SODIUM CYANIDE
HAZARDTEXT ®
Information to help in the initial response for evaluating chemical incidents
-IDENTIFICATION
SYNONYMS
CIANURO DI SODIO (Italian) CYANIDE of SODIUM CYANOBRIK CYANOGRAN CYANURE DE SODIUM (French) CYMAG HYDROCYANIC ACID, SODIUM SALT KYANID SODNY (Czech) M-44 CYANIDE CAPSULES PRUSSIATE OF SODA SODIUM CYANIDE SODIUM CYANIDE, SOLID SODIUM SALT OF HYDROCYANIC ACID CYANIDE, SODIUM
IDENTIFIERS
1689-Sodium cyanide 1689-Sodium cyanide, solid 3414-Sodium cyanide, solution
4923228 (SOLID) 4923227 (SOLUTION)
SYNONYM REFERENCE
- (AAR, 1996; EPA, 1985; HSDB , 1998)NFPA, 1994;((RTECS, 1998))
USES/FORMS/SOURCES
Sodium cyanide is used in extracting gold and silver ores; recovery of precious metals from used x-ray and photographic film; electroplating operations (coppering, zincing); for metal heat treating (hardening); in metal cleaning; in the manufacturing of mirrors; as a chelating compound, a copper/zinc plating reagent, and a benzoin condensation catalyst; for ore flotation; and in the manufacture of dyes, pigments, nylon, adiponitrile, hydrocyanic acid, and many other cyanides (ACGIH, 1986; Ashford, 1994; Blanc et al, 1985; Budavari, 1996; Clayton & Clayton, 1994; EPA, 1985; Hathaway et al, 1996) Lewis, 1993). Commercial and household uses of cyanide include fumigation, ore-extraction, electroplating, silver-polishing, synthetic rubber production, and in the manufacture of fertilizers, rodenticides and insecticides. Imported metal cleaning solutions used by Hmong refugees to clean coins may contain cyanide salts (Budavari, 1996; Kreig & Saxena, 1987). It also is used as a poison for coyote, fox, and wild dog found on pastures, range land, and forest land (HSDB , 1998).
AVAILABILITY: Sodium cyanide is available in solutions of 30, 73 to 75, and 96 to 98% purity, and as a reagent or technical grade material in briquette or granular form (Lewis, 1993). OVER-THE-COUNTER (OTC) TAMPERING Episodes of deliberate tampering with OTC capsule medications in 1982, 1986, and 1991 have resulted in 11 deaths from cyanide poisoning (CDC, 1991; Wolnik et al, 1984; Varnell et al, 1987). Since 1982, OTC capsules have been required to have at least 2 tamper-resistant features. Medications with any alteration in these features should not be used, and should be provided to the FDA. Features may include: Sealing of the capsule with a band Blister packs with foil backing Sealing of the package with a safety tab Identification of blister pack and box with identical code numbers
-CLINICAL EFFECTS
GENERAL CLINICAL EFFECTS
- Sodium cyanide exposure may produce death within minutes. Signs and symptoms following non-lethal, subacute, or chronic exposure may include syncope, weight loss, headache, dizziness, nausea, vomiting, palpitations, confusion, deep inspiratory gasps followed by hyperpnea, hyperventilation, anxiety, and vertigo.
- Cyanosis is generally a late finding and usually does not occur until circulatory collapse and apnea are evident; particularly at the premorbid stage of cyanide toxicity. Initially the patient may experience flushing, tachycardia, tachypnea, headache, and dizziness. This may progress to agitation, stupor, coma, apnea, seizures, metabolic acidosis, pulmonary edema, bradycardia, hypotension, and death.
- Sodium cyanide exposure may produce death within minutes. IMMEDIATELY BEGIN ADMINISTERING 100% OXYGEN. OBTAIN THE CYANIDE ANTIDOTE KIT AND PREPARE IT FOR USE. Non-lethal, subacute, or chronic exposure may produce headache, dizziness, nausea, vomiting, palpitations, confusion, deep inspiratory gasps followed by hyperpnea, hyperventilation, anxiety, and vertigo. Severe signs of hypoxia in the absence of cyanosis suggest cyanide poisoning. Patients have reportedly survived potentially lethal ingestions with only supportive care. The absence of a rapidly deteriorating course does not exclude cyanide poisoning.
- POTENTIAL HEALTH HAZARDS - EMERGENCY RESPONSE GUIDEBOOK, GUIDE 157 (ERG, 2004)
TOXIC; inhalation, ingestion or contact (skin, eyes) with vapors, dusts or substance may cause severe injury, burns, or death. Reaction with water or moist air will release toxic, corrosive or flammable gases. Reaction with water may generate much heat which will increase the concentration of fumes in the air. Fire will produce irritating, corrosive and/or toxic gases. Runoff from fire control or dilution water may be corrosive and/or toxic and cause pollution.
ACUTE CLINICAL EFFECTS
- From its acute oral LD50 of 6.4 mg/kg in rats (RTECS , 1993), sodium cyanide is a highly toxic substance. Systemic poisoning can occur from inhalation, dermal, and oral exposure. Sodium cyanide may produce death within minutes (Hall & Rumack, 1986).
- The fatal dose of cyanide salts is estimated at 200 to 300 milligrams for an adult (Bonnichsen & Maely, 1966; Baselt & Cravey, 1989). As little as 180 milligrams can be rapidly fatal (CHRIS, 1991). Inhalation of 0.2 to 0.3 mg/L (200 to 300 ppm) is rapidly fatal (ACGIH, 1986). However, individuals have survived much higher cyanide exposures (Yacoub et al, 1974; Hall & Rumack, 1987; Bismuth et al, 1984; Dodds & McKnight, 1985).
- Dermal contact with sodium cyanide solutions can cause itching and irritation because such solutions are alkaline (Proctor et al, 1988).
- Cyanide poisoning causes flushing, nausea, vomiting, palpitations, rapid heartbeat and breathing, headache, dizziness, confusion, hyperventilation, anxiety, agitation, tremors, weakness, stupor, hypertension, hypotension, cardiac arrhythmias, lactic acidosis, respiratory failure, non-cardiogenic pulmonary edema, seizures, and coma (Hall & Rumack, 1986). Death may occur within a few minutes.
- Progressive damage to the optic nerve has also been produced in rats within 48 hours after a single injection of sodium cyanide (Lessell & Kuwabara, 1974). A Parkinsonian-like syndrome has occurred up to several weeks after acute cyanide poisoning (Rosenberg et al, 1989). CNS symptoms may be reversible up to a point (Wuthrich, 1954), but some can persist for many months following acute exposure (Pettigrew, 1977).
- While workplace standards indicate that cyanide may be absorbed through intact skin, this is based largely on industrial accidents involving immersion or other total-body exposures (ACGIH, 1986; Bryson, 1987).
