 mg/kg IV over 2 to 5 minutes, up to a maximum of 4 mg/dose; may repeat in 5 to 15 minutes as needed, if seizures continue). Consider phenobarbital or propofol if seizures recur after diazepam 30 mg (adults) or 10 mg (children greater than 5 years). Monitor for hypotension, dysrhythmias, respiratory depression, and need for endotracheal intubation. Evaluate for hypoglycemia, electrolyte disturbances, and hypoxia.
ACUTE LUNG INJURY: Maintain ventilation and oxygenation and evaluate with frequent arterial blood gases and/or pulse oximetry monitoring. Early use of PEEP and mechanical ventilation may be needed. HYPOTENSION: Infuse 10 to 20 mL/kg isotonic fluid. If hypotension persists, administer dopamine (5 to 20 mcg/kg/min) or norepinephrine (ADULT: begin infusion at 0.5 to 1 mcg/min; CHILD: begin infusion at 0.1 mcg/kg/min); titrate to desired response. CONTRAINDICATIONS: Succinylcholine and other cholinergic agents are contraindicated. AUTOINJECTORS INDICATION: Atropine-containing autoinjectors are used for the initial treatment of poisoning by organophosphate nerve agents and organophosphate or carbamate insecticides (Prod Info DuoDote(R) intramuscular injection solution, 2011; Prod Info ATROPEN(R) IM injection, 2005). Pralidoxime use following carbamate exposure may not be indicated. NOTE: The safety and efficacy of MARK I kit (Note: the MARK I autoinjector kit was last produced by Meridian Medical Technologies, Columbia, MD in 2008. This product may still be available in some locations.), ATNAA, or DuoDote(R) has not been established in children. All of these autoinjectors contain benzyl alcohol as a preservative (Prod Info DuoDote(R) intramuscular injection solution, 2011; Prod Info ATNAA ANTIDOTE TREATMENT – NERVE AGENT, AUTO-INJECTOR intramuscular injection solution, 2002). Since the AtroPen(R) comes in different strengths, certain dose units have been approved for use in children (Prod Info ATROPEN(R) IM injection, 2005). The AtroPen(R) autoinjector (atropine sulfate; Meridian Medical Technologies, Inc, Columbia, MD) delivers a dose of atropine in a self-contained unit. There are 4 AtroPen(R) strengths: AtroPen(R) 0.25 mg in 0.3 mL of solution (dispenses 0.21 mg of atropine base; equivalent to 0.25 mg of atropine sulfate), AtroPen(R) 0.5 mg in 0.7 mL of solution (dispenses 0.42 mg of atropine base; equivalent to 0.5 mg of atropine sulfate), Atropen(R) 1 mg in 0.7 mL of solution (dispenses 0.84 mg of atropine base; equivalent to 1 mg of atropine sulfate), and AtroPen(R) 2 mg in 0.7 mL of solution (dispenses 1.67 mg of atropine base; equivalent to 2 mg of atropine sulfate) (Prod Info ATROPEN(R) IM injection, 2005). AtroPen(R): DOSE: ADULT AND CHILDREN OVER 10 YEARS OF AGE: Mild symptoms, in cases where exposure is known or suspected: Inject one 2 mg AtroPen(R) (green pen) into the outer thigh as soon as symptoms appear; pralidoxime chloride may also be required. Severe symptoms: Inject one 2 mg AtroPen(R) (green pen) into the outer thigh as soon as symptoms appear, administer 2 additional 2 mg AtroPen(R) doses in rapid succession 10 min after receiving the first dose; pralidoxime chloride and/or an anticonvulsant may also be required, patients should be closely monitored for at least 48 to 72 hr. PEDIATRIC: Mild symptoms, in cases where exposure is known or suspected: dose for infants less than 7 kg (generally less than 6 months of age) = 0.25 mg (yellow pen), dose for children 7 to 18 kg (generally 6 months to 4 years of age) = 0.5 mg (blue pen), dose for children 18 to 41 kg (generally 4 to 10 years of age) = 1 mg (dark red pen), dose for children over 41 kg = 2 mg (green pen): inject one AtroPen(R) into the outer thigh as soon as symptoms appear; pralidoxime chloride may also be required. Severe symptoms: Administer 2 additional AtroPen(R) doses (see above) in rapid succession 10 min after receiving the first dose; pralidoxime chloride and/or an anticonvulsant may also be required, patients should be closely monitored for at least 48 to 72 hr (Prod Info ATROPEN(R) IM injection, 2005). If pralidoxime is required, pralidoxime prefilled autoinjector delivers 600 mg IM (adult dosing); may repeat every 15 minutes up to 3 injections if symptoms persist. The safety and efficacy of pralidoxime auto-injector for use in nerve agent poisoning have not been established in pediatric patients (Prod Info pralidoxime chloride intramuscular auto-imjector solution, 2003)
ATNAA (Antidote Treatment Nerve Agent Autoinjector, Meridian Medical Technologies, Columbia, Maryland) is currently used by the US military and provides atropine injection and pralidoxime chloride injection in a single needle. Each self-contained unit dispenses 2.1 mg of atropine in 0.7 mL and 600 mg of pralidoxime chloride in 2 mL via intramuscular injection (Prod Info ATNAA ANTIDOTE TREATMENT – NERVE AGENT, AUTO-INJECTOR intramuscular injection solution, 2002). ATNAA: DOSE: ADULT: One ATNAA into the lateral thigh muscle or buttocks. Wait 10 to 15 minutes for effect (Prod Info ATNAA ANTIDOTE TREATMENT – NERVE AGENT, AUTO-INJECTOR intramuscular injection solution, 2002).
MARK I: This device (Meridian Medical Technologies, Columbia, Maryland) was used by the US military. (Note: the MARK I autoinjector kit was last produced by Meridian Medical Technologies, Columbia, MD in 2008. This product may still be available in some locations.) Each kit contains two autoinjectors: an atropine and a pralidoxime autoinjector. The atropine autoinjector delivers 2.1 mg of atropine in 0.7 mL via intramuscular injection. The pralidoxime autoinjector delivers 600 mg pralidoxime chloride in 2 mL via intramuscular injection (Prod Info DUODOTE(TM) IM injection, 2006). DuoDote(R) is a dual chambered device (Meridian Medical Technologies, Columbia, Maryland) that delivers 2.1 mg of atropine in 0.7 mL and 600 mg of pralidoxime chloride in 2 mL sequentially using a single needle for use in a civilian or community setting. It should be administered by Emergency Medical Services personnel who have been trained to recognize and treat nerve agent or insecticide intoxication (Prod Info DuoDote(R) intramuscular injection solution, 2011). DuoDote(R): DOSE: ADULT: Two or more mild symptoms, initial dose, 1 injector (atropine 2.1 mg/pralidoxime chloride 600 mg) IM into the mid-lateral thigh, wait 10 to 15 minutes for effect; subsequent doses, if at any time severe symptoms develop, administer 2 additional injectors in rapid succession IM into the mid-lateral thigh and immediately seek definitive medical care; MAX 3 doses unless definitive medical care is available (Prod Info DuoDote(R) intramuscular injection solution, 2011). Therapeutic plasma concentrations of pralidoxime exceeding 4 mcg/mL were achieved within 4 to 8 minutes after injection (Sidell & Groff, 1974). DIAZEPAM Autoinjector (Meridian Medical Technologies): Contains 10 mg of diazepam in 2 mL for intramuscular injection for seizure control (Prod Info diazepam autoinjector IM injection solution, 2005). These devices are designed for initial field treatment. Although autoinjector doses may be adequate for nerve agent exposures, ORGANOPHOSPHATE exposures may require additional atropine or pralidoxime doses in the hospital setting that exceed those in the available autoinjectors. For medical questions concerning Meridian products, you can call 1-800-438-1985. For general product information, call 1-800-638-8093.
-RANGE OF TOXICITY
MINIMUM LETHAL EXPOSURE
Soman is a deadly poison and is highly toxic by all exposure routes. As little as 0.01 mg/kg may be lethal (Budavari, 2000; Lewis, 1998). Even a brief exposure to soman may be fatal. Depending upon the concentration of the agent, death may occur in as little as 1 to 10 minutes or may be delayed for 1 to 2 hours (HSDB , 2001). Death occurs within 15 minutes of exposure to soman (NLM, 2001). Soman is less toxic than VX, but more toxic than sarin or tabun (Sivam et al, 1984; RTECS , 1991).
MAXIMUM TOLERATED EXPOSURE
To date, OSHA has not promulgated permissible exposure concentrations for soman (SBCCOM, 1999). GD is not listed by the International Agency for Research on Cancer, American Conference of Governmental Industrial Hygienists, Occupational Safety and Health Administration, or National Toxicology Program as a carcinogen (SBCCOM, 1999).
Note that CHILDREN MAY EXHIBIT DIFFERENT PREDOMINANT SIGNS of organophosphate poisoning from adults. In a study on 25 children poisoned by organophosphate or carbamate compounds, the major symptoms in most of them were CNS depression, stupor, flaccidity, dyspnea, and coma (Sofer et al, 1989). Other classical signs of organophosphate poisoning, such as miosis, fasciculations, bradycardia, excessive salivation and lacrimation, and gastrointestinal symptoms, were infrequent (Sofer et al, 1989). Children tend to be more sensitive to organophosphates than adults (Zwiener & Ginsburg, 1988).
OCCUPATIONAL Three workers at a pesticide-formulating plant developed symptoms of organophosphate poisoning associated with each worker wearing a uniform that was contaminated with 76 percent parathion and then laundered. The uniform had been laundered three times before the third worker wore it and he still developed nausea, vomiting, and red cell cholinesterase activity of 75 percent of normal (Clifford & Nies, 1989).
- Carcinogenicity Ratings for CAS96-64-0 :
ACGIH (American Conference of Governmental Industrial Hygienists, 2010): Not Listed EPA (U.S. Environmental Protection Agency, 2011): Not Listed IARC (International Agency for Research on Cancer (IARC), 2016; International Agency for Research on Cancer, 2015; IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, 2010; IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, 2010a; IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, 2008; IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, 2007; IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, 2006; IARC, 2004): Not Listed NIOSH (National Institute for Occupational Safety and Health, 2007): Not Listed MAK (DFG, 2002): Not Listed NTP (U.S. Department of Health and Human Services, Public Health Service, National Toxicology Project ): Not Listed
TOXICITY AND RISK ASSESSMENT VALUES
- EPA Risk Assessment Values for CAS96-64-0 (U.S. Environmental Protection Agency, 2011):
References: Budavari, 2000 ITI, 1995 NAP, 2001; RRIS, 2001 RTECS, 2001 SBCCOM, 2001 USACHPPMa, 2001) ECt50- (INHALATION)HUMAN: <2 mg-min/m(3) for 2-10M -- runny nose (vapor) (SBCCOM, 2001) 25 mg-min/m(3) -- severe effects (USACHPPM, 2001)
ECt50- (OCULAR)HUMAN: ECt50- (SKIN)HUMAN: ICt50- (INHALATION)HUMAN: LC50- (INHALATION)HUMAN: LC50- (INHALATION)MOUSE: LCLo- (INHALATION)HUMAN: LCt50- (INHALATION)HUMAN: <70 mg-min/m(3) for 2-10M (RRIS, 2001; SBCCOM, 2001) 35 mg-min/m(3) (USACHPPM, 2001)
LCt50- (SKIN)HUMAN: LD50- (INTRAVENOUS)CAT: LD50- (SUBCUTANEOUS)CAT: LD50- (INTRAPERITONEAL)CHICKEN: LD50- (SUBCUTANEOUS)CHICKEN: LD50- (INTRAVENOUS)DOG: LD50- (SUBCUTANEOUS)DOG: LD50- (SUBCUTANEOUS)GUINEA_PIG: LD50- (ORAL)HUMAN: LD50- (SKIN)HUMAN: 50 mg (RRIS, 2001) Male, <350 mg/70 kg man (liquid) (SBCCOM, 2001) 50-300 (est.) mcg/kg (NAP, 2001)
LD50- (INTRAMUSCULAR)MOUSE: 98 mcg/kg (NAP, 2001) 89 mcg/kg
LD50- (INTRAPERITONEAL)MOUSE: LD50- (INTRAVENOUS)MOUSE: LD50- (SKIN)MOUSE: LD50- (SUBCUTANEOUS)MOUSE: LD50- (INTRAMUSCULAR)PRIMATE: LD50- (SUBCUTANEOUS)PRIMATE: LD50- (INTRAMUSCULAR)RABBIT: LD50- (SUBCUTANEOUS)RABBIT: LD50- (INTRAMUSCULAR)RAT: LD50- (INTRAPERITONEAL)RAT: LD50- (INTRAVENOUS)RAT: LD50- (ORAL)RAT: LD50- (SUBCUTANEOUS)RAT: LDLo- (SKIN)HUMAN: LDLo- (INTRAVENOUS)MOUSE: TDLo- (SUBCUTANEOUS)CAT: TDLo- (SUBCUTANEOUS)GUINEA_PIG: TDLo- (SUBCUTANEOUS)MOUSE: TDLo- (INTRAVENOUS)PRIMATE: TDLo- (SUBCUTANEOUS)RABBIT: TDLo- (INTRAMUSCULAR)RAT: TDLo- (INTRAPERITONEAL)RAT: TDLo- (ORAL)RAT: TDLo- (SUBCUTANEOUS)RAT: 2125 mcg/kg for 85D-intermittent -- true cholinesterase and degenerative changes in brain and coverings 360 mcg/kg for 12D-intermittent -- true cholinesterase; changes in blood serum concentrations 510 mcg/kg for 4W-intermittent -- changes in brain and coverings, behavior, and biochemistry 900 mcg/kg for 40D-intermittent -- convulsions; weight loss; death
-STANDARDS AND LABELS
WORKPLACE STANDARDS
- ACGIH TLV Values for CAS96-64-0 (American Conference of Governmental Industrial Hygienists, 2010):
- AIHA WEEL Values for CAS96-64-0 (AIHA, 2006):
- NIOSH REL and IDLH Values for CAS96-64-0 (National Institute for Occupational Safety and Health, 2007):
- OSHA PEL Values for CAS96-64-0 (U.S. Occupational Safety, and Health Administration (OSHA), 2010):
- OSHA List of Highly Hazardous Chemicals, Toxics, and Reactives for CAS96-64-0 (U.S. Occupational Safety and Health Administration, 2010):
ENVIRONMENTAL STANDARDS
- EPA CERCLA, Hazardous Substances and Reportable Quantities for CAS96-64-0 (U.S. Environmental Protection Agency, 2010):
- EPA CERCLA, Hazardous Substances and Reportable Quantities, Radionuclides for CAS96-64-0 (U.S. Environmental Protection Agency, 2010):
- EPA RCRA Hazardous Waste Number for CAS96-64-0 (U.S. Environmental Protection Agency, 2010b):
- EPA SARA Title III, Extremely Hazardous Substance List for CAS96-64-0 (U.S. Environmental Protection Agency, 2010):
- EPA SARA Title III, Community Right-to-Know for CAS96-64-0 (40 CFR 372.65, 2006; 40 CFR 372.28, 2006):
- DOT List of Marine Pollutants for CAS96-64-0 (49 CFR 172.101 - App. B, 2005):
- EPA TSCA Inventory for CAS96-64-0 (EPA, 2005):
SHIPPING REGULATIONS
- DOT -- Table of Hazardous Materials and Special Provisions for UN/NA Number 2810 (49 CFR 172.101, 2005):
Hazardous materials descriptions and proper shipping name: Compounds, tree killing, liquid or Compounds, weed killing, liquid Symbol(s): D, G D: identifies proper shipping names which are appropriate for describing materials for domestic transportation but may be inappropriate for international transportation under the provisions of international regulations (e.g., IMO, ICAO). An alternate proper shipping name may be selected when either domestic or international transportation is involved. G: identifies proper shipping names for which one or more technical names of the hazardous material must be entered in parentheses, in association with the basic description. (See 40 CFR 172.203(k).)
Hazard class or Division: 6.1 Identification Number: NA2810 Packing Group: I Label(s) required (if not excepted): 6.1 Special Provisions: T14, TP2, TP13, TP27 T14: Minimum test pressure (bar): 6; Minimum shell thickness (in mm-reference steel) (See sxn.178.274(d)): 6 mm; Pressure-relief requirements (See sxn.178.275(g)): section 178.275(g)(3); Bottom opening requirements (See sxn.178.275(d)): Prohibited. TP2: a. The maximum degree of filling must not exceed the degree of filling determined by the following: [Degree of filling = 95/1+alpha(tr - tf)], where tr is the maximum mean bulk temperature during transport, tf is the temperature in degrees celsius of the liquid during filling, and alpha is the mean coefficient of cubical expansion of the liquid between the mean temperature of the liquid during filling (tf) and the maximum mean bulk temperature during transportation (tr) both in degrees celsius; and b. For liquids transported under ambient conditions a may be calculated using the formula: [alpha = (d15-d50)/(35 x d50)], where d15 and d50 are the densities (in units of mass per unit volume) of the liquid at 15 degrees C (59 degrees F) and 50 degrees C (122 degrees F), respectively. TP13: Self-contained breathing apparatus must be provided when this hazardous material is transported by sea. TP27: A portable tank having a minimum test pressure of 4 bar (400 kPa) may be used provided the calculated test pressure is 4 bar or less based on the MAWP of the hazardous material, as defined in sxn. 178.275 of this subchapter, where the test pressure is 1.5 times the MAWP.
Packaging Authorizations (refer to 49 CFR 173.***): Exceptions: None Non-bulk packaging: 201 Bulk packaging: 243
Quantity Limitations: Vessel Stowage Requirements:
Hazardous materials descriptions and proper shipping name: Compounds, tree killing, liquid or Compounds, weed killing, liquid Symbol(s): Not Listed Hazard class or Division: 6.1 Identification Number: NA2810 Packing Group: II Label(s) required (if not excepted): 6.1 Special Provisions: IB2, T11, TP2, TP27 IB2: Authorized IBCs: Metal (31A, 31B and 31N); Rigid plastics (31H1 and 31H2); Composite (31HZ1). Additional Requirement: Only liquids with a vapor pressure less than or equal to 110 kPa at 50 °C (1.1 bar at 122 °F), or 130kPa at 55 °C (1.3 bar at 131 °F) are authorized. T11: Minimum test pressure (bar): 6; Minimum shell thickness (in mm-reference steel) (See sxn.178.274(d)): sxn.178.274(d)(2); Pressure-relief requirements (See sxn.178.275(g)): Normal; Bottom opening requirements (See sxn.178.275(d)): sxn.178.275(d)(3). TP2: a. The maximum degree of filling must not exceed the degree of filling determined by the following: [Degree of filling = 95/1+alpha(tr - tf)], where tr is the maximum mean bulk temperature during transport, tf is the temperature in degrees celsius of the liquid during filling, and alpha is the mean coefficient of cubical expansion of the liquid between the mean temperature of the liquid during filling (tf) and the maximum mean bulk temperature during transportation (tr) both in degrees celsius; and b. For liquids transported under ambient conditions a may be calculated using the formula: [alpha = (d15-d50)/(35 x d50)], where d15 and d50 are the densities (in units of mass per unit volume) of the liquid at 15 degrees C (59 degrees F) and 50 degrees C (122 degrees F), respectively. TP27: A portable tank having a minimum test pressure of 4 bar (400 kPa) may be used provided the calculated test pressure is 4 bar or less based on the MAWP of the hazardous material, as defined in sxn. 178.275 of this subchapter, where the test pressure is 1.5 times the MAWP.
Packaging Authorizations (refer to 49 CFR 173.***): Exceptions: 153 Non-bulk packaging: 202 Bulk packaging: 243
Quantity Limitations: Vessel Stowage Requirements:
Hazardous materials descriptions and proper shipping name: Compounds, tree killing, liquid or Compounds, weed killing, liquid Symbol(s): Not Listed Hazard class or Division: 6.1 Identification Number: NA2810 Packing Group: III Label(s) required (if not excepted): 6.1 Special Provisions: IB3, T7, TP1, TP28 IB3: Authorized IBCs: Metal (31A, 31B and 31N); Rigid plastics (31H1 and 31H2); Composite (31HZ1 and 31HA2, 31HB2, 31HN2, 31HD2 and 31HH2). Additional Requirement: Only liquids with a vapor pressure less than or equal to 110 kPa at 50 °C (1.1 bar at 122 °F), or 130 kPa at 55 °C (1.3 bar at 131 °F) are authorized, except for UN2672 (also see Special Provision IP8 in Table 3 for UN2672). T7: Minimum test pressure (bar): 4; Minimum shell thickness (in mm-reference steel) (See sxn.178.274(d)): sxn.178.274(d)(2); Pressure-relief requirements (See sxn.178.275(g)): Normal; Bottom opening requirements (See sxn.178.275(d)): sxn.178.275(d)(3). TP1: The maximum degree of filling must not exceed the degree of filling determined by the following: [Degree of filling = 97/1+alpha(tr - tf)], where tr is the maximum mean bulk temperature during transport, and tf is the temperature in degrees celsius of the liquid during filling. TP28: A portable tank having a minimum test pressure of 2.65 bar (265 kPa) may be used provided the calculated test pressure is 2.65 bar or less based on the MAWP of the hazardous material, as defined in sxn. 178.275 of this subchapter, where the test pressure is 1.5 times the MAWP.
Packaging Authorizations (refer to 49 CFR 173.***): Exceptions: 153 Non-bulk packaging: 203 Bulk packaging: 241
Quantity Limitations: Vessel Stowage Requirements:
Hazardous materials descriptions and proper shipping name: Toxic, liquids, organic, n.o.s Symbol(s): G Hazard class or Division: 6.1 Identification Number: UN2810 Packing Group: I Label(s) required (if not excepted): 6.1 Special Provisions: T14, TP2, TP13, TP27 T14: Minimum test pressure (bar): 6; Minimum shell thickness (in mm-reference steel) (See sxn.178.274(d)): 6 mm; Pressure-relief requirements (See sxn.178.275(g)): section 178.275(g)(3); Bottom opening requirements (See sxn.178.275(d)): Prohibited. TP2: a. The maximum degree of filling must not exceed the degree of filling determined by the following: [Degree of filling = 95/1+alpha(tr - tf)], where tr is the maximum mean bulk temperature during transport, tf is the temperature in degrees celsius of the liquid during filling, and alpha is the mean coefficient of cubical expansion of the liquid between the mean temperature of the liquid during filling (tf) and the maximum mean bulk temperature during transportation (tr) both in degrees celsius; and b. For liquids transported under ambient conditions a may be calculated using the formula: [alpha = (d15-d50)/(35 x d50)], where d15 and d50 are the densities (in units of mass per unit volume) of the liquid at 15 degrees C (59 degrees F) and 50 degrees C (122 degrees F), respectively. TP13: Self-contained breathing apparatus must be provided when this hazardous material is transported by sea. TP27: A portable tank having a minimum test pressure of 4 bar (400 kPa) may be used provided the calculated test pressure is 4 bar or less based on the MAWP of the hazardous material, as defined in sxn. 178.275 of this subchapter, where the test pressure is 1.5 times the MAWP.
Packaging Authorizations (refer to 49 CFR 173.***): Exceptions: None Non-bulk packaging: 201 Bulk packaging: 243
Quantity Limitations: Vessel Stowage Requirements:
Hazardous materials descriptions and proper shipping name: Toxic, liquids, organic, n.o.s Symbol(s): Not Listed Hazard class or Division: 6.1 Identification Number: UN2810 Packing Group: II Label(s) required (if not excepted): 6.1 Special Provisions: IB2, T11, TP2, TP13, TP27 IB2: Authorized IBCs: Metal (31A, 31B and 31N); Rigid plastics (31H1 and 31H2); Composite (31HZ1). Additional Requirement: Only liquids with a vapor pressure less than or equal to 110 kPa at 50 °C (1.1 bar at 122 °F), or 130kPa at 55 °C (1.3 bar at 131 °F) are authorized. T11: Minimum test pressure (bar): 6; Minimum shell thickness (in mm-reference steel) (See sxn.178.274(d)): sxn.178.274(d)(2); Pressure-relief requirements (See sxn.178.275(g)): Normal; Bottom opening requirements (See sxn.178.275(d)): sxn.178.275(d)(3). TP2: a. The maximum degree of filling must not exceed the degree of filling determined by the following: [Degree of filling = 95/1+alpha(tr - tf)], where tr is the maximum mean bulk temperature during transport, tf is the temperature in degrees celsius of the liquid during filling, and alpha is the mean coefficient of cubical expansion of the liquid between the mean temperature of the liquid during filling (tf) and the maximum mean bulk temperature during transportation (tr) both in degrees celsius; and b. For liquids transported under ambient conditions a may be calculated using the formula: [alpha = (d15-d50)/(35 x d50)], where d15 and d50 are the densities (in units of mass per unit volume) of the liquid at 15 degrees C (59 degrees F) and 50 degrees C (122 degrees F), respectively. TP13: Self-contained breathing apparatus must be provided when this hazardous material is transported by sea. TP27: A portable tank having a minimum test pressure of 4 bar (400 kPa) may be used provided the calculated test pressure is 4 bar or less based on the MAWP of the hazardous material, as defined in sxn. 178.275 of this subchapter, where the test pressure is 1.5 times the MAWP.
Packaging Authorizations (refer to 49 CFR 173.***): Exceptions: 153 Non-bulk packaging: 202 Bulk packaging: 243
Quantity Limitations: Vessel Stowage Requirements:
Hazardous materials descriptions and proper shipping name: Toxic, liquids, organic, n.o.s Symbol(s): Not Listed Hazard class or Division: 6.1 Identification Number: UN2810 Packing Group: III Label(s) required (if not excepted): 6.1 Special Provisions: IB3, T7, TP1, TP28 IB3: Authorized IBCs: Metal (31A, 31B and 31N); Rigid plastics (31H1 and 31H2); Composite (31HZ1 and 31HA2, 31HB2, 31HN2, 31HD2 and 31HH2). Additional Requirement: Only liquids with a vapor pressure less than or equal to 110 kPa at 50 °C (1.1 bar at 122 °F), or 130 kPa at 55 °C (1.3 bar at 131 °F) are authorized, except for UN2672 (also see Special Provision IP8 in Table 3 for UN2672). T7: Minimum test pressure (bar): 4; Minimum shell thickness (in mm-reference steel) (See sxn.178.274(d)): sxn.178.274(d)(2); Pressure-relief requirements (See sxn.178.275(g)): Normal; Bottom opening requirements (See sxn.178.275(d)): sxn.178.275(d)(3). TP1: The maximum degree of filling must not exceed the degree of filling determined by the following: [Degree of filling = 97/1+alpha(tr - tf)], where tr is the maximum mean bulk temperature during transport, and tf is the temperature in degrees celsius of the liquid during filling. TP28: A portable tank having a minimum test pressure of 2.65 bar (265 kPa) may be used provided the calculated test pressure is 2.65 bar or less based on the MAWP of the hazardous material, as defined in sxn. 178.275 of this subchapter, where the test pressure is 1.5 times the MAWP.