CHRONIC CLINICAL EFFECTS
- Chronic occupational cyanide exposure has been associated with a variety of skin and mucous membrane irritant complaints, usually attributed to exposure to alkaline aerosols or solutions of cyanide salts (Finkel, 1983; Hartung, 1982; Proctor et al, 1988).
- Chronic industrial cyanide toxicity in humans is rare (Proctor et al, 1988), although a variety of complaints including goiter, subclinical thyroid function and B12 and folate abnormalities, headaches, vertigo, chest discomfort, palpitations, eye and respiratory tract irritation, dermatitis, fatigue, poor appetite and sleeping, and epistaxis have been reported in cyanide-exposed workers (Proctor et al, 1998; (Colle, 1972; Saia et al, 1970; Ermans et al, 1972).
- Chronic cyanide exposure has been reported to cause insomnia, loss of memory, and tremors (Chaumont, 1960). Experimental animal studies have confirmed the central nervous system as a target for chronic cyanide toxicity. Rats fed cyanide for 11 months had spinal cord damage (Philbrick, 1979). Other neurological effects include degeneration of the optic nerve, resulting in blindness.
- In rats, cyanide metabolites may accumulate over long periods of chronic exposure (Tewe & Maner, 1981).
-FIRST AID
FIRST AID AND PREHOSPITAL TREATMENT
Absorption of cyanide is rapid and charcoal may only be beneficial if administered immediately after ingestion. Immediate administration of a large dose of superactivated charcoal (4 g/kg) to rats given an oral lethal dose of potassium cyanide (35 to 40 mg/kg) prevented lethality. Eight of 26 treated animals died compared to 25 of 26 untreated animals. PREHOSPITAL ACTIVATED CHARCOAL ADMINISTRATION Consider prehospital administration of activated charcoal as an aqueous slurry in patients with a potentially toxic ingestion who are awake and able to protect their airway. Activated charcoal is most effective when administered within one hour of ingestion. Administration in the prehospital setting has the potential to significantly decrease the time from toxin ingestion to activated charcoal administration, although it has not been shown to affect outcome (Alaspaa et al, 2005; Thakore & Murphy, 2002; Spiller & Rogers, 2002). In patients who are at risk for the abrupt onset of seizures or mental status depression, activated charcoal should not be administered in the prehospital setting, due to the risk of aspiration in the event of spontaneous emesis. The addition of flavoring agents (cola drinks, chocolate milk, cherry syrup) to activated charcoal improves the palatability for children and may facilitate successful administration (Guenther Skokan et al, 2001; Dagnone et al, 2002).
CHARCOAL DOSE Use a minimum of 240 milliliters of water per 30 grams charcoal (FDA, 1985). Optimum dose not established; usual dose is 25 to 100 grams in adults and adolescents; 25 to 50 grams in children aged 1 to 12 years (or 0.5 to 1 gram/kilogram body weight) ; and 0.5 to 1 gram/kilogram in infants up to 1 year old (Chyka et al, 2005). Routine use of a cathartic with activated charcoal is NOT recommended as there is no evidence that cathartics reduce drug absorption and cathartics are known to cause adverse effects such as nausea, vomiting, abdominal cramps, electrolyte imbalances and occasionally hypotension (None Listed, 2004).
ADVERSE EFFECTS/CONTRAINDICATIONS Complications: emesis, aspiration (Chyka et al, 2005). Aspiration may be complicated by acute respiratory failure, ARDS, bronchiolitis obliterans or chronic lung disease (Golej et al, 2001; Graff et al, 2002; Pollack et al, 1981; Harris & Filandrinos, 1993; Elliot et al, 1989; Rau et al, 1988; Golej et al, 2001; Graff et al, 2002). Refer to the ACTIVATED CHARCOAL/TREATMENT management for further information. Contraindications: unprotected airway (increases risk/severity of aspiration) , nonfunctioning gastrointestinal tract, uncontrolled vomiting, and ingestion of most hydrocarbons (Chyka et al, 2005).
-MEDICAL TREATMENT
LIFE SUPPORT
- Support respiratory and cardiovascular function.
SUMMARY
- FIRST AID - EMERGENCY RESPONSE GUIDEBOOK, GUIDE 157 (ERG, 2004)
Move victim to fresh air. Call 911 or emergency medical service. Give artificial respiration if victim is not breathing. Do not use mouth-to-mouth method if victim ingested or inhaled the substance; give artificial respiration with the aid of a pocket mask equipped with a one-way valve or other proper respiratory medical device. Administer oxygen if breathing is difficult. Remove and isolate contaminated clothing and shoes. In case of contact with substance, immediately flush skin or eyes with running water for at least 20 minutes. For minor skin contact, avoid spreading material on unaffected skin. Keep victim warm and quiet. Effects of exposure (inhalation, ingestion or skin contact) to substance may be delayed. Ensure that medical personnel are aware of the material(s) involved and take precautions to protect themselves.
-RANGE OF TOXICITY
MINIMUM LETHAL EXPOSURE
- The fatal dose of cyanide salts is estimated at 200 to 300 milligrams for an adult (Bonnichsen & Maely, 1966; Baselt, 1982). If ingested, as little as 180 milligrams can be rapidly fatal (CHRIS , 1998).
- Clayton & Clayton (1994) report that the fatal sodium cyanide dose, via oral ingestion, is dependent upon the presence--or lack of--food in the stomach. The lethal dose is on the order of 1 to 2 milligrams per kilogram of body weight in many experimental animals and is thought to be the same in humans.
- Inhalation of air concentrations of 0.2 to 0.3 milligrams/liter (200 to 300 parts per million) is rapidly fatal (ACGIH, 1986).
- Cyanide fumigation powders, used as pesticides, may liberate potentially lethal concentrations of HCN vapor when over-applied (at a rate of 5 grams/cubic meter)(Ballantyne, 1988).
MAXIMUM TOLERATED EXPOSURE
- SUMMARY - Patients have survived exposure to air concentrations of 500 milligrams/cubic meter (Bonsall, 1984), ingestions of one gram or more of potassium cyanide (Yacoub et al, 1974; Hall & Rumack, 1987), and complete immersion in solutions of cyanide salts (Bismuth et al, 1984; Dodds & McKnight, 1985).