Packaging Authorizations (refer to 49 CFR 173.***): Exceptions: 153 Non-bulk packaging: 203 Bulk packaging: 241
Quantity Limitations: Vessel Stowage Requirements:
Hazardous materials descriptions and proper shipping name: Toxic, liquids, organic, n.o.s. Inhalation hazard, Packing Group I, Zone A Symbol(s): G Hazard class or Division: 6.1 Identification Number: UN2810 Packing Group: I Label(s) required (if not excepted): 6.1 Special Provisions: 1, B9, B14, B30, B72, T22, TP2, TP13, TP27, TP38, TP44 1: This material is poisonous by inhalation (see sxn. 171.8 of this subchapter) in Hazard Zone A (see sxn. 173.116(a) or sxn. 173.133(a) of this subchapter), and must be described as an inhalation hazard under the provisions of this subchapter. B9: Bottom outlets are not authorized. B14: Each bulk packaging, except a tank car or a multi-unit-tank car tank, must be insulated with an insulating material so that the overall thermal conductance at 15.5 °C (60 °F) is no more than 1.5333 kilojoules per hour per square meter per degree Celsius (0.075 Btu per hour per square foot per degree Fahrenheit) temperature differential. Insulating materials must not promote corrosion to steel when wet. B30: MC 312, MC 330, MC 331 and DOT 412 cargo tanks and DOT 51 portable tanks must be made of stainless steel, except that steel other than stainless steel may be used in accordance with the provisions of sxn. 173.24b(b) of this subchapter. Thickness of stainless steel for tank shell and heads for cargo tanks and portable tanks must be the greater of 7.62 mm (0.300 inch) or the thickness required for a tank with a design pressure at least equal to 1.5 times the vapor pressure of the lading at 46 °C (115 °F). In addition, MC 312 and DOT 412 cargo tank motor vehicles must: a. Be ASME Code (U) stamped for 100% radiography of all pressure-retaining welds; b. Have accident damage protection which conforms with sxn. 178.345-8 of this subchapter; c. Have a MAWP or design pressure of at least 87 psig: and d. Have a bolted manway cover. B72: Tank cars must have a test pressure of 34.47 Bar (500 psig) or greater and conform to Class 105J, 106, or 110. T22: Minimum test pressure (bar): 10; Minimum shell thickness (in mm-reference steel) (See sxn.178.274(d)): 10 mm; Pressure-relief requirements (See sxn.178.275(g)): sxn. 178.275(g)(3); Bottom opening requirements (See sxn.178.275(d)): Prohibited. TP2: a. The maximum degree of filling must not exceed the degree of filling determined by the following: [Degree of filling = 95/1+alpha(tr - tf)], where tr is the maximum mean bulk temperature during transport, tf is the temperature in degrees celsius of the liquid during filling, and alpha is the mean coefficient of cubical expansion of the liquid between the mean temperature of the liquid during filling (tf) and the maximum mean bulk temperature during transportation (tr) both in degrees celsius; and b. For liquids transported under ambient conditions a may be calculated using the formula: [alpha = (d15-d50)/(35 x d50)], where d15 and d50 are the densities (in units of mass per unit volume) of the liquid at 15 degrees C (59 degrees F) and 50 degrees C (122 degrees F), respectively. TP13: Self-contained breathing apparatus must be provided when this hazardous material is transported by sea. TP27: A portable tank having a minimum test pressure of 4 bar (400 kPa) may be used provided the calculated test pressure is 4 bar or less based on the MAWP of the hazardous material, as defined in sxn. 178.275 of this subchapter, where the test pressure is 1.5 times the MAWP. TP38: Each portable tank must be insulated with an insulating material so that the overall thermal conductance at 15.5 °C (60 °F) is no more than 1.5333 kilojoules per hour per square meter per degree Celsius (0.075 Btu per hour per square foot per degree Fahrenheit) temperature differential. Insulating materials may not promote corrosion to steel when wet. TP44: Each portable tank must be made of stainless steel, except that steel other than stainless steel may be used in accordance with the provisions of sxn. 173.24b(b) of this subchapter. Thickness of stainless steel for tank shell and heads must be the greater of 7.62 mm (0.300 inch) or the thickness required for a portable tank with a design pressure at least equal to 1.5 times the vapor pressure of the hazardous material at 46 °C (115 °F).
Packaging Authorizations (refer to 49 CFR 173.***): Exceptions: None Non-bulk packaging: 226 Bulk packaging: 244
Quantity Limitations: Vessel Stowage Requirements:
Hazardous materials descriptions and proper shipping name: Toxic, liquids, organic, n.o.s. Inhalation hazard, Packing Group I, Zone B Symbol(s): G Hazard class or Division: 6.1 Identification Number: UN2810 Packing Group: I Label(s) required (if not excepted): 6.1 Special Provisions: 2, B9, B14, B32, B74, T20, TP2, TP13, TP27, TP38, TP45 2: This material is poisonous by inhalation (see sxn. 171.8 of this subchapter) in Hazard Zone B (see sxn. 173.116(a) or sxn. 173.133(a) of this subchapter), and must be described as an inhalation hazard under the provisions of this subchapter. B9: Bottom outlets are not authorized. B14: Each bulk packaging, except a tank car or a multi-unit-tank car tank, must be insulated with an insulating material so that the overall thermal conductance at 15.5 °C (60 °F) is no more than 1.5333 kilojoules per hour per square meter per degree Celsius (0.075 Btu per hour per square foot per degree Fahrenheit) temperature differential. Insulating materials must not promote corrosion to steel when wet. B32: MC 312, MC 330, MC 331, DOT 412 cargo tanks and DOT 51 portable tanks must be made of stainless steel, except that steel other than stainless steel may be used in accordance with the provisions of sxn. 173.24b(b) of this subchapter. Thickness of stainless steel for tank shell and heads for cargo tanks and portable tanks must be the greater of 6.35 mm (0.250 inch) or the thickness required for a tank with a design pressure at least equal to 1.3 times the vapor pressure of the lading at 46 °C (115 °F). In addition, MC 312 and DOT 412 cargo tank motor vehicles must: a. Be ASME Code (U) stamped for 100% radiography of all pressure-retaining welds; b. Have accident damage protection which conforms with sxn. 178.345-8 of this subchapter; c. Have a MAWP or design pressure of at least 87 psig; and d. Have a bolted manway cover. B74: Tank cars must have a test pressure of 20.68 Bar (300 psig) or greater and conform to Class 105S, 106, 110, 112J, 114J or 120S. T20: Minimum test pressure (bar): 10; Minimum shell thickness (in mm-reference steel) (See sxn.178.274(d)): 8 mm; Pressure-relief requirements (See sxn.178.275(g)): sxn. 178.275(g)(3); Bottom opening requirements (See sxn.178.275(d)): Prohibited. TP2: a. The maximum degree of filling must not exceed the degree of filling determined by the following: [Degree of filling = 95/1+alpha(tr - tf)], where tr is the maximum mean bulk temperature during transport, tf is the temperature in degrees celsius of the liquid during filling, and alpha is the mean coefficient of cubical expansion of the liquid between the mean temperature of the liquid during filling (tf) and the maximum mean bulk temperature during transportation (tr) both in degrees celsius; and b. For liquids transported under ambient conditions a may be calculated using the formula: [alpha = (d15-d50)/(35 x d50)], where d15 and d50 are the densities (in units of mass per unit volume) of the liquid at 15 degrees C (59 degrees F) and 50 degrees C (122 degrees F), respectively. TP13: Self-contained breathing apparatus must be provided when this hazardous material is transported by sea. TP27: A portable tank having a minimum test pressure of 4 bar (400 kPa) may be used provided the calculated test pressure is 4 bar or less based on the MAWP of the hazardous material, as defined in sxn. 178.275 of this subchapter, where the test pressure is 1.5 times the MAWP. TP38: Each portable tank must be insulated with an insulating material so that the overall thermal conductance at 15.5 °C (60 °F) is no more than 1.5333 kilojoules per hour per square meter per degree Celsius (0.075 Btu per hour per square foot per degree Fahrenheit) temperature differential. Insulating materials may not promote corrosion to steel when wet. TP45: Each portable tank must be made of stainless steel, except that steel other than stainless steel may be used in accordance with the provisions of 173.24b(b) of this subchapter. Thickness of stainless steel for portable tank shells and heads must be the greater of 6.35 mm (0.250 inch) or the thickness required for a portable tank with a design pressure at least equal to 1.3 times the vapor pressure of the hazardous material at 46 °C (115 °F).
Packaging Authorizations (refer to 49 CFR 173.***): Exceptions: None Non-bulk packaging: 227 Bulk packaging: 244
Quantity Limitations: Vessel Stowage Requirements:
- ICAO International Shipping Name for UN2810 (ICAO, 2002):
LABELS
- NFPA Hazard Ratings for CAS96-64-0 (NFPA, 2002):
-HANDLING AND STORAGE
SUMMARY
Use the buddy system when handling chemical agents. No smoking, eating, or drinking is permitted in areas where the chemical is present (SBCCOM, 1999). "Locations where chemical agents and munitions are stored, handled, used, and processed require the use of chemical hazard symbols. These symbols shall be used by themselves or in conjunction with fire symbols as appropriate" (U.S. Army, 1997). "When equipment, tools, or others items or materials come into contact with liquid agent they will be marked, tagged or segregated to indicate the degree of contamination." (U.S. Army, 1997). For additional information refer to AR 385-61, the "Army Toxic Chemical Agent Safety Program," and DA Pam 385-61, "Toxic Chemical Agent Safety Standards" (SBCCOM, 1999).
HANDLING
- Decontamination equipment should be readily located and marked (SBCCOM, 1999).
- Hands should be washed before meals. Personnel should shower thoroughly with special attention to hair, face, neck, and hands using plenty of soap and water before leaving at the end of the work day (SBCCOM, 1999).
STORAGE
At 65 degrees C, soman is stable in steel for 3 months. Steel is corroded at a rate of 1 x 10(-5) inch/month by this agent (SBCCOM , 2001). Containers should be inspected periodically (visual or detector kit inspection) (SBCCOM, 1999). Ton containers should be kept painted and free from rust to enhance visual detection of leakage at the valves and plugs. Some agents (Mustard, Lewisite, GB, VX) act as a solvent on most paints. This may cause peeling, dissolution, blistering, and discoloring at the leak area (U.S. Army, 1997).
Laboratory agent containers should be stored in a single containment system within an approved laboratory hood (SBCCOM, 1999). Storage of larger quantities should be in a double containment system (SBCCOM, 1999). Large quantities should be stored in one-ton steel containers, or other approved containers (SBCCOM, 1999; U.S. Army, 1997). "Ton containers of bulk agents will be stored in a horizontal position with the container oriented so that the valves are in vertical alignment" (U.S. Army, 1997). Glass is appropriate for Research, Development, Test, and Evaluation (RDTE) quantities (SBCCOM, 1999).
- ROOM/CABINET RECOMMENDATIONS
Exits must be clearly marked to allow for rapid evacuation (SBCCOM, 1999). Chemical showers and eye wash stations must be provided (SBCCOM, 1999). "Structures used for the storage of agent-filled items will have floors and floor surfacing which can de decontaminated" (U.S. Army, 1997). "Sites should be selected that are not in proximity to surface water sources and which are not located over underground water sources that could become contaminated" (U.S. Army, 1997). "Construction materials such as wood or other porous materials that absorb agent are difficult to decontaminate and should not be used in the construction of buildings where agent is to be stored, handled, or processed" (U.S. Army, 1997). "Buildings and/or equipment will be arranged according to the sequence of operations. Such an arrangement will make it possible to keep handling of agents at a minimum and will minimize the necessity for transferring of agents through nonagent areas" (U.S. Army, 1997).
-PERSONAL PROTECTION
SUMMARY
- RECOMMENDED PROTECTIVE CLOTHING - EMERGENCY RESPONSE GUIDEBOOK, GUIDE 153 (ERG, 2004)
Wear positive pressure self-contained breathing apparatus (SCBA). Wear chemical protective clothing that is specifically recommended by the manufacturer. It may provide little or no thermal protection. Structural firefighters' protective clothing provides limited protection. fire situations ONLY; it is not effective in spill situations where direct contact with the substance is possible.
- Pyridostigmine bromide, a chemical that blocks the nerve-signal-regulating enzyme acetylcholinesterase, may be given as a pill to military personnel during high threat of chemical warfare attack to prevent death in event of exposure to soman (Gulflink , 2001; (Tate, 2001)).
- When exposed to heavy concentrations of soman, even impermeable protective clothing can be penetrated within a few hours. If clothing becomes contaminated with the liquid, it must be removed or neutralized immediately (HSDB , 2001).
- Butyl rubber materials and synthetic fabrics such as polyesters are more resistant than leather, which is penetrated in the same manner as skin (NATO, 1973).
- When responding to fires where chemical agents are stored, full firefighter protective clothing should be worn. Rescue/reconnaissance personnel should wear appropriate levels of protective clothing (SBCCOM, 1999).
- Laboratory operations require lab coats and gloves be worn. An approved respirator should be readily available. If handling contaminated animals, wear foot and head covers, and clean smocks (SBCCOM, 1999).
- "The use of personnel protective clothing and equipment (PCE) is the least desirable method of complying with airborne exposure limits. Efforts will be made to reduce dependence upon PCE in agent operating environments through the increased use of engineering and administrative controls such as ventilation, isolation, remote operations, remove monitoring, and elimination of a nonessential entries into agent areas" (U.S. Army, 1997).
- "Do not allow an individual to reenter the area to conduct the operation after the maximum wear time has been reached. However, the local medical authority may use discretion to vary the wear time" (U.S. Army, 1997).
- Real-time, low-level monitors with an alarm are required. If a monitor is not present, it should be assumed the atmosphere is Immediately Dangerous to Life and Health (SBCCOM, 1999).
- Editor's Note: Refer to the following document for information regarding the U.S. Department of Defense's Mission Oriented Protective Posture (MOPP) procedures and chemical protective equipment (CPE). Particular information is provided on the MOPP IV CPE ensemble.
US ARMY - PERSONNEL PROTECTIVE CLOTHING AND EQUIPMENT. This document is an assembly of sections containing information about Personal Protective Clothing and Equipment from U.S. Army publication "Toxic Chemical Agent Safety Standards"; Document Number: PAM 385-61. Unclassified. 31 March 1997. It is not, and should not be considered a complete copy of this publication.
EYE/FACE PROTECTION
- Chemical goggles are minimal protection and should be worn. If there is a potential situation for splash hazards, use goggles and a face shield (SBCCOM, 1999).
RESPIRATORY PROTECTION
- Respiratory protection is required (SBCCOM, 1999).
- When there is a potential danger of oxygen deficiency, and when directed by a chemical accident/incident operations officer or by a fire chief, a NIOSH- approved positive-pressure, full face piece self-contained breathing apparatus should be worn (SBCCOM, 1999).
- "The protective mask canister/filter will not be used for more than two hours when the mask has been worn in an area known to be above the AEL" (U.S. Army, 1997).
PROTECTIVE CLOTHING
- CHEMICAL PROTECTIVE CLOTHING. Search results for CAS 96-64-0.
ENGINEERING CONTROLS
- Local exhaust is mandatory. It must to filtered and scrubbed to limit excessive concentrations, and meet local, state and federal regulations (SBCCOM, 1999).
- Laboratory hoods need to have an average inward face velocity of 100 linear feet per minute plus or minus 20% with the velocity at any point not deviating from the average face velocity by more than 20% (SBCCOM, 1999).
- Existing laboratory hoods should have an inward face velocity of 150 linear feet per minute, plus or minus 20% (SBCCOM, 1999).
- Cross-drafts should not exceed 20% of the inward face velocity (SBCCOM, 1999).
- Laboratory operations should be performed at least 20 cm inside the hood face (SBCCOM, 1999).
- Visual smoke tests can be administered to evaluate the performance of the hood. Hood performance tests should be conducted semiannually, after any maintenance procedures, or after modifications have been installed (SBCCOM, 1999).
- Recirculation of exhaust air from chemical areas is prohibited. Connection between areas through the ventilation system is also prohibited (SBCCOM, 1999).
- Emergency back up power must be provided (SBCCOM, 1999).
-PHYSICAL HAZARDS
FIRE HAZARD
POTENTIAL FIRE OR EXPLOSION HAZARDS - EMERGENCY RESPONSE GUIDEBOOK, GUIDE 153 (ERG, 2004) Combustible material: may burn but does not ignite readily. When heated, vapors may form explosive mixtures with air: indoors, outdoors and sewers explosion hazards. Those substances designated with a "P" may polymerize explosively when heated or involved in a fire. Contact with metals may evolve flammable hydrogen gas. Containers may explode when heated. Runoff may pollute waterways. Substance may be transported in a molten form.
Soman in contact with steam or water will produce vapors that are toxic and corrosive (SBCCOM, 1991). There is limited fire and explosion data available on soman. The thickener used in soman poses a slight fire hazard when it is exposed to fire or heat (SBCCOM, 1999). Soman with a thickener should be kept away from oxidizers, excessive heat, an open flame and sparks (SBCCOM, 1999).
Evacuate all persons not involved in the fire-fighting efforts (SBBCOM, 1999). Contain warfare agent fires to prevent spreading to uncontrolled areas (SBCCOM, 1999). When responding to fires where chemical agents are stored, full firefighter protective clothing should be worn. Rescue/reconnaissance personnel should wear appropriate levels of protective clothing (SBCCOM, 1999).
- FLAMMABILITY CLASSIFICATION
- NFPA Flammability Rating for CAS96-64-0 (NFPA, 2002):
- FIRE CONTROL/EXTINGUISHING AGENTS
- SMALL FIRE PRECAUTIONS - EMERGENCY RESPONSE GUIDEBOOK, GUIDE 153 (ERG, 2004)
- LARGE FIRE PRECAUTIONS - EMERGENCY RESPONSE GUIDEBOOK, GUIDE 153 (ERG, 2004)
Dry chemical, CO2, alcohol-resistant foam or water spray. Move containers from fire area if you can do it without risk. Dike fire control water for later disposal; do not scatter the material.
- TANK OR CAR/TRAILER LOAD FIRE PRECAUTIONS - EMERGENCY RESPONSE GUIDEBOOK, GUIDE 153 (ERG, 2004)
Fight fire from maximum distance or use unmanned hose holders or monitor nozzles. Do not get water inside containers. Cool containers with flooding quantities of water until well after fire is out. Withdraw immediately in case of rising sound from venting safety devices or discoloration of tank. ALWAYS stay away from tanks engulfed in fire.
- NFPA Extinguishing Methods for CAS96-64-0 (NFPA, 2002):
- Fog, foam, water mist, and CO2 are effective fire extinguishing agents. Do not use any fire-fighting methods that may cause the agent to splash or spread (SBCCOM, 1999).
- Fire may destroy most of the agent but measures must be taken to prevent the agent or contaminated liquids from entering the sewers and other areas (SBCCOM, 1999).
Toxic fumes of fluoride and oxides of phosphorus are emitted with soman is heated to decomposition (Lewis, 2000; USFA , 2001). Soman can release HYDROGEN FLUORIDE when in contact with acids or, possibly, acid vapors (EPA, 1985).
DUST/VAPOR HAZARD
- Contact with soman vapors can be fatal (SBCCOM , 2001).
- Hydrogen may be produced when the corrosive vapors react with metals or concrete (SBCCOM , 2001).
- Soman in contact with steam or water will produce vapors that are toxic and corrosive (SBCCOM , 2001).
- Soman will form hydrogen fluoride, methylphosphonic acid, 1,2,3-trimethylpropyl ester, 3,3-Dimethyl-2-butanol, methylphosphonic acid when it is hydrolyzed (MTS , 2001) SBCCOM, 1999).
REACTIVITY HAZARD
- Steel is corroded by soman at the rate of 1 x 10(-5) inch/month after 3 months (SBCCOM , 2001).
- Soman hydrolyzes by acidic, basic, and neutral mechanisms to form hydrofluoric acid; methylphosphonic acid, 1,2,2-trimethylpropyl ester; 3,3-dimethyl-2-butanol; and methylphosphonic acid (MTS , 2001).
- Toxic fumes of fluoride and oxides of phosphorus are emitted with soman is heated to decomposition (Lewis, 2000).
- Soman usually has thickeners, such as styrene-butyl acrylate copolymer, added to increase the persistency. Styrene-butyl acrylate copolymer is not hazardous except in a finely-divided, powder form (Munro et al, 1999) SBCCOM, 1999).
EVACUATION PROCEDURES
- Initial Isolation and Protective Action Distances (ERG, 2004)
Data presented from the Emergency Response Guidebook Table of Initial Isolation and Protective Action Distances are for use when a spill has occurred and there is no fire. If there is a fire, or if a fire is involved, evacuation information presented under FIRE - PUBLIC SAFETY EVACUATION DISTANCES should be used. Generally, a small spill is one that involves a single, small package such as a drum containing up to approximately 200 liters, a small cylinder, or a small leak from a large package. A large spill is one that involves a spill from a large package, or multiple spills from many small packages. Suggested distances to protect from vapors of toxic-by-inhalation and/or water-reactive materials during the first 30 minutes following the spill. DOT ID No. 2810 - GD when used as a weapon SMALL SPILLS LARGE SPILLS
DOT ID No. 2810 - Soman when used as a weapon SMALL SPILLS LARGE SPILLS
- SPILL - PUBLIC SAFETY EVACUATION DISTANCES - EMERGENCY RESPONSE GUIDEBOOK, GUIDE 153 (ERG, 2004)
Increase, in the downwind direction, as necessary, the isolation distance of at least 50 meters (150 feet) for liquids and at least 25 meters (75 feet) for solids in all directions.
- FIRE - PUBLIC SAFETY EVACUATION DISTANCES - EMERGENCY RESPONSE GUIDEBOOK, GUIDE 153 (ERG, 2004)
If tank, rail car or tank truck is involved in a fire, ISOLATE for 800 meters (1/2 mile) in all directions; also, consider initial evacuation for 800 meters (1/2 mile) in all directions.
- PUBLIC SAFETY MEASURES - EMERGENCY RESPONSE GUIDEBOOK, GUIDE 153 (ERG, 2004)
CALL Emergency Response Telephone Number on Shipping Paper first. If Shipping Paper not available or no answer, refer to appropriate telephone number: MEXICO: SETIQ: 01-800-00-214-00 in the Mexican Republic; For calls originating in Mexico City and the Metropolitan Area: 5559-1588; For calls originating elsewhere, call: 011-52-555-559-1588.
CENACOM: 01-800-00-413-00 in the Mexican Republic; For calls originating in Mexico City and the Metropolitan Area: 5550-1496, 5550-1552, 5550-1485, or 5550-4885; For calls originating elsewhere, call: 011-52-555-550-1496, or 011-52-555-550-1552; 011-52-555-550-1485, or 011-52-555-550-4885.
ARGENTINA: CIQUIME: 0-800-222-2933 in the Republic of Argentina; For calls originating elsewhere, call: +54-11-4613-1100.
BRAZIL: PRÓ-QUÍMICA: 0-800-118270 (Toll-free in Brazil); For calls originating elsewhere, call: +55-11-232-1144 (Collect calls are accepted).
COLUMBIA: CISPROQUIM: 01-800-091-6012 in Colombia; For calls originating in Bogotá, Colombia, call: 288-6012; For calls originating elsewhere, call: 011-57-1-288-6012.
CANADA: UNITED STATES:
For additional details see the section entitled "WHO TO CALL FOR ASSISTANCE" under the ERG Instructions. As an immediate precautionary measure, isolate spill or leak area in all directions for at least 50 meters (150 feet) for liquids and at least 25 meters (75 feet) for solids. Keep unauthorized personnel away. Stay upwind. Keep out of low areas. Ventilate enclosed areas.
- Evacuate all persons not involved in the fire-fighting efforts (SBBCOM, 1999).
- AIHA ERPG Values for CAS96-64-0 (AIHA, 2006):
- DOE TEEL Values for CAS96-64-0 (U.S. Department of Energy, Office of Emergency Management, 2010):
Listed as Soman (3,3-Dimethyl-2-butyl methylphosphonofluoridate, GD) TEEL-0 (units = ppm): 0.00003 TEEL-1 (units = ppm): 0.00018 TEEL-2 (units = ppm): 0.022 TEEL-3 (units = ppm): 0.017 Definitions: TEEL-0: The threshold concentration below which most people will experience no adverse health effects. TEEL-1: The airborne concentration (expressed as ppm [parts per million] or mg/m(3) [milligrams per cubic meter]) of a substance above which it is predicted that the general population, including susceptible individuals, could experience notable discomfort, irritation, or certain asymptomatic, nonsensory effects. However, these effects are not disabling and are transient and reversible upon cessation of exposure. TEEL-2: The airborne concentration (expressed as ppm or mg/m(3)) of a substance above which it is predicted that the general population, including susceptible individuals, could experience irreversible or other serious, long-lasting, adverse health effects or an impaired ability to escape. TEEL-3: The airborne concentration (expressed as ppm or mg/m(3)) of a substance above which it is predicted that the general population, including susceptible individuals, could experience life-threatening adverse health effects or death.