- Carcinogenicity Ratings for CAS143-33-9 :
ACGIH (American Conference of Governmental Industrial Hygienists, 2010): Not Listed ; Listed as: Hydrogen cyanide and cyanide salts, as CN; cyanide salts EPA (U.S. Environmental Protection Agency, 2011): Not Assessed under the IRIS program. ; Listed as: Sodium cyanide IARC (International Agency for Research on Cancer (IARC), 2016; International Agency for Research on Cancer, 2015; IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, 2010; IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, 2010a; IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, 2008; IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, 2007; IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, 2006; IARC, 2004): Not Listed NIOSH (National Institute for Occupational Safety and Health, 2007): Not Listed ; Listed as: Sodium cyanide (as CN) MAK (DFG, 2002): Not Listed NTP (U.S. Department of Health and Human Services, Public Health Service, National Toxicology Project ): Not Listed
TOXICITY AND RISK ASSESSMENT VALUES
- EPA Risk Assessment Values for CAS143-33-9 (U.S. Environmental Protection Agency, 2011):
Oral: Slope Factor: RfD: 1x10(-3) mg/kg-day
Inhalation: Drinking Water:
ANIMAL DATA LD50- (SUBCUTANEOUS)DOG: LD50- (SUBCUTANEOUS)GUINEA_PIG: LD50- (ORAL)LABORATORY_QUAIL: LD50- (INTRAPERITONEAL)MOUSE: 4900 mcg/kg (RTECS, 2001) 5881 mcg/kg (Lewis, 1996a)
LD50- (SUBCUTANEOUS)MOUSE: LD50- (INTRAMUSCULAR)RABBIT: LD50- (OCULAR)RABBIT: LD50- (SKIN)RABBIT: LD50- (INTRAPERITONEAL)RAT: LD50- (ORAL)RAT: LDLo- (INTRAVENOUS)DOG: LDLo- (SUBCUTANEOUS)DOG: LDLo- (ORAL)HUMAN: 6557 mcg/kg (RTECS, 2001) 2857 mcg/kg (RTECS, 2001) 2800 mcg/kg (RTECS, 2001)
LDLo- (SUBCUTANEOUS)RABBIT: TDLo- (ORAL)HUMAN:
-STANDARDS AND LABELS
WORKPLACE STANDARDS
- ACGIH TLV Values for CAS143-33-9 (American Conference of Governmental Industrial Hygienists, 2010):
Editor's Note: The listed values are recommendations or guidelines developed by ACGIH(R) to assist in the control of health hazards. They should only be used, interpreted and applied by individuals trained in industrial hygiene. Before applying these values, it is imperative to read the introduction to each section in the current TLVs(R) and BEI(R) Book and become familiar with the constraints and limitations to their use. Always consult the Documentation of the TLVs(R) and BEIs(R) before applying these recommendations and guidelines.
- AIHA WEEL Values for CAS143-33-9 (AIHA, 2006):
- NIOSH REL and IDLH Values for CAS143-33-9 (National Institute for Occupational Safety and Health, 2007):
- OSHA PEL Values for CAS143-33-9 (U.S. Occupational Safety, and Health Administration (OSHA), 2010):
- OSHA List of Highly Hazardous Chemicals, Toxics, and Reactives for CAS143-33-9 (U.S. Occupational Safety and Health Administration, 2010):
ENVIRONMENTAL STANDARDS
- EPA CERCLA, Hazardous Substances and Reportable Quantities for CAS143-33-9 (U.S. Environmental Protection Agency, 2010):
- EPA CERCLA, Hazardous Substances and Reportable Quantities, Radionuclides for CAS143-33-9 (U.S. Environmental Protection Agency, 2010):
- EPA RCRA Hazardous Waste Number for CAS143-33-9 (U.S. Environmental Protection Agency, 2010b):
Listed as: Sodium cyanide P or U series number: P106 Footnote: Listed as: Sodium cyanide Na(CN) P or U series number: P106 Footnote: Editor's Note: The D, F, and K series waste numbers and Appendix VIII to Part 261 -- Hazardous Constituents were not included. Please refer to 40 CFR Part 261.
- EPA SARA Title III, Extremely Hazardous Substance List for CAS143-33-9 (U.S. Environmental Protection Agency, 2010):
Listed as: Sodium Cyanide (Na(CN)) Reportable Quantity, in pounds: 10 Threshold Planning Quantity, in pounds: Note(s): a a: This material is a reactive solid. The TPQ does not default to 10,000 pounds for non-powder, non-molten, non-solution form.
- EPA SARA Title III, Community Right-to-Know for CAS143-33-9 (40 CFR 372.65, 2006; 40 CFR 372.28, 2006):
- DOT List of Marine Pollutants for CAS143-33-9 (49 CFR 172.101 - App. B, 2005):
Listed as Sodium cyanide, solid Severe Marine Pollutant: No Listed as Sodium cyanide, solution Severe Marine Pollutant: No
- EPA TSCA Inventory for CAS143-33-9 (EPA, 2005):
SHIPPING REGULATIONS
- DOT -- Table of Hazardous Materials and Special Provisions for UN/NA Number 1689 (49 CFR 172.101, 2005):
- DOT -- Table of Hazardous Materials and Special Provisions for UN/NA Number 3414 (49 CFR 172.101, 2005):
Hazardous materials descriptions and proper shipping name: Sodium cyanide solution Symbol(s): Not Listed Hazard class or Division: 6.1 Identification Number: UN3414 Packing Group: I Label(s) required (if not excepted): 6.1 Special Provisions: B69, B77, N74, N75, T14, TP2, TP13 B69: Dry sodium cyanide or potassium cyanide may be shipped in sift-proof weather-resistant metal covered hopper cars, covered motor vehicles, portable tanks or non-specification bins. Bins must be approved by the Associate Administrator. B77: Other packaging are authorized when approved by the Associate Administrator. N74: Packages consisting of tightly closed inner containers of glass, earthenware, metal or polyethylene, capacity not over 0.5 kg (1.1 pounds) securely cushioned and packed in outer wooden barrels or wooden or fiberboard boxes, not over 15 kg (33 pounds) net weight, are authorized and need not conform to the requirements of part 178 of this subchapter. N75: Packages consisting of tightly closed inner packagings of glass, earthenware or metal, securely cushioned and packed in outer wooden barrels or wooden or fiberboard boxes, capacity not over 2.5 kg (5.5 pounds) net weight, are authorized and need not conform to the requirements of part 178 of this subchapter. T14: Minimum test pressure (bar): 6; Minimum shell thickness (in mm-reference steel) (See sxn.178.274(d)): 6 mm; Pressure-relief requirements (See sxn.178.275(g)): section 178.275(g)(3); Bottom opening requirements (See sxn.178.275(d)): Prohibited. TP2: a. The maximum degree of filling must not exceed the degree of filling determined by the following: [Degree of filling = 95/1+alpha(tr - tf)], where tr is the maximum mean bulk temperature during transport, tf is the temperature in degrees celsius of the liquid during filling, and alpha is the mean coefficient of cubical expansion of the liquid between the mean temperature of the liquid during filling (tf) and the maximum mean bulk temperature during transportation (tr) both in degrees celsius; and b. For liquids transported under ambient conditions a may be calculated using the formula: [alpha = (d15-d50)/(35 x d50)], where d15 and d50 are the densities (in units of mass per unit volume) of the liquid at 15 degrees C (59 degrees F) and 50 degrees C (122 degrees F), respectively. TP13: Self-contained breathing apparatus must be provided when this hazardous material is transported by sea.