- AEGL Values for CAS96-64-0 (National Research Council, 2010; National Research Council, 2009; National Research Council, 2008; National Research Council, 2007; NRC, 2001; NRC, 2002; NRC, 2003; NRC, 2004; NRC, 2004; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2006; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2007; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2005; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2005; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2007; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2006; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2006; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2006; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2006; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2006; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2006; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2006; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2006; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2006; United States Environmental Protection Agency Office of Pollution Prevention and Toxics, 2006; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2006; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2007; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2007; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2008; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2008; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2007; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2008; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2007; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2008; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2007; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2009; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2009; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2009; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2009; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2009; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2009; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2009; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2009; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2009; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2009; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2009; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2008; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2008; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2008; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2008; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2008; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2008; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2008; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2009; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2008; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2008; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2008; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2009; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2008; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2008; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2008; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2008; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2008; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2008; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2008; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2007; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2006; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2006; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2006; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2007; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2007; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2007; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2007; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2007; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2005; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2005; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2005; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2005; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2005; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2005; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2005; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2005; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2007; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2005; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2006; 62 FR 58840, 1997; 65 FR 14186, 2000; 65 FR 39264, 2000; 65 FR 77866, 2000; 66 FR 21940, 2001; 67 FR 7164, 2002; 68 FR 42710, 2003; 69 FR 54144, 2004):
Listed as: Nerve agent GD Final Value: AEGL-1 10 min exposure: ppm: 0.00046 ppm mg/m3: 0.0035 mg/m(3)
30 min exposure: ppm: 0.00026 ppm mg/m3: 0.002 mg/m(3)
1 hr exposure: ppm: 0.00018 ppm mg/m3: 0.0014 mg/m(3)
4 hr exposure: ppm: 0.000091 ppm mg/m3: 0.0007 mg/m(3)
8 hr exposure: ppm: 0.000065 ppm mg/m3: 0.0005 mg/m(3)
Definitions: AEGL-1 is the airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience notable discomfort, irritation, or certain asymptomatic non-sensory effects. However, the effects are not disabling, are transient, and are reversible upon cessation of exposure.
Listed as: Nerve agent GD Final Value: AEGL-2 10 min exposure: ppm: 0.0057 ppm mg/m3: 0.044 mg/m(3)
30 min exposure: ppm: 0.0033 ppm mg/m3: 0.025 mg/m(3)
1 hr exposure: ppm: 0.0022 ppm mg/m3: 0.018 mg/m(3)
4 hr exposure: ppm: 0.0012 ppm mg/m3: 0.0085 mg/m(3)
8 hr exposure: ppm: 0.00085 ppm mg/m3: 0.0065 mg/m(3)
Definitions: AEGL-2 is the airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience irreversible or other serious, long-lasting adverse health effects or an impaired ability to escape.
Listed as: Nerve agent GD Final Value: AEGL-3 10 min exposure: ppm: 0.049 ppm mg/m3: 0.38 mg/m(3)
30 min exposure: ppm: 0.025 ppm mg/m3: 0.19 mg/m(3)
1 hr exposure: ppm: 0.017 ppm mg/m3: 0.13 mg/m(3)
4 hr exposure: ppm: 0.0091 ppm mg/m3: 0.07 mg/m(3)
8 hr exposure: ppm: 0.0066 ppm mg/m3: 0.051 mg/m(3)
Definitions: AEGL-3 is the airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience life-threatening health effects or death.
- NIOSH IDLH Values for CAS96-64-0 (National Institute for Occupational Safety and Health, 2007):
CONTAINMENT/WASTE TREATMENT OPTIONS
SPILL OR LEAK PRECAUTIONS - EMERGENCY RESPONSE GUIDEBOOK, GUIDE 153 (ERG, 2004) ELIMINATE all ignition sources (no smoking, flares, sparks or flames in immediate area). Do not touch damaged containers or spilled material unless wearing appropriate protective clothing. Stop leak if you can do it without risk. Prevent entry into waterways, sewers, basements or confined areas. Absorb or cover with dry earth, sand or other non-combustible material and transfer to containers. DO NOT GET WATER INSIDE CONTAINERS.
RECOMMENDED PROTECTIVE CLOTHING - EMERGENCY RESPONSE GUIDEBOOK, GUIDE 153 (ERG, 2004) Wear positive pressure self-contained breathing apparatus (SCBA). Wear chemical protective clothing that is specifically recommended by the manufacturer. It may provide little or no thermal protection. Structural firefighters' protective clothing provides limited protection. fire situations ONLY; it is not effective in spill situations where direct contact with the substance is possible.
Laboratory Spill: A minimum of 55 grams of decontaminated solution is required per gram of soman. Agitate the decontaminant/agent solution is for a minimum of one hour. Agitation is not necessary following the first hour provided a single The pH should be checked after the first hour and the pH adjusted to 11.5. Add additional sodium hydroxide as needed. Continue with 55 grams of decontaminant per gram of soman. Agitate for one hour and the mixture to react for three hours. At the end of the third hour, adjust the pH to above 10 (SBCCOM, 1999). Laboratory Spill: If thickened soman is spilled, dissolve in acetone before adding any decontaminating solution. Containing thickened soman is generally not necessary. Carefully scrape excess off the contaminated surface and place in a fully removable head drum with a high density, polyethylene lining and decontaminate as above (SBCCOM, 1999). Laboratory Spill: "Areas where liquid agent has been spilled will be clearly identified and controlled to prevent inadvertent access by unauthorized personnel" (U.S. Army, 1997). Laboratory Spill: Only personnel in full protective clothing are allowed in areas where there has been a spill or release of chemical agents (SBCCOM, 1999). Laboratory Spill: "The material must be encapsulated so that the concentration of agent on the outside of the encapsulating material does not exceed the AEL." (U.S. Army, 1997). Laboratory Spill: Place the neutralized substance and contaminated clothing into a DOT- approved container, cover the material with the decontaminating solution, decontaminate the outside, and label the sealed container according to EPA and DOT regulations (SBCCOM, 1999). Laboratory Spill: Scoop the neutralized substance into a DOT-approved container, cover the material with the decontaminating solution, decontaminate the outside, and label the sealed container according to EPA and DOT regulations (SBCCOM, 1999). Laboratory Spill: Leaking containers should be placed in a double containment system with a sorbent material between the interior and exterior container (SBCCOM, 1999). Laboratory Spill: Dispose of the decontaminate according to local, state and Federal regulations (SBCCOM, 1999). Laboratory Spill: "The material must be encapsulated so that the concentration of agent on the outside of the encapsulating material does not exceed the AEL" (U.S. Army, 1997). Editor's Note: The decontamination solutions listed are not for dermal use.
Field Procedures: "Areas where liquid agent has been spilled will be clearly identified and controlled to prevent inadvertent access by unauthorized personnel" (U.S. Army, 1997). Field Procedures: Only personnel in full protective clothing are allowed in areas where there has been a spill or release of chemical agents (SBCCOM, 1999). Field Procedures: "Personnel who have been in areas of possible chemical agent exposure (normally, personnel downwind of an agent release or personnel who were in areas of known agent contamination) will remain at the installation for at least 30 minutes after leaving the area. They will then be observed for signs of agent exposure, and agent-related symptoms by the supervisor or his designated representative before departing the installation. If signs of possible exposure are noted the worker will be referred immediately to the medical family" (U.S. Army, 1997). Field Procedures: Cover spills with diatomaceous earth, vermiculite, clay, fine sand, sponges, cloth or paper towels (SBCCOM, 1999). Field Procedures: Use copious amounts of sodium hydroxide solution (a minimum 10 wt%) to decontaminate the area (SBCCOM, 1999). Field Procedures: If 10 wt% aqueous sodium hydroxide is not available, the following decontaminants may be substituted, and are listed in order of preference: Decontaminating Agent (DS2), Sodium Carbonate, and Supertropical Bleach Slurry (STB). DS2 is a combination of diethylenetriamine (70%), ethylene glcol monomethyl ether (28%), and sodium hydroxide (2%). Ensure that there are no leaks in containers of DS2 in long-term storage due to the potential for forming explosive peroxides in air (SBCCOM, 1999). Field Procedures: Scoop the neutralized substance into a DOT-approved container, cover the material with the decontaminating solution, decontaminate the outside, and label the sealed container according to EPA and DOT regulations (SBCCOM, 1999). Field Procedures: Leaking containers should be placed in a double containment system with a sorbent material between the interior and exterior container (SBCCOM, 1999). Field Procedures: Dispose of the decontaminate according to local, state and Federal regulations (SBCCOM, 1999). Field Procedures: "The material must be encapsulated so that the concentration of agent on the outside of the encapsulating material does not exceed the AEL" (U.S. Army, 1997). Editor's Note: The decontamination solutions listed are not for dermal use. Editor's Note: Never mix DS2 and STB as a fire may result.
Some decontamination solutions are considered hazardous waste and must be disposed of according to RCRA and local health department regulations (SBCCOM, 1999). Waste management activities associated with material disposition are unique to individual situations. Proper waste characterization and decisions regarding waste management should be coordinated with the appropriate local, state, or federal authorities to ensure compliance with all applicable rules and regulations.
Open pit burning, or burying the chemical agent and items contaminated with the agent is strictly prohibited (U.S. Army, 1997). Detoxified chemical agents (using recommended army procedures) can be destroyed in an EPA approved incinerator according to provisions listed by the Federal, State, or local Resource Conservation and Recovery Act regulations (RCRA) (SBCCOM, 1999).
-ENVIRONMENTAL HAZARD MANAGEMENT
POLLUTION HAZARD
- Soman (GD), an organophosphorous anticholinesterase nerve agent and chemical warfare agent (CWA), may have entered the environment from various waste streams during its chemical production in World War II (HSDB, 2005).
- Soman's stability in the environment largely determines the potential for human and environmental exposure. Its environmental stability is primarily dependent on weather variables such as wind speed and direction, temperature gradients, humidity, and precipitation. The magnitude of the effect of each variable on downwind hazards and exposure are further influenced by local topography, vegetation, and soil conditions (U.S. Army, 2002).
ENVIRONMENTAL FATE AND KINETICS
Upon release to the ambient atmosphere, Soman ordinarily exists as a vapor due to its high vapor pressure (0.4 mm Hg at 25 degrees C), and it may also disperse rapidly given its volatility (531 mg/m(3) at 0 degrees C; 3900 mg/m(3) at 25 degrees C)) (HSDB, 2005; CDC, 2000; USACHPPM, 1998). Photochemically-produced hydroxyl radicals can rapidly degrade Soman. The estimated half-life of the reaction is 8 hours, based on an estimated rate constant of 5 x 10(-11) cm(3)/molecule-sec at 25 degrees C (HSDB, 2005). The potential for direct photolysis of Soman or phototransformation of its hydrolysis by-products in sunlight is negligible (HSDB, 2005; CDC, 2000).
SURFACE WATER Soman will typically volatilize from water surfaces, given a Henry's Law constant of 4.6 x 10(-6) atm-m(3)/mole (HSDB, 2005). Estimated volatilization half-lives for Soman are 11 days in a model river (1 m deep, 1 m/sec flow rate, 3 m/sec wind speed) and 83 days in a model lake (1 m deep, 0.05 m/sec flow rate 0.5 m/sec wind speed) (HSDB, 2005).
Temperature and pH largely influence Soman's rate of hydrolysis. Hydrolytic half-lives range from 9.6 hours (30 degrees C, pH 7.6) and 60 hours (25 degrees C, pH 6) up to 100 hours. Hydrolysis is slow under neutral conditions and enhanced in basic and acidic solutions. Hydrolysis takes only a few minutes at pH levels above 10 (HSDB, 2005; Young, 2000; Munro et al, 1999). Some copper (II) complexes and iodosobenzoic acid derivatives can act as catalysts and accelerate hydrolysis (Munro et al, 1999). The minimum hydrolysis rate occurs at a pH of 4 to 6. Hydrolysis is thermally stable at temperatures below 49 degrees C (MTS, 2004; CDC, 2000; Young, 2000). Other hydrolysis rate constants include the following (MTS, 2004): At ambient temperature: 0.231 k/hr (pH 2) and 0.00182 k/hr (pH 4.5-5.0) At temperature of 25 degrees C: 0.0050 k/hr and 0.078 k/hr (pH 7); 0.3 k/hr (pH 7.4); 0.324 k/hr and 0.49 k/hr (pH 9); 1.97 k/hr (pH 9.6); 2.13 k/hr (pH 9.8); 6.34 k/hr (pH 10.3); 14.7 k/hr (pH 10.6); 19.4 k/hr (pH 10.7)
Pinacolyl methylphosphonic acid (PMPA) and methylphosphonic acid (MPA) are Soman's principal by-products from hydrolysis. These acidic by-products can lower the pH, thereby slowing the hydrolysis rate (Munro et al, 1999). Reduction of Soman's concentration in water by a factor of 1 x 10(6) takes approximately 23 days (2,000 hours) (Young, 2000).
TERRESTRIAL Soman readily volatilizes from moist soil, given its relatively high volatility and vapor pressure. Soman can undergo hydrolysis in moist soil, at a rate largely dependent on temperature and pH. Soman persists longer in dry soils (HSDB, 2005; Young, 2000). Soman can persist in soil from 3 to 36 hours under rainy conditions; from 2.5 to 5 days in sunny, light wind, warm (15 degrees C) conditions; and from 1 to 6 weeks on snow (-10 degrees C, sunny) (HSDB, 2005).
Soman's potential mobility in soil is considered moderate, based on an estimated organic carbon partition coefficient (Koc) of 221 and log Kow of 1.78 (HSDB, 2005).
ABIOTIC DEGRADATION
- If released to the ambient atmosphere, Soman (GD) will exist solely in the vapor phase, where it degrades through reaction with photochemically-produced hydroxyl radicals. Degradation by direct photolysis is a negligible environmental fate process. In aquatic systems, Soman readily volatilizes from surface water and only slightly absorbs to suspended solids and sediments. Soman can readily volatilize from moist soil surfaces but not from dry soil surfaces. Soman can persist up to 6 weeks in dry soils under varied weather conditions. Few soil microorganisms can biodegrade Soman (HSDB, 2005).
- Soman's persistence in the environment depends both on weather conditions, as well as the munition type and use of thickening agents. Soman can persist in the environment for up to 5 hours, depending on weather factors and the munition type used. Under typical weather conditions, heavily splashed liquid GD can persist for 1 to 2 days (USACHPPM, 1998; USACHPPM, 1998).
- Atmospheric conditions including temperature, temperature gradient, windspeed, and direction strongly influence the effectiveness and environmental persistence of chemical warfare agents (CWAs) such as Soman (U.S. Army, 2002).
High temperatures and strong winds tend to increase evaporation rates and help dissipate CWA clouds (U.S. Army, 2002). Wind speed and direction along with surface terrain features control migration of chemical clouds. CWA clouds may pass over and around rather than penetrate heavily wooded areas. Agent clouds also tend to flow over rolling terrain, around large hills, and up and down valleys (U.S. Army, 2002).
BIODEGRADATION
- Two Pseudomonas microorganisms can reportedly biodegrade Soman to its principal metabolite, o-pinacolyl hydrogen methylphosphonate (HSDB, 2005).
BIOACCUMULATION
ENVIRONMENTAL TOXICITY
- Ecotoxicity data on Soman were not located (Munro et al, 1999).
-PHYSICAL/CHEMICAL PROPERTIES
MOLECULAR WEIGHT
DESCRIPTION/PHYSICAL STATE
- Soman is a colorless liquid and has a fruity odor when it is pure. The industrial product contains impurities, is a yellow-brown, and has a camphor-like odor. It gives off a colorless vapor (MTS , 2001; USACHPPM , 2001).
- It is more soluble in lipids and is less soluble in water than the other G-agents. Due to this characteristic, it penetrates the skin more rapidly and is more toxic (Munro et al, 1999).
- Soman usually contains thickeners such as styrene-butyl acrylate copolymer and methyl methacrylate to increase the persistency (Munro et al, 1999) SBCCOM, 1999).
VAPOR PRESSURE
- 0.40 mmHg (at 25 degrees C) (Munro et al, 1999) NAP, 2001; SBCCOM, 1999; (USACHPPM , 2001)
DENSITY
FREEZING/MELTING POINT
BOILING POINT
- 198 degrees C; 388 degrees F (at 760 mmHg) (RRIS , 2001) SBCCOM, 1999; (USACHPPM , 2001)
FLASH POINT
- 121 degrees C (Open Cup) (USACHPPM, 2001a) SBCCOM, 1999)
SOLUBILITY
3.4 g/100g (at 0 degrees C) (SBCCOM, 1999) 2.1 g/100g (at 20 degrees C) (SBCCOM, 1999)
Soman is soluble in alcohols, fats, gasoline, oils, and sulfur mustard (SBCCOM, 1999).
HENRY'S CONSTANT
- 4.6X10(-17) (calculated) (Munro et al, 2001)
OTHER/PHYSICAL
-REFERENCES
GENERAL BIBLIOGRAPHY- 40 CFR 372.28: Environmental Protection Agency - Toxic Chemical Release Reporting, Community Right-To-Know, Lower thresholds for chemicals of special concern. National Archives and Records Administration (NARA) and the Government Printing Office (GPO). Washington, DC. Final rules current as of Apr 3, 2006.
- 40 CFR 372.65: Environmental Protection Agency - Toxic Chemical Release Reporting, Community Right-To-Know, Chemicals and Chemical Categories to which this part applies. National Archives and Records Association (NARA) and the Government Printing Office (GPO), Washington, DC. Final rules current as of Apr 3, 2006.
- 49 CFR 172.101 - App. B: Department of Transportation - Table of Hazardous Materials, Appendix B: List of Marine Pollutants. National Archives and Records Administration (NARA) and the Government Printing Office (GPO), Washington, DC. Final rules current as of Aug 29, 2005.
- 49 CFR 172.101: Department of Transportation - Table of Hazardous Materials. National Archives and Records Administration (NARA) and the Government Printing Office (GPO), Washington, DC. Final rules current as of Aug 11, 2005.
- 62 FR 58840: Notice of the National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances - Proposed AEGL Values, Environmental Protection Agency, NAC/AEGL Committee. National Archives and Records Administration (NARA) and the Government Publishing Office (GPO), Washington, DC, 1997.
- 65 FR 14186: Notice of the National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances - Proposed AEGL Values, Environmental Protection Agency, NAC/AEGL Committee. National Archives and Records Administration (NARA) and the Government Publishing Office (GPO), Washington, DC, 2000.
- 65 FR 39264: Notice of the National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances - Proposed AEGL Values, Environmental Protection Agency, NAC/AEGL Committee. National Archives and Records Administration (NARA) and the Government Publishing Office (GPO), Washington, DC, 2000.
- 65 FR 77866: Notice of the National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances - Proposed AEGL Values, Environmental Protection Agency, NAC/AEGL Committee. National Archives and Records Administration (NARA) and the Government Publishing Office (GPO), Washington, DC, 2000.
- 66 FR 21940: Notice of the National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances - Proposed AEGL Values, Environmental Protection Agency, NAC/AEGL Committee. National Archives and Records Administration (NARA) and the Government Publishing Office (GPO), Washington, DC, 2001.
- 67 FR 7164: Notice of the National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances - Proposed AEGL Values, Environmental Protection Agency, NAC/AEGL Committee. National Archives and Records Administration (NARA) and the Government Publishing Office (GPO), Washington, DC, 2002.
- 68 FR 42710: Notice of the National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances - Proposed AEGL Values, Environmental Protection Agency, NAC/AEGL Committee. National Archives and Records Administration (NARA) and the Government Publishing Office (GPO), Washington, DC, 2003.
- 69 FR 54144: Notice of the National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances - Proposed AEGL Values, Environmental Protection Agency, NAC/AEGL Committee. National Archives and Records Administration (NARA) and the Government Publishing Office (GPO), Washington, DC, 2004.
- AIHA: 2006 Emergency Response Planning Guidelines and Workplace Environmental Exposure Level Guides Handbook, American Industrial Hygiene Association, Fairfax, VA, 2006.
- Alaspaa AO, Kuisma MJ, Hoppu K, et al: Out-of-hospital administration of activated charcoal by emergency medical services. Ann Emerg Med 2005; 45:207-12.
- American Conference of Governmental Industrial Hygienists : ACGIH 2010 Threshold Limit Values (TLVs(R)) for Chemical Substances and Physical Agents and Biological Exposure Indices (BEIs(R)), American Conference of Governmental Industrial Hygienists, Cincinnati, OH, 2010.
- Ansell-Edmont: SpecWare Chemical Application and Recommendation Guide. Ansell-Edmont. Coshocton, OH. 2001. Available from URL: http://www.ansellpro.com/specware. As accessed 10/31/2001.
- Bata Shoe Company: Industrial Footwear Catalog, Bata Shoe Company, Belcamp, MD, 1995.
- Best Manufacturing: ChemRest Chemical Resistance Guide. Best Manufacturing. Menlo, GA. 2002. Available from URL: http://www.chemrest.com. As accessed 10/8/2002.
- Best Manufacturing: Degradation and Permeation Data. Best Manufacturing. Menlo, GA. 2004. Available from URL: http://www.chemrest.com/DomesticPrep2/. As accessed 04/09/2004.
- Boss Manufacturing Company: Work Gloves, Boss Manufacturing Company, Kewanee, IL, 1998.
- Budavari S: The Merck Index, 12th ed. on CD-ROM. Version 12:3a. Chapman & Hall/CRCnetBASE. Whitehouse Station, NJ. 2000.
- Burgess JL, Kirk M, Borron SW, et al: Emergency department hazardous materials protocol for contaminated patients. Ann Emerg Med 1999; 34(2):205-212.
- Centers for Disease Control and Prevention (CDC): Emergency Response Card: Information for First Responders - Nerve Agent: Soman (CTC: 0004). Centers for Disease Control and Prevention (CDC). Atlanta, Georgia, USA. 2000. Available from URL: http://www.bt.cdc.gov/agent/soman/ctc0004.asp. As accessed 10 August 2005.
- ChemFab Corporation: Chemical Permeation Guide Challenge Protective Clothing Fabrics, ChemFab Corporation, Merrimack, NH, 1993.
- Clifford NJ & Nies AS: Organophosphate poisoning from wearing a laundered uniform previously contaminated with parathion. JAMA 1989; 262:3035-3036.
- Comasec Safety, Inc.: Chemical Resistance to Permeation Chart. Comasec Safety, Inc.. Enfield, CT. 2003. Available from URL: http://www.comasec.com/webcomasec/english/catalogue/mtabgb.html. As accessed 4/28/2003.
- Comasec Safety, Inc.: Product Literature, Comasec Safety, Inc., Enfield, CT, 2003a.
- DFG: List of MAK and BAT Values 2002, Report No. 38, Deutsche Forschungsgemeinschaft, Commission for the Investigation of Health Hazards of Chemical Compounds in the Work Area, Wiley-VCH, Weinheim, Federal Republic of Germany, 2002.
- Dagnone D, Matsui D, & Rieder MJ: Assessment of the palatability of vehicles for activated charcoal in pediatric volunteers. Pediatr Emerg Care 2002; 18:19-21.
- DuPont: DuPont Suit Smart: Interactive Tool for the Selection of Protective Apparel. DuPont. Wilmington, DE. 2002. Available from URL: http://personalprotection.dupont.com/protectiveapparel/suitsmart/smartsuit2/na_english.asp. As accessed 10/31/2002.
- DuPont: Permeation Guide for DuPont Tychem Protective Fabrics. DuPont. Wilmington, DE. 2003. Available from URL: http://personalprotection.dupont.com/en/pdf/tyvektychem/pgcomplete20030128.pdf. As accessed 4/26/2004.
- DuPont: Permeation Test Results. DuPont. Wilmington, DE. 2002a. Available from URL: http://www.tyvekprotectiveapprl.com/databases/default.htm. As accessed 7/31/2002.
- EPA: EPA chemical profile on sarin, Environmental Protection Agency, Washington, DC, 1985.
- EPA: Search results for Toxic Substances Control Act (TSCA) Inventory Chemicals. US Environmental Protection Agency, Substance Registry System, U.S. EPA's Office of Pollution Prevention and Toxics. Washington, DC. 2005. Available from URL: http://www.epa.gov/srs/.
- ERG: Emergency Response Guidebook. A Guidebook for First Responders During the Initial Phase of a Dangerous Goods/Hazardous Materials Incident, U.S. Department of Transportation, Research and Special Programs Administration, Washington, DC, 2004.
- G Tate : Gary Tate's Chemical Warfare Page. seanet.com. Seattle, WA. 2001. Available from URL: http://www.seanet.com. As accessed Accessed on 3/9/2001.
- Guardian Manufacturing Group: Guardian Gloves Test Results. Guardian Manufacturing Group. Willard, OH. 2001. Available from URL: http://www.guardian-mfg.com/guardianmfg.html. As accessed 12/11/2001.
- Guenther Skokan E, Junkins EP, & Corneli HM: Taste test: children rate flavoring agents used with activated charcoal. Arch Pediatr Adolesc Med 2001; 155:683-686.
- Gulflink : Office of the Special Assistant for Gulf War Illnesses. Accessed on March 7, 2001. GulfLINK: The Special Assistant for Gulf War Illnesses. Falls Church, VA. 2001. Available from URL: http://www.gulflink.osd.mil/.
- HSDB : Hazardous Substances Data Bank. National Library of Medicine. Bethesda, MD (Internet Version). Edition expires 2005; provided by Truven Health Analytics Inc., Greenwood Village, CO.
- HSDB : Hazardous Substances Data Bank. National Library of Medicine. Bethesda, MD (Internet Version). Edition expires 4/30/2001; provided by Truven Health Analytics Inc., Greenwood Village, CO.
- IARC Working Group on the Evaluation of Carcinogenic Risks to Humans : IARC Monographs on the Evaluation of Carcinogenic Risks to Humans: 1,3-Butadiene, Ethylene Oxide and Vinyl Halides (Vinyl Fluoride, Vinyl Chloride and Vinyl Bromide), 97, International Agency for Research on Cancer, Lyon, France, 2008.
- IARC Working Group on the Evaluation of Carcinogenic Risks to Humans : IARC Monographs on the Evaluation of Carcinogenic Risks to Humans: Formaldehyde, 2-Butoxyethanol and 1-tert-Butoxypropan-2-ol, 88, International Agency for Research on Cancer, Lyon, France, 2006.
- IARC Working Group on the Evaluation of Carcinogenic Risks to Humans : IARC Monographs on the Evaluation of Carcinogenic Risks to Humans: Household Use of Solid Fuels and High-temperature Frying, 95, International Agency for Research on Cancer, Lyon, France, 2010a.
- IARC Working Group on the Evaluation of Carcinogenic Risks to Humans : IARC Monographs on the Evaluation of Carcinogenic Risks to Humans: Smokeless Tobacco and Some Tobacco-specific N-Nitrosamines, 89, International Agency for Research on Cancer, Lyon, France, 2007.
- IARC Working Group on the Evaluation of Carcinogenic Risks to Humans : IARC Monographs on the Evaluation of Carcinogenic Risks to Humans: Some Non-heterocyclic Polycyclic Aromatic Hydrocarbons and Some Related Exposures, 92, International Agency for Research on Cancer, Lyon, France, 2010.