Packaging Authorizations (refer to 49 CFR 173.***): Exceptions: None Non-bulk packaging: 201 Bulk packaging: 243
Quantity Limitations: Vessel Stowage Requirements:
Hazardous materials descriptions and proper shipping name: Sodium cyanide solution Symbol(s): Not Listed Hazard class or Division: 6.1 Identification Number: UN3414 Packing Group: II Label(s) required (if not excepted): 6.1 Special Provisions: B69, B77, IB2, N74, N75, T11, TP2, TP13, TP27 B69: Dry sodium cyanide or potassium cyanide may be shipped in sift-proof weather-resistant metal covered hopper cars, covered motor vehicles, portable tanks or non-specification bins. Bins must be approved by the Associate Administrator. B77: Other packaging are authorized when approved by the Associate Administrator. IB2: Authorized IBCs: Metal (31A, 31B and 31N); Rigid plastics (31H1 and 31H2); Composite (31HZ1). Additional Requirement: Only liquids with a vapor pressure less than or equal to 110 kPa at 50 °C (1.1 bar at 122 °F), or 130kPa at 55 °C (1.3 bar at 131 °F) are authorized. N74: Packages consisting of tightly closed inner containers of glass, earthenware, metal or polyethylene, capacity not over 0.5 kg (1.1 pounds) securely cushioned and packed in outer wooden barrels or wooden or fiberboard boxes, not over 15 kg (33 pounds) net weight, are authorized and need not conform to the requirements of part 178 of this subchapter. N75: Packages consisting of tightly closed inner packagings of glass, earthenware or metal, securely cushioned and packed in outer wooden barrels or wooden or fiberboard boxes, capacity not over 2.5 kg (5.5 pounds) net weight, are authorized and need not conform to the requirements of part 178 of this subchapter. T11: Minimum test pressure (bar): 6; Minimum shell thickness (in mm-reference steel) (See sxn.178.274(d)): sxn.178.274(d)(2); Pressure-relief requirements (See sxn.178.275(g)): Normal; Bottom opening requirements (See sxn.178.275(d)): sxn.178.275(d)(3). TP2: a. The maximum degree of filling must not exceed the degree of filling determined by the following: [Degree of filling = 95/1+alpha(tr - tf)], where tr is the maximum mean bulk temperature during transport, tf is the temperature in degrees celsius of the liquid during filling, and alpha is the mean coefficient of cubical expansion of the liquid between the mean temperature of the liquid during filling (tf) and the maximum mean bulk temperature during transportation (tr) both in degrees celsius; and b. For liquids transported under ambient conditions a may be calculated using the formula: [alpha = (d15-d50)/(35 x d50)], where d15 and d50 are the densities (in units of mass per unit volume) of the liquid at 15 degrees C (59 degrees F) and 50 degrees C (122 degrees F), respectively. TP13: Self-contained breathing apparatus must be provided when this hazardous material is transported by sea. TP27: A portable tank having a minimum test pressure of 4 bar (400 kPa) may be used provided the calculated test pressure is 4 bar or less based on the MAWP of the hazardous material, as defined in sxn. 178.275 of this subchapter, where the test pressure is 1.5 times the MAWP.
Packaging Authorizations (refer to 49 CFR 173.***): Exceptions: 153 Non-bulk packaging: 202 Bulk packaging: 243
Quantity Limitations: Vessel Stowage Requirements:
Hazardous materials descriptions and proper shipping name: Sodium cyanide solution Symbol(s): Not Listed Hazard class or Division: 6.1 Identification Number: UN3414 Packing Group: III Label(s) required (if not excepted): 6.1 Special Provisions: B69, B77, IB3, N74, N75, T7, TP2, TP13, TP27 B69: Dry sodium cyanide or potassium cyanide may be shipped in sift-proof weather-resistant metal covered hopper cars, covered motor vehicles, portable tanks or non-specification bins. Bins must be approved by the Associate Administrator. B77: Other packaging are authorized when approved by the Associate Administrator. IB3: Authorized IBCs: Metal (31A, 31B and 31N); Rigid plastics (31H1 and 31H2); Composite (31HZ1 and 31HA2, 31HB2, 31HN2, 31HD2 and 31HH2). Additional Requirement: Only liquids with a vapor pressure less than or equal to 110 kPa at 50 °C (1.1 bar at 122 °F), or 130 kPa at 55 °C (1.3 bar at 131 °F) are authorized, except for UN2672 (also see Special Provision IP8 in Table 3 for UN2672). N74: Packages consisting of tightly closed inner containers of glass, earthenware, metal or polyethylene, capacity not over 0.5 kg (1.1 pounds) securely cushioned and packed in outer wooden barrels or wooden or fiberboard boxes, not over 15 kg (33 pounds) net weight, are authorized and need not conform to the requirements of part 178 of this subchapter. N75: Packages consisting of tightly closed inner packagings of glass, earthenware or metal, securely cushioned and packed in outer wooden barrels or wooden or fiberboard boxes, capacity not over 2.5 kg (5.5 pounds) net weight, are authorized and need not conform to the requirements of part 178 of this subchapter. T7: Minimum test pressure (bar): 4; Minimum shell thickness (in mm-reference steel) (See sxn.178.274(d)): sxn.178.274(d)(2); Pressure-relief requirements (See sxn.178.275(g)): Normal; Bottom opening requirements (See sxn.178.275(d)): sxn.178.275(d)(3). TP2: a. The maximum degree of filling must not exceed the degree of filling determined by the following: [Degree of filling = 95/1+alpha(tr - tf)], where tr is the maximum mean bulk temperature during transport, tf is the temperature in degrees celsius of the liquid during filling, and alpha is the mean coefficient of cubical expansion of the liquid between the mean temperature of the liquid during filling (tf) and the maximum mean bulk temperature during transportation (tr) both in degrees celsius; and b. For liquids transported under ambient conditions a may be calculated using the formula: [alpha = (d15-d50)/(35 x d50)], where d15 and d50 are the densities (in units of mass per unit volume) of the liquid at 15 degrees C (59 degrees F) and 50 degrees C (122 degrees F), respectively. TP13: Self-contained breathing apparatus must be provided when this hazardous material is transported by sea. TP27: A portable tank having a minimum test pressure of 4 bar (400 kPa) may be used provided the calculated test pressure is 4 bar or less based on the MAWP of the hazardous material, as defined in sxn. 178.275 of this subchapter, where the test pressure is 1.5 times the MAWP.