- IARC: List of all agents, mixtures and exposures evaluated to date - IARC Monographs: Overall Evaluations of Carcinogenicity to Humans, Volumes 1-88, 1972-PRESENT. World Health Organization, International Agency for Research on Cancer. Lyon, FranceAvailable from URL: http://monographs.iarc.fr/monoeval/crthall.html. As accessed Oct 07, 2004.
- ICAO: Technical Instructions for the Safe Transport of Dangerous Goods by Air, 2003-2004. International Civil Aviation Organization, Montreal, Quebec, Canada, 2002.
- ILC Dover, Inc.: Ready 1 The Chemturion Limited Use Chemical Protective Suit, ILC Dover, Inc., Frederica, DE, 1998.
- International Agency for Research on Cancer (IARC): IARC monographs on the evaluation of carcinogenic risks to humans: list of classifications, volumes 1-116. International Agency for Research on Cancer (IARC). Lyon, France. 2016. Available from URL: http://monographs.iarc.fr/ENG/Classification/latest_classif.php. As accessed 2016-08-24.
- International Agency for Research on Cancer: IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. World Health Organization. Geneva, Switzerland. 2015. Available from URL: http://monographs.iarc.fr/ENG/Classification/. As accessed 2015-08-06.
- Kappler, Inc.: Suit Smart. Kappler, Inc.. Guntersville, AL. 2001. Available from URL: http://www.kappler.com/suitsmart/smartsuit2/na_english.asp?select=1. As accessed 7/10/2001.
- Kimberly-Clark, Inc.: Chemical Test Results. Kimberly-Clark, Inc.. Atlanta, GA. 2002. Available from URL: http://www.kc-safety.com/tech_cres.html. As accessed 10/4/2002.
- LaCrosse-Rainfair: Safety Products, LaCrosse-Rainfair, Racine, WI, 1997.
- Lewis RA: Lewis' Dictionary of Toxicology, Lewis Publishers, Boca Raton, FL, 1998.
- Lewis RJ: Sax's Dangerous Properties of Industrial Materials, 10th ed, Van Nostrand Reinhold Company, New York, NY, 2000.
- MAPA Professional: Chemical Resistance Guide. MAPA North America. Columbia, TN. 2003. Available from URL: http://www.mapaglove.com/pro/ChemicalSearch.asp. As accessed 4/21/2003.
- MAPA Professional: Chemical Resistance Guide. MAPA North America. Columbia, TN. 2004. Available from URL: http://www.mapaglove.com/ProductSearch.cfm?id=1. As accessed 6/10/2004.
- MTS : Chemistry of GD (Soman). Mitretek Systems. Mireteck Systems. Falls Church, VA. 2001. Available from URL: http://www.mitretek.org/mission/envene/chemical/agents/soman.html. As accessed Accessed on March 20, 2001. City state and pub added 6/18/03 ER.
- MTS Mitretek Systems: Chemistry of GD (Soman). Miretek Systems, Inc.. Falls Church, VA, USA. 2004. Available from URL: http://www.mitretek.org/home.nsf/homelandsecurity/Soman. As accessed 10 August 2005.
- Mar-Mac Manufacturing, Inc: Product Literature, Protective Apparel, Mar-Mac Manufacturing, Inc., McBee, SC, 1995.
- Marigold Industrial: US Chemical Resistance Chart, on-line version. Marigold Industrial. Norcross, GA. 2003. Available from URL: www.marigoldindustrial.com/charts/uschart/uschart.html. As accessed 4/14/2003.
- Memphis Glove Company: Permeation Guide. Memphis Glove Company. Memphis, TN. 2001. Available from URL: http://www.memphisglove.com/permeation.html. As accessed 7/2/2001.
- Miodustewski RJ, Reutter SA, Miller LL, et al.: Evaluation of Airborne Exposure Limits for G-agents: Occupational and General Population Exposure Criteria (ERDEC-TR-489). U.S. Army Center for Health Promotion and Preventive Medicine (USACHPPM). Aberdeen Proving Ground, MD, USA. 1998. Available from URL: http://chppm-www.apgea.army.mil/hrarcp/CAW/ERDEC-TR-489.pdf. As accessed 10 August 2005.
- Montgomery Safety Products: Montgomery Safety Products Chemical Resistant Glove Guide, Montgomery Safety Products, Canton, OH, 1995.
- Munro N, Talmage S, & Griffin G: The Sources Fate, and Toxicity of Chemical Warfare Agent Degradation Products. Envir Health Perspectives 1999a; 107:933-974.
- Munro N, Talmage S, & Griffin G: The Sources, Fate, and Toxicity of Chemical Warfare Agent Degradation Products. Envir Health Perspectives 1999; 107:933-974.
- NAP : Health Risk Assessment of Nerve Agent GD. National Academy Press. Washington, DC. 1996. Available from URL: http://books.nap.edu/books/0309065984.html/169.html. As accessed March 6, 2001.
- NATO: Nerve Agents. In: The NATO Handbook on the Medical Aspects of Nuclear, Biological and Chemical Defensive Operations, AMedP-6, Part III-Chemical: STANAG 2500. US Army Medical Research and Development Command, US Department of Army, 1973.
- NFPA: Fire Protection Guide to Hazardous Materials, 13th ed., National Fire Protection Association, Quincy, MA, 2002.
- NLM : Chemical Warfare Agents. Division of Specialized Information Services. Division of Specialized Information Services, National Library of Medicine. Bethesda, MD. 2001. Available from URL: http://sis.nlm.nih.gov/Tox/ChemWar.html. As accessed Accessed on March 7, 2001..
- NRC: Acute Exposure Guideline Levels for Selected Airborne Chemicals - Volume 1, Subcommittee on Acute Exposure Guideline Levels, Committee on Toxicology, Board on Environmental Studies and Toxicology, Commission of Life Sciences, National Research Council. National Academy Press, Washington, DC, 2001.
- NRC: Acute Exposure Guideline Levels for Selected Airborne Chemicals - Volume 2, Subcommittee on Acute Exposure Guideline Levels, Committee on Toxicology, Board on Environmental Studies and Toxicology, Commission of Life Sciences, National Research Council. National Academy Press, Washington, DC, 2002.
- NRC: Acute Exposure Guideline Levels for Selected Airborne Chemicals - Volume 3, Subcommittee on Acute Exposure Guideline Levels, Committee on Toxicology, Board on Environmental Studies and Toxicology, Commission of Life Sciences, National Research Council. National Academy Press, Washington, DC, 2003.
- NRC: Acute Exposure Guideline Levels for Selected Airborne Chemicals - Volume 4, Subcommittee on Acute Exposure Guideline Levels, Committee on Toxicology, Board on Environmental Studies and Toxicology, Commission of Life Sciences, National Research Council. National Academy Press, Washington, DC, 2004.
- Nat-Wear: Protective Clothing, Hazards Chart. Nat-Wear. Miora, NY. 2001. Available from URL: http://www.natwear.com/hazchart1.htm. As accessed 7/12/2001.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for 1,2,3-Trimethylbenzene (Proposed). United States Environmental Protection Agency. Washington, DC. 2006k. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d68a&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for 1,2,4-Trimethylbenzene (Proposed). United States Environmental Protection Agency. Washington, DC. 2006m. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d68a&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for 1,2-Butylene Oxide (Proposed). United States Environmental Protection Agency. Washington, DC. 2008d. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648083cdbb&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for 1,2-Dibromoethane (Proposed). United States Environmental Protection Agency. Washington, DC. 2007g. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064802796db&disposition=attachment&contentType=pdf. As accessed 2010-08-18.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for 1,3,5-Trimethylbenzene (Proposed). United States Environmental Protection Agency. Washington, DC. 2006l. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d68a&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for 2-Ethylhexyl Chloroformate (Proposed). United States Environmental Protection Agency. Washington, DC. 2007b. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648037904e&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Acrylonitrile (Proposed). United States Environmental Protection Agency. Washington, DC. 2007c. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648028e6a3&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Adamsite (Proposed). United States Environmental Protection Agency. Washington, DC. 2007h. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020fd29&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Agent BZ (3-quinuclidinyl benzilate) (Proposed). United States Environmental Protection Agency. Washington, DC. 2007f. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064803ad507&disposition=attachment&contentType=pdf. As accessed 2010-08-18.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Allyl Chloride (Proposed). United States Environmental Protection Agency. Washington, DC. 2008. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648039d9ee&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Aluminum Phosphide (Proposed). United States Environmental Protection Agency. Washington, DC. 2005b. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c5ed&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Arsenic Trioxide (Proposed). United States Environmental Protection Agency. Washington, DC. 2007m. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480220305&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Automotive Gasoline Unleaded (Proposed). United States Environmental Protection Agency. Washington, DC. 2009a. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a7cc17&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Biphenyl (Proposed). United States Environmental Protection Agency. Washington, DC. 2005j. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064801ea1b7&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Bis-Chloromethyl Ether (BCME) (Proposed). United States Environmental Protection Agency. Washington, DC. 2006n. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648022db11&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Boron Tribromide (Proposed). United States Environmental Protection Agency. Washington, DC. 2008a. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064803ae1d3&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Bromine Chloride (Proposed). United States Environmental Protection Agency. Washington, DC. 2007d. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648039732a&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Bromoacetone (Proposed). United States Environmental Protection Agency. Washington, DC. 2008e. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064809187bf&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Calcium Phosphide (Proposed). United States Environmental Protection Agency. Washington, DC. 2005d. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c5ed&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Carbonyl Fluoride (Proposed). United States Environmental Protection Agency. Washington, DC. 2008b. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064803ae328&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Carbonyl Sulfide (Proposed). United States Environmental Protection Agency. Washington, DC. 2007e. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648037ff26&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Chlorobenzene (Proposed). United States Environmental Protection Agency. Washington, DC. 2008c. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064803a52bb&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Cyanogen (Proposed). United States Environmental Protection Agency. Washington, DC. 2008f. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064809187fe&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Dimethyl Phosphite (Proposed). United States Environmental Protection Agency. Washington, DC. 2009. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a7cbf3&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Diphenylchloroarsine (Proposed). United States Environmental Protection Agency. Washington, DC. 2007l. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020fd29&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Ethyl Isocyanate (Proposed). United States Environmental Protection Agency. Washington, DC. 2008h. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648091884e&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Ethyl Phosphorodichloridate (Proposed). United States Environmental Protection Agency. Washington, DC. 2008i. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480920347&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Ethylbenzene (Proposed). United States Environmental Protection Agency. Washington, DC. 2008g. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064809203e7&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Ethyldichloroarsine (Proposed). United States Environmental Protection Agency. Washington, DC. 2007j. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020fd29&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Germane (Proposed). United States Environmental Protection Agency. Washington, DC. 2008j. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480963906&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Hexafluoropropylene (Proposed). United States Environmental Protection Agency. Washington, DC. 2006. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064801ea1f5&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Ketene (Proposed). United States Environmental Protection Agency. Washington, DC. 2007. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020ee7c&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Magnesium Aluminum Phosphide (Proposed). United States Environmental Protection Agency. Washington, DC. 2005h. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c5ed&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Magnesium Phosphide (Proposed). United States Environmental Protection Agency. Washington, DC. 2005g. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c5ed&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Malathion (Proposed). United States Environmental Protection Agency. Washington, DC. 2009k. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064809639df&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Mercury Vapor (Proposed). United States Environmental Protection Agency. Washington, DC. 2009b. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a8a087&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Methyl Isothiocyanate (Proposed). United States Environmental Protection Agency. Washington, DC. 2008k. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480963a03&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Methyl Parathion (Proposed). United States Environmental Protection Agency. Washington, DC. 2008l. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480963a57&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Methyl tertiary-butyl ether (Proposed). United States Environmental Protection Agency. Washington, DC. 2007a. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064802a4985&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Methylchlorosilane (Proposed). United States Environmental Protection Agency. Washington, DC. 2005. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c5f4&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Methyldichloroarsine (Proposed). United States Environmental Protection Agency. Washington, DC. 2007i. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020fd29&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Methyldichlorosilane (Proposed). United States Environmental Protection Agency. Washington, DC. 2005a. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c646&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Nitrogen Mustard (HN1 CAS Reg. No. 538-07-8) (Proposed). United States Environmental Protection Agency. Washington, DC. 2006a. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d6cb&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Nitrogen Mustard (HN2 CAS Reg. No. 51-75-2) (Proposed). United States Environmental Protection Agency. Washington, DC. 2006b. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d6cb&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Nitrogen Mustard (HN3 CAS Reg. No. 555-77-1) (Proposed). United States Environmental Protection Agency. Washington, DC. 2006c. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d6cb&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Nitrogen Tetroxide (Proposed). United States Environmental Protection Agency. Washington, DC. 2008n. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648091855b&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Nitrogen Trifluoride (Proposed). United States Environmental Protection Agency. Washington, DC. 2009l. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480963e0c&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Parathion (Proposed). United States Environmental Protection Agency. Washington, DC. 2008o. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480963e32&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Perchloryl Fluoride (Proposed). United States Environmental Protection Agency. Washington, DC. 2009c. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a7e268&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Perfluoroisobutylene (Proposed). United States Environmental Protection Agency. Washington, DC. 2009d. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a7e26a&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Phenyl Isocyanate (Proposed). United States Environmental Protection Agency. Washington, DC. 2008p. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648096dd58&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Phenyl Mercaptan (Proposed). United States Environmental Protection Agency. Washington, DC. 2006d. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020cc0c&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Phenyldichloroarsine (Proposed). United States Environmental Protection Agency. Washington, DC. 2007k. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020fd29&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Phorate (Proposed). United States Environmental Protection Agency. Washington, DC. 2008q. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648096dcc8&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Phosgene (Draft-Revised). United States Environmental Protection Agency. Washington, DC. 2009e. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a8a08a&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Phosgene Oxime (Proposed). United States Environmental Protection Agency. Washington, DC. 2009f. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a7e26d&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Potassium Cyanide (Proposed). United States Environmental Protection Agency. Washington, DC. 2009g. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a7cbb9&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Potassium Phosphide (Proposed). United States Environmental Protection Agency. Washington, DC. 2005c. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c5ed&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Propargyl Alcohol (Proposed). United States Environmental Protection Agency. Washington, DC. 2006e. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020ec91&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Selenium Hexafluoride (Proposed). United States Environmental Protection Agency. Washington, DC. 2006f. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020ec55&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Silane (Proposed). United States Environmental Protection Agency. Washington, DC. 2006g. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d523&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Sodium Cyanide (Proposed). United States Environmental Protection Agency. Washington, DC. 2009h. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a7cbb9&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Sodium Phosphide (Proposed). United States Environmental Protection Agency. Washington, DC. 2005i. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c5ed&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Strontium Phosphide (Proposed). United States Environmental Protection Agency. Washington, DC. 2005f. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c5ed&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Sulfuryl Chloride (Proposed). United States Environmental Protection Agency. Washington, DC. 2006h. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020ec7a&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Tear Gas (Proposed). United States Environmental Protection Agency. Washington, DC. 2008s. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648096e551&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Tellurium Hexafluoride (Proposed). United States Environmental Protection Agency. Washington, DC. 2009i. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a7e2a1&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Tert-Octyl Mercaptan (Proposed). United States Environmental Protection Agency. Washington, DC. 2008r. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648096e5c7&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Tetramethoxysilane (Proposed). United States Environmental Protection Agency. Washington, DC. 2006j. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d632&disposition=attachment&contentType=pdf. As accessed 2010-08-17.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Trimethoxysilane (Proposed). United States Environmental Protection Agency. Washington, DC. 2006i. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d632&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Trimethyl Phosphite (Proposed). United States Environmental Protection Agency. Washington, DC. 2009j. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a7d608&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Trimethylacetyl Chloride (Proposed). United States Environmental Protection Agency. Washington, DC. 2008t. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648096e5cc&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Zinc Phosphide (Proposed). United States Environmental Protection Agency. Washington, DC. 2005e. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c5ed&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for n-Butyl Isocyanate (Proposed). United States Environmental Protection Agency. Washington, DC. 2008m. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064808f9591&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Institute for Occupational Safety and Health: NIOSH Pocket Guide to Chemical Hazards, U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, Cincinnati, OH, 2007.
- National Research Council : Acute exposure guideline levels for selected airborne chemicals, 5, National Academies Press, Washington, DC, 2007.
- National Research Council: Acute exposure guideline levels for selected airborne chemicals, 6, National Academies Press, Washington, DC, 2008.
- National Research Council: Acute exposure guideline levels for selected airborne chemicals, 7, National Academies Press, Washington, DC, 2009.
- National Research Council: Acute exposure guideline levels for selected airborne chemicals, 8, National Academies Press, Washington, DC, 2010.
- Neese Industries, Inc.: Fabric Properties Rating Chart. Neese Industries, Inc.. Gonzales, LA. 2003. Available from URL: http://www.neeseind.com/new/TechGroup.asp?Group=Fabric+Properties&Family=Technical. As accessed 4/15/2003.
- North: Chemical Resistance Comparison Chart - Protective Footwear . North Safety. Cranston, RI. 2002. Available from URL: http://www.linkpath.com/index2gisufrm.php?t=N-USA1. As accessed April 30, 2004.
- North: eZ Guide Interactive Software. North Safety. Cranston, RI. 2002a. Available from URL: http://www.northsafety.com/feature1.htm. As accessed 8/31/2002.
- Playtex: Fits Tough Jobs Like a Glove, Playtex, Westport, CT, 1995.
- Product Information: ATROPEN(R) IM injection, atropine IM injection. Meridian Medical Technologies, Inc (per manufacturer), Columbia, MD, 2005.
- Product Information: ATNAA ANTIDOTE TREATMENT – NERVE AGENT, AUTO-INJECTOR intramuscular injection solution, atropine pralidoxime chloride intramuscular injection solution. Meridian Medical Technologies, Inc (per Manufacturer), Columbia, MD, 2002.
- Product Information: DUODOTE(TM) IM injection, atropine, pralidoxime chloride IM injection. Meridian Medical Technologies,Inc, Columbia, MD, 2006.
- Product Information: DuoDote(R) intramuscular injection solution, atropine and pralidoxime chloride intramuscular injection solution. Meridian Medical Technologies(TM), Inc. (per Manufacturer), Columbia, MD, 2011.
- Product Information: diazepam autoinjector IM injection solution, diazepam autoinjector IM injection solution. Meridian Medical Technologies Inc, Columbia, MD, 2005.
- Product Information: pralidoxime chloride intramuscular auto-imjector solution, pralidoxime chloride intramuscular auto-imjector solution. Meridian Medical Technologies, Inc. (per manufacturer), Columbia, MD, 2003.
- RRIS : Rapid Response Information System. Federal Emergency Management Agency. Washington, DC. 2001. Available from URL: http://www.rris.fem.gov/index.htm. As accessed Accessed March 6, 2001.
- RTECS : Registry of Toxic Effects of Chemical Substances. National Institute for Occupational Safety and Health. Cincinnati, OH (Internet Version). Edition expires 1991; provided by Truven Health Analytics Inc., Greenwood Village, CO.
- RTECS : Registry of Toxic Effects of Chemical Substances. National Institute for Occupational Safety and Health. Cincinnati, OH (Internet Version). Edition expires 4/30/2001; provided by Truven Health Analytics Inc., Greenwood Village, CO.
- River City: Protective Wear Product Literature, River City, Memphis, TN, 1995.
- SBCCOM : Products. U.S. Army Solider and Biological Chemical Command. Accessed 2001 Sept 14. U.S. Army Soldier and Biological Chemical Command. Aberdeen Proving Ground, MD. 2001. Available from URL: http://www.sbccom.army.mil/products/nbc.htm.
- Safety 4: North Safety Products: Chemical Protection Guide. North Safety. Cranston, RI. 2002. Available from URL: http://www.safety4.com/guide/set_guide.htm. As accessed 8/14/2002.
- Servus: Norcross Safety Products, Servus Rubber, Servus, Rock Island, IL, 1995.
- Sidell FR & Groff WA: The reactive ability of cholinesterase inhibited by VX and sarin in man. Toxicol Appl Pharmacol 1974; 27:241-252.
- Sivam SP, Hoskins B, & Ho IK: An assessment of comparative acute toxicity of diisopropyl-fluorophosphate, tabun, sarin, and soman in relation to cholinergic and GABAergic enzyme activities in rats. Fundam Appl Toxicol 1984; 4:531-538.
- Sofer S, Tal A, & Shahak E: Carbamate and organophosphate poisoning in early childhood. Pediatr Emerg Care 1989; 5:222-225.
- Spiller HA & Rogers GC: Evaluation of administration of activated charcoal in the home. Pediatrics 2002; 108:E100.
- Standard Safety Equipment: Product Literature, Standard Safety Equipment, McHenry, IL, 1995.
- Thakore S & Murphy N: The potential role of prehospital administration of activated charcoal. Emerg Med J 2002; 19:63-65.
- Tingley: Chemical Degradation for Footwear and Clothing. Tingley. South Plainfield, NJ. 2002. Available from URL: http://www.tingleyrubber.com/tingley/Guide_ChemDeg.pdf. As accessed 10/16/2002.
- Trelleborg-Viking, Inc.: Chemical and Biological Tests (database). Trelleborg-Viking, Inc.. Portsmouth, NH. 2002. Available from URL: http://www.trelleborg.com/protective/. As accessed 10/18/2002.
- Trelleborg-Viking, Inc.: Trellchem Chemical Protective Suits, Interactive manual & Chemical Database. Trelleborg-Viking, Inc.. Portsmouth, NH. 2001.
- U.S. Army: Toxic Chemical Agent Safety Standards. Pamphlet 385-61 (DA PAM 385-61), Headquarters, Department of the Army, Washington, DC, 2002.
- U.S. Department of Energy, Office of Emergency Management: Protective Action Criteria (PAC) with AEGLs, ERPGs, & TEELs: Rev. 26 for chemicals of concern. U.S. Department of Energy, Office of Emergency Management. Washington, DC. 2010. Available from URL: http://www.hss.doe.gov/HealthSafety/WSHP/Chem_Safety/teel.html. As accessed 2011-06-27.
- U.S. Department of Health and Human Services, Public Health Service, National Toxicology Project : 11th Report on Carcinogens. U.S. Department of Health and Human Services, Public Health Service, National Toxicology Program. Washington, DC. 2005. Available from URL: http://ntp.niehs.nih.gov/INDEXA5E1.HTM?objectid=32BA9724-F1F6-975E-7FCE50709CB4C932. As accessed 2011-06-27.
- U.S. Environmental Protection Agency: Discarded commercial chemical products, off-specification species, container residues, and spill residues thereof. Environmental Protection Agency's (EPA) Resource Conservation and Recovery Act (RCRA); List of hazardous substances and reportable quantities 2010b; 40CFR(261.33, e-f):77-.
- U.S. Environmental Protection Agency: Integrated Risk Information System (IRIS). U.S. Environmental Protection Agency. Washington, DC. 2011. Available from URL: http://cfpub.epa.gov/ncea/iris/index.cfm?fuseaction=iris.showSubstanceList&list_type=date. As accessed 2011-06-21.
- U.S. Environmental Protection Agency: List of Radionuclides. U.S. Environmental Protection Agency. Washington, DC. 2010a. Available from URL: http://www.gpo.gov/fdsys/pkg/CFR-2010-title40-vol27/pdf/CFR-2010-title40-vol27-sec302-4.pdf. As accessed 2011-06-17.
- U.S. Environmental Protection Agency: List of hazardous substances and reportable quantities. U.S. Environmental Protection Agency. Washington, DC. 2010. Available from URL: http://www.gpo.gov/fdsys/pkg/CFR-2010-title40-vol27/pdf/CFR-2010-title40-vol27-sec302-4.pdf. As accessed 2011-06-17.
- U.S. Environmental Protection Agency: The list of extremely hazardous substances and their threshold planning quantities (CAS Number Order). U.S. Environmental Protection Agency. Washington, DC. 2010c. Available from URL: http://www.gpo.gov/fdsys/pkg/CFR-2010-title40-vol27/pdf/CFR-2010-title40-vol27-part355.pdf. As accessed 2011-06-17.
- U.S. Occupational Safety and Health Administration: Part 1910 - Occupational safety and health standards (continued) Occupational Safety, and Health Administration's (OSHA) list of highly hazardous chemicals, toxics and reactives. Subpart Z - toxic and hazardous substances. CFR 2010 2010; Vol6(SEC1910):7-.
- U.S. Occupational Safety, and Health Administration (OSHA): Process safety management of highly hazardous chemicals. 29 CFR 2010 2010; 29(1910.119):348-.
- USACHPPM : Detailed Facts About Nerve Agent GD. U.S. Army Center for Health and Promotion and Preventive Medicine. Aberdeen , MD, USA. 2001a. Available from URL: http://chppm-www.apgea.army.mil/dts/docs/gengd.pdf. As accessed Accessed March 9, 2001. .
- USACHPPM : Evaluation of Airborne Exposure Limits for G-agents: Occupational and General Population Exposure Criteria. Accessed on 2001 March 9. U.S. Army Center for Health Promotion and Preventive Medicine. Aberdeen Proving Ground, MD. 2001. Available from URL: http://chppm-www.apgea.army.mil/hrarcp/pages/CAW/ERDEC-TR-489.pdf.
- USACHPPM: Detailed Facts About Nerve Agent GD. U.S. Army Center for Health Promotion and Preventive Medicine. Aberdeen, MD, USA. 1998a. Available from URL: http://chppm-www.apgea.army.mil/dts/docs/gengd.pdf. As accessed 10 August 2005.
- USFA : Soman. Accessed 2001 Sept 12. U.S. Fire Administration. Emmitsburg, MD. 2001. Available from URL: www.usfa.fema.gov/pdf/hazmat/page_423.pdf.
- United States Environmental Protection Agency Office of Pollution Prevention and Toxics: Acute Exposure Guideline Levels (AEGLs) for Vinyl Acetate (Proposed). United States Environmental Protection Agency. Washington, DC. 2006. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d6af&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
- Wells Lamont Industrial: Chemical Resistant Glove Application Chart. Wells Lamont Industrial. Morton Grove, IL. 2002. Available from URL: http://www.wellslamontindustry.com. As accessed 10/31/2002.
- Workrite: Chemical Splash Protection Garments, Technical Data and Application Guide, W.L. Gore Material Chemical Resistance Guide, Workrite, Oxnard, CA, 1997.
- Young RA: Appendix C: Health Risk Assessment for the Nerve Agent GD (Soman). J Toxicol Environ Health, Part A 2000; 59:417-438.
- Zwiener RJ & Ginsburg CM: Organophosphate and carbamate poisoning in infants and children. Pediatrics 1988; 81:121-126.
|