Packaging Authorizations (refer to 49 CFR 173.***): Exceptions: 153 Non-bulk packaging: 203 Bulk packaging: 241
Quantity Limitations: Vessel Stowage Requirements:
- ICAO International Shipping Name for UN1689 (ICAO, 2002):
- ICAO International Shipping Name for UN3414 (ICAO, 2002):
LABELS
- NFPA Hazard Ratings for CAS143-33-9 (NFPA, 2002):
-HANDLING AND STORAGE
SUMMARY
STORAGE
Ensure that containers are closed and are stored in a dry, cool, and well-ventilated location (ITI, 1995). Glass bottles, special metal containers, and steel drums are containers generally used for storing sodium cyanide (NFPA, 1994).
Keep separate from water, acids, carbon dioxide and other oxidizing materials (ITI, 1995) NFPA, 1994).
-PERSONAL PROTECTION
SUMMARY
- RECOMMENDED PROTECTIVE CLOTHING - EMERGENCY RESPONSE GUIDEBOOK, GUIDE 157 (ERG, 2004)
Wear positive pressure self-contained breathing apparatus (SCBA). Wear chemical protective clothing that is specifically recommended by the manufacturer. It may provide little or no thermal protection. Structural firefighters' protective clothing provides limited protection in fire situations ONLY; it is not effective in spill situations where direct contact with the substance is possible.
- Do not attempt to handle this material or broken containers without protective equipment such as gloves, boots, and goggles (NFPA, 1994; (AAR, 1996). Avoid all contact with this material as solid, dust, or water solution (CHRIS , 1998).
- For normal handling, ensure adequate ventilation and prohibit eating and smoking in the work area (ITI, 1995). Cotton gloves and a US Bureau of Mines approved dust respirator should be worn (for dry solid sodium cyanide) (CHRIS , 1998).
Wear rubber gloves, overalls, rubber apron, safety glasses, and a self-contained positive-pressure breathing apparatus (CHRIS , 1998; ITI, 1995).
- Cyanide fumigant powder formulations may be absorbed orally, dermally, via inhalation, or via ocular exposure and cause serious systemic effects. All of these possible routes must be protected when handling this material (Ballantyne, 1988).
RESPIRATORY PROTECTION
- Refer to "Recommendations for respirator selection" in the NIOSH Pocket Guide to Chemical Hazards on TOMES Plus(R) for respirator information.
PROTECTIVE CLOTHING
- CHEMICAL PROTECTIVE CLOTHING. Search results for CAS 143-33-9.
-PHYSICAL HAZARDS
FIRE HAZARD
POTENTIAL FIRE OR EXPLOSION HAZARDS - EMERGENCY RESPONSE GUIDEBOOK, GUIDE 157 (ERG, 2004) Non-combustible, substance itself does not burn but may decompose upon heating to produce corrosive and/or toxic fumes. Vapors may accumulate in confined areas (basement, tanks, hopper/tank cars etc.). Substance will react with water (some violently), releasing corrosive and/or toxic gases. Contact with metals may evolve flammable hydrogen gas. Containers may explode when heated or if contaminated with water.
Sodium cyanide itself is not flammable or combustible, but it can react with acids to release highly flammable hydrogen cyanide gas (NFPA, 1994; (CHRIS , 1998; AAR, 1996). Keep all sources of ignition such as sparks or flames away from this material (AAR, 1996).
- FLAMMABILITY CLASSIFICATION
- NFPA Flammability Rating for CAS143-33-9 (NFPA, 2002):
- FIRE CONTROL/EXTINGUISHING AGENTS
- FIRE PRECAUTIONS - EMERGENCY RESPONSE GUIDEBOOK, GUIDE 157 (ERG, 2004)
- SMALL FIRE PRECAUTIONS - EMERGENCY RESPONSE GUIDEBOOK, GUIDE 157 (ERG, 2004)
- LARGE FIRE PRECAUTIONS - EMERGENCY RESPONSE GUIDEBOOK, GUIDE 157 (ERG, 2004)
Water spray, fog or alcohol-resistant foam. Move containers from fire area if you can do it without risk. Use water spray or fog; do not use straight streams. Dike fire control water for later disposal; do not scatter the material.
- TANK OR CAR/TRAILER LOAD FIRE PRECAUTIONS - EMERGENCY RESPONSE GUIDEBOOK, GUIDE 157 (ERG, 2004)
Fight fire from maximum distance or use unmanned hose holders or monitor nozzles. Do not get water inside containers. Cool containers with flooding quantities of water until well after fire is out. Withdraw immediately in case of rising sound from venting safety devices or discoloration of tank. ALWAYS stay away from tanks engulfed in fire.
- NFPA Extinguishing Methods for CAS143-33-9 (NFPA, 2002):
- Use water in flooding quantities as spray or fog if large amounts of combustible material are on fire (AAR, 1996).
- AAR (1996) recommends using dry chemical, foam, or carbon dioxide to fight a sodium cyanide fire; however, NFPA (1994) directs firefighters to avoid carbon dioxide extinguishers.
- Use water spray to keep containers exposed to fire cool (NFPA, 1994).
- Do not use water directly on spilled or leaking sodium cyanide that is not on fire (AAR, 1996).
EXPLOSION HAZARD
- Sodium cyanide explodes when melted with nitrite or chlorate at approximately 450 degrees C (Lewis, 1996).
- Sodium cyanide has violent reactions with fluorine, magnesium, nitrates, nitric acid, and nitrites (Lewis, 1996).
- "Fusion of mixtures of metal cyanides with metal chlorates, perchlorates, or nitrates ... causes a violent explosion" (HSDB , 1998).
DUST/VAPOR HAZARD
- Sodium cyanide reacts with water, steam, acids, and acid fumes to release hydrogen cyanide gas, which is flammable and highly toxic, and sodium oxide (Lewis, 1996; AAR, 1996; CHRIS , 1998). Evolved hydrogen cyanide fumes are highly toxic and can produce serious injury or death (Hall & Rumack, 1986).
- Some hydrogen cyanide gas is released when sodium cyanide is dissolved in and reacts with water. Unless this occurs in a closed space, the amount is too small to be hazardous. If the water is acidic, however, toxic amounts of hydrogen cyanide may be released immediately (CHRIS , 1998).
REACTIVITY HAZARD
- Sodium cyanide powder reacts with carbon dioxide in air to release hydrogen cyanide gas (ITI, 1995).
- Sodium cyanide decomposes violently on contact with acids, liberating hydrogen cyanide gas (ITI, 1995). Sodium cyanide reacts with water, steam, acids or acid fumes to produce highly toxic hydrogen cyanide and sodium oxide gas (Lewis, 1996; AAR, 1996; CHRIS , 1998).
- A solution of sodium cyanide in water slowly decomposes to release ammonia (ITI, 1995).
- Some hydrogen cyanide gas is released when sodium cyanide is dissolved in and reacts with water. Unless this occurs in a closed space, the amount is too small to be hazardous. If the water is acidic, however, toxic amounts of hydrogen cyanide may be released nearly immediately (CHRIS , 1998).
- Sodium cyanide reacts violently with fluorine, magnesium, nitrates, nitric acid, and nitrites (Lewis, 1996).
- A solution of sodium cyanide will readily dissolve gold or silver in the presence of air (Windholz et al, 1983).
- Fires involving sodium cyanide will produce toxic oxides of nitrogen (AAR, 1996).
- When benzyl cyanide was prepared in aqueous methanol from chloride and sodium cyanide, a fire resulted due to inadequate cooling of the reactor (Urben, 1995).
- "A well-established procedure (1 g mol, 20 runs) for preparation of ethyl cyanoacetate by heating the reactants together suddenly erupted out of control" (Urben, 1995).
- An explosion will result when cyanides are combined with a molten nitrate bath (NFPA, 1997).
- Cyanide salt melted with nitrite salt results in a violent explosion. The melt will explode if cyanide and chlorate or nitrite are heated to 450 degrees C (NFPA, 1997).
EVACUATION PROCEDURES
- Initial Isolation and Protective Action Distances (ERG, 2004)
Data presented from the Emergency Response Guidebook Table of Initial Isolation and Protective Action Distances are for use when a spill has occurred and there is no fire. If there is a fire, or if a fire is involved, evacuation information presented under FIRE - PUBLIC SAFETY EVACUATION DISTANCES should be used. Generally, a small spill is one that involves a single, small package such as a drum containing up to approximately 200 liters, a small cylinder, or a small leak from a large package. A large spill is one that involves a spill from a large package, or multiple spills from many small packages. Suggested distances to protect from vapors of toxic-by-inhalation and/or water-reactive materials during the first 30 minutes following the spill. DOT ID No. 1689 - Sodium cyanide when spilled in water SMALL SPILLS LARGE SPILLS CAUTION:
DOT ID No. 1689 - Sodium cyanide, solid when spilled in water SMALL SPILLS LARGE SPILLS CAUTION:
DOT ID No. 3414 : Sodium cyanide, solution
- SPILL - PUBLIC SAFETY EVACUATION DISTANCES - EMERGENCY RESPONSE GUIDEBOOK, GUIDE 157 (ERG, 2004)
Increase, in the downwind direction, as necessary, the isolation distance of at least 50 meters (150 feet) for liquids and at least 25 meters (75 feet) for solids in all directions.
- FIRE - PUBLIC SAFETY EVACUATION DISTANCES - EMERGENCY RESPONSE GUIDEBOOK, GUIDE 157 (ERG, 2004)
If tank, rail car or tank truck is involved in a fire, ISOLATE for 800 meters (1/2 mile) in all directions; also, consider initial evacuation for 800 meters (1/2 mile) in all directions.
- PUBLIC SAFETY MEASURES - EMERGENCY RESPONSE GUIDEBOOK, GUIDE 157 (ERG, 2004)
CALL Emergency Response Telephone Number on Shipping Paper first. If Shipping Paper not available or no answer, refer to appropriate telephone number: MEXICO: SETIQ: 01-800-00-214-00 in the Mexican Republic; For calls originating in Mexico City and the Metropolitan Area: 5559-1588; For calls originating elsewhere, call: 011-52-555-559-1588.
CENACOM: 01-800-00-413-00 in the Mexican Republic; For calls originating in Mexico City and the Metropolitan Area: 5550-1496, 5550-1552, 5550-1485, or 5550-4885; For calls originating elsewhere, call: 011-52-555-550-1496, or 011-52-555-550-1552; 011-52-555-550-1485, or 011-52-555-550-4885.
ARGENTINA: CIQUIME: 0-800-222-2933 in the Republic of Argentina; For calls originating elsewhere, call: +54-11-4613-1100.
BRAZIL: PRÓ-QUÍMICA: 0-800-118270 (Toll-free in Brazil); For calls originating elsewhere, call: +55-11-232-1144 (Collect calls are accepted).
COLUMBIA: CISPROQUIM: 01-800-091-6012 in Colombia; For calls originating in Bogotá, Colombia, call: 288-6012; For calls originating elsewhere, call: 011-57-1-288-6012.
CANADA: UNITED STATES:
For additional details see the section entitled "WHO TO CALL FOR ASSISTANCE" under the ERG Instructions. As an immediate precautionary measure, isolate spill or leak area in all directions for at least 50 meters (150 feet) for liquids and at least 25 meters (75 feet) for solids. Keep unauthorized personnel away. Stay upwind. Keep out of low areas. Ventilate enclosed areas.
- Issue a poison warning and evacuate the area (CHRIS , 1998).
- Avoid breathing dust or vapors, and keep upwind (AAR, 1996).
- AIHA ERPG Values for CAS143-33-9 (AIHA, 2006):
- DOE TEEL Values for CAS143-33-9 (U.S. Department of Energy, Office of Emergency Management, 2010):
Listed as Sodium cyanide TEEL-0 (units = mg/m3): 4 TEEL-1 (units = mg/m3): 4 TEEL-2 (units = mg/m3): 14 TEEL-3 (units = mg/m3): 30 Definitions: TEEL-0: The threshold concentration below which most people will experience no adverse health effects. TEEL-1: The airborne concentration (expressed as ppm [parts per million] or mg/m(3) [milligrams per cubic meter]) of a substance above which it is predicted that the general population, including susceptible individuals, could experience notable discomfort, irritation, or certain asymptomatic, nonsensory effects. However, these effects are not disabling and are transient and reversible upon cessation of exposure. TEEL-2: The airborne concentration (expressed as ppm or mg/m(3)) of a substance above which it is predicted that the general population, including susceptible individuals, could experience irreversible or other serious, long-lasting, adverse health effects or an impaired ability to escape. TEEL-3: The airborne concentration (expressed as ppm or mg/m(3)) of a substance above which it is predicted that the general population, including susceptible individuals, could experience life-threatening adverse health effects or death.
- AEGL Values for CAS143-33-9 (National Research Council, 2010; National Research Council, 2009; National Research Council, 2008; National Research Council, 2007; NRC, 2001; NRC, 2002; NRC, 2003; NRC, 2004; NRC, 2004; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2006; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2007; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2005; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2005; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2007; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2006; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2006; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2006; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2006; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2006; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2006; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2006; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2006; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2006; United States Environmental Protection Agency Office of Pollution Prevention and Toxics, 2006; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2006; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2007; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2007; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2008; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2008; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2007; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2008; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2007; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2008; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2007; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2009; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2009; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2009; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2009; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2009; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2009; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2009; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2009; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2009; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2009; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2009; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2008; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2008; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2008; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2008; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2008; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2008; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2008; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2009; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2008; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2008; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2008; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2009; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2008; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2008; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2008; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2008; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2008; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2008; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2008; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2007; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2006; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2006; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2006; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2007; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2007; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2007; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2007; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2007; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2005; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2005; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2005; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2005; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2005; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2005; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2005; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2005; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2007; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2005; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2006; 62 FR 58840, 1997; 65 FR 14186, 2000; 65 FR 39264, 2000; 65 FR 77866, 2000; 66 FR 21940, 2001; 67 FR 7164, 2002; 68 FR 42710, 2003; 69 FR 54144, 2004):
Listed as: Sodium cyanide Proposed Value: AEGL-1 10 min exposure: 30 min exposure: 1 hr exposure: 4 hr exposure: 8 hr exposure:
Definitions: AEGL-1 is the airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience notable discomfort, irritation, or certain asymptomatic non-sensory effects. However, the effects are not disabling, are transient, and are reversible upon cessation of exposure.
Listed as: Sodium cyanide Proposed Value: AEGL-2 10 min exposure: 30 min exposure: 1 hr exposure: 4 hr exposure: 8 hr exposure:
Definitions: AEGL-2 is the airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience irreversible or other serious, long-lasting adverse health effects or an impaired ability to escape.
Listed as: Sodium cyanide Proposed Value: AEGL-3 10 min exposure: 30 min exposure: 1 hr exposure: 4 hr exposure: 8 hr exposure:
Definitions: AEGL-3 is the airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience life-threatening health effects or death.
- NIOSH IDLH Values for CAS143-33-9 (National Institute for Occupational Safety and Health, 2007):
CONTAINMENT/WASTE TREATMENT OPTIONS
SPILL OR LEAK PRECAUTIONS - EMERGENCY RESPONSE GUIDEBOOK, GUIDE 157 (ERG, 2004) ELIMINATE all ignition sources (no smoking, flares, sparks or flames in immediate area). All equipment used when handling the product must be grounded. Do not touch damaged containers or spilled material unless wearing appropriate protective clothing. Stop leak if you can do it without risk. A vapor suppressing foam may be used to reduce vapors. DO NOT GET WATER INSIDE CONTAINERS. Use water spray to reduce vapors or divert vapor cloud drift. Avoid allowing water runoff to contact spilled material. Prevent entry into waterways, sewers, basements or confined areas.
RECOMMENDED PROTECTIVE CLOTHING - EMERGENCY RESPONSE GUIDEBOOK, GUIDE 157 (ERG, 2004) Wear positive pressure self-contained breathing apparatus (SCBA). Wear chemical protective clothing that is specifically recommended by the manufacturer. It may provide little or no thermal protection. Structural firefighters' protective clothing provides limited protection in fire situations ONLY; it is not effective in spill situations where direct contact with the substance is possible.
LAND SPILLS: Pits, ponds, or lagoons may be constructed to contain spilled or leaking material and fire control runoff water. Contained material should be covered with plastic sheeting to prevent it from dissolving in rain or fire control water (AAR, 1996). WATER SPILLS: First add dilute caustic soda, then neutralize with calcium hypochlorite and adjust pH to neutral (pH = 7) (AAR, 1996). AIR SPILLS: Use water spray to knock down vapors. This water may be toxic or corrosive and should be diked for containment and later disposal (AAR, 1996). Keep the release separate from water, dust, mist, or solution. Avoid creating dust. Promptly contain runoff and all discharged material for proper disposal (NFPA, 1997).
Add a strong alkali solution of calcium hypochlorite to neutralize the sodium cyanide (ITI, 1995). Waste management activities associated with material disposition are unique to individual situations. Proper waste characterization and decisions regarding waste management should be coordinated with the appropriate local, state, or federal authorities to ensure compliance with all applicable rules and regulations.
-ENVIRONMENTAL HAZARD MANAGEMENT
POLLUTION HAZARD
- In bacteria, cyanide production has been observed in Chromobacterium violaceum and certain species of Pseudomonas (HSDB, 2003).
- Material containing cyanide compounds disposed of on land may lead to elevated levels of cyanide in underlying strata and in groundwater (HSDB, 2003).
ABIOTIC DEGRADATION
- No information found at the time of this review.
BIODEGRADATION
- The bacterium, Pseudomonas putida, was isolated from contaminated industrial wastewaters and soil sites. The bacterium was found to use sodium cyanide (NaCN) as a sole source of carbon and nitrogen. The bacterial cells were immobilized in an air-uplift-type fluidized batch bioreactor containing 100 to 400 ppm NaCN. The resulting data showed that P. putida was able to degrade NaCN into NH3 and CO2 in a time-dependent manner (Babu et al, 1992).
- PSEUDOMONAS PUTIDA: Bacterial cells immobilized in alginate were more efficient in degrading sodium cyanide to ammonia and carbon dioxide than either free cells or cells immobilized in agar or carrageenan (Chapatwala et al, 1993).
ENVIRONMENTAL TOXICITY
- Sodium cyanide is harmful to aquatic life in very low concentrations. Notify local wildlife authorities of water spills (CHRIS , 1998).
-PHYSICAL/CHEMICAL PROPERTIES
MOLECULAR WEIGHT
DESCRIPTION/PHYSICAL STATE
- Sodium cyanide is a white, deliquescent, noncombustible solid which may exist in powder, granular, egg-shaped, crystal, briquette, or flake form (ACGIH, 1991; Ashford, 1994; Budavari, 1996; EPA, 1985) NFPA, 1998; (Proctor et al, 1988).
- The compound is also described as odorless when dry, but when moist, it possesses a faint odor of hydrocyanic acid (Budavari, 1996).
- Sodium cyanide possesses a bitter almond-like odor (ACGIH, 1991). The ability to detect this odor is genetically determined and between 20-60% of the population are unable to detect its presence (Hall & Rumack, 1986).
- When cooled to below 10 degrees C, its form changes in shape from cubic to hexagonal (Lewis, 1996).
PH
- Aqueous solutions are strongly alkaline (Budavari, 1996).
VAPOR PRESSURE
- 1 mmHg (at 817 degrees C) (Lewis, 1996)
- 0.76 mmHg (at 800 degrees C) (ACGIH, 1991)
- 10 mmHg (at 983 degrees C) (Clayton & Clayton, 1994)
- 0 mmHg (approximate) (NIOSH , 1998)
SPECIFIC GRAVITY
- TEMPERATURE AND/OR PRESSURE NOT LISTED
DENSITY
- NORMAL TEMPERATURE AND PRESSURE
FREEZING/MELTING POINT
563 degrees C (ACGIH, 1991) 563.7 degrees C (Lewis, 1996) 564 degrees C (Clayton & Clayton, 1994) 563-564 degrees C (Ashford, 1994)
BOILING POINT
- 1496 degrees C (Clayton & Clayton, 1994; Lewis, 1996)
- 2725 degrees F (NIOSH , 1998)
- 1500 degrees C (ACGIH, 1991)
EXPLOSIVE LIMITS
SOLUBILITY
Sodium cyanide is very soluble in water (Lewis, 1996). It is soluble in water at 82 g of sodium cyanide in 100 mL of water (at 35 degrees C) (EPA, 1985). Specific solubility values are as follows: 48 g/100 cc water (at 10 degrees C) (HSDB , 1998) 82 g/100 cc water (at 35 degrees C) (HSDB , 1998) 58% (at 77 degrees F) (NIOSH , 1998)
Sodium cyanide is slightly soluble in alcohol (Budavari, 1996). It is soluble in ammonia and slightly soluble in ethanol (HSDB , 1998).
OTHER/PHYSICAL
-REFERENCES
GENERAL BIBLIOGRAPHY- 40 CFR 372.28: Environmental Protection Agency - Toxic Chemical Release Reporting, Community Right-To-Know, Lower thresholds for chemicals of special concern. National Archives and Records Administration (NARA) and the Government Printing Office (GPO). Washington, DC. Final rules current as of Apr 3, 2006.
- 40 CFR 372.65: Environmental Protection Agency - Toxic Chemical Release Reporting, Community Right-To-Know, Chemicals and Chemical Categories to which this part applies. National Archives and Records Association (NARA) and the Government Printing Office (GPO), Washington, DC. Final rules current as of Apr 3, 2006.
- 49 CFR 172.101 - App. B: Department of Transportation - Table of Hazardous Materials, Appendix B: List of Marine Pollutants. National Archives and Records Administration (NARA) and the Government Printing Office (GPO), Washington, DC. Final rules current as of Aug 29, 2005.
- 49 CFR 172.101: Department of Transportation - Table of Hazardous Materials. National Archives and Records Administration (NARA) and the Government Printing Office (GPO), Washington, DC. Final rules current as of Aug 11, 2005.
- 62 FR 58840: Notice of the National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances - Proposed AEGL Values, Environmental Protection Agency, NAC/AEGL Committee. National Archives and Records Administration (NARA) and the Government Publishing Office (GPO), Washington, DC, 1997.
- 65 FR 14186: Notice of the National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances - Proposed AEGL Values, Environmental Protection Agency, NAC/AEGL Committee. National Archives and Records Administration (NARA) and the Government Publishing Office (GPO), Washington, DC, 2000.
- 65 FR 39264: Notice of the National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances - Proposed AEGL Values, Environmental Protection Agency, NAC/AEGL Committee. National Archives and Records Administration (NARA) and the Government Publishing Office (GPO), Washington, DC, 2000.
- 65 FR 77866: Notice of the National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances - Proposed AEGL Values, Environmental Protection Agency, NAC/AEGL Committee. National Archives and Records Administration (NARA) and the Government Publishing Office (GPO), Washington, DC, 2000.
- 66 FR 21940: Notice of the National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances - Proposed AEGL Values, Environmental Protection Agency, NAC/AEGL Committee. National Archives and Records Administration (NARA) and the Government Publishing Office (GPO), Washington, DC, 2001.
- 67 FR 7164: Notice of the National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances - Proposed AEGL Values, Environmental Protection Agency, NAC/AEGL Committee. National Archives and Records Administration (NARA) and the Government Publishing Office (GPO), Washington, DC, 2002.
- 68 FR 42710: Notice of the National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances - Proposed AEGL Values, Environmental Protection Agency, NAC/AEGL Committee. National Archives and Records Administration (NARA) and the Government Publishing Office (GPO), Washington, DC, 2003.
- 69 FR 54144: Notice of the National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances - Proposed AEGL Values, Environmental Protection Agency, NAC/AEGL Committee. National Archives and Records Administration (NARA) and the Government Publishing Office (GPO), Washington, DC, 2004.
- AAR: Emergency Handling of Hazardous Material in Surface Transportation, Bureau of Explosives, Association of American Railroads, Washington, DC, 1996.
- ACGIH: Documentation of the Threshold Limit Values and Biological Exposure Indices, 6th ed, Am Conference of Govt Ind Hyg, Inc, Cincinnati, OH, 1991.
- ACGIH: Documentation of the Threshold Limit Values and Biological Exposure Indicies, 5th ed, Am Conference of Govt Ind Hyg, Inc, Cincinnati, OH, 1986.
- AIHA: 2006 Emergency Response Planning Guidelines and Workplace Environmental Exposure Level Guides Handbook, American Industrial Hygiene Association, Fairfax, VA, 2006.
- AMA Department of DrugsAMA Department of Drugs: AMA Evaluations Subscription, American Medical Association, Chicago, IL, 1992.
- Alaspaa AO, Kuisma MJ, Hoppu K, et al: Out-of-hospital administration of activated charcoal by emergency medical services. Ann Emerg Med 2005; 45:207-12.
- American Conference of Governmental Industrial Hygienists : ACGIH 2010 Threshold Limit Values (TLVs(R)) for Chemical Substances and Physical Agents and Biological Exposure Indices (BEIs(R)), American Conference of Governmental Industrial Hygienists, Cincinnati, OH, 2010.
- Amery WK, Wauquier A, & van Neuten JM: The anti-migrainous pharmacology of flunarizine (R14950), a calcium antagonist. Drugs Exper Clin Res 1981; 7:1-10.
- Anderson AH: Experimental studies on the pharmacology of activated charcoal. Acta pharmacol 1946; 2:69-78.
- Anon: Med J Aust 1972; 1:1169-1170.
- Ansell-Edmont: SpecWare Chemical Application and Recommendation Guide. Ansell-Edmont. Coshocton, OH. 2001. Available from URL: http://www.ansellpro.com/specware. As accessed 10/31/2001.
- Artigas A, Bernard GR, Carlet J, et al: The American-European consensus conference on ARDS, part 2: ventilatory, pharmacologic, supportive therapy, study design strategies, and issues related to recovery and remodeling.. Am J Respir Crit Care Med 1998; 157:1332-1347.
- Ashford R: Ashford's Dictionary of Industrial Chemicals, Wavelength Publications Ltd, London, England, 1994.
- Ashton D, van Reempts J, & Wauquier A: Behavioral, electroencephalographic and histological study of the protective effect of etomidate against histotoxic dysoxia produced by cyanide. Arch Int Pharmacodyn Ther 1980; 254:196-213.
- Babu GRV, Wolfram JH, & Chapatwala KD: Conversion of sodium cyanide to carbon dioxide and ammonia by immobilized cells of Pseudomonas putida. J Ind Microbiol 1992; 9:235-238.
- Ballantyne B: Acute systemic toxicity of cyanide by topical application to the eye. J Toxicol Cut Ocular Toxicol 1983; 2:119.
- Ballantyne B: Toxicology and hazard evaluation of cyanide fumigation powders. J Toxicol Clin Toxicol 1988; 26:325-335.
- Banerjee KK, Bishayee A, & Marimuthu P: Evaluation of cyanide exposure and its effect on thyroid function of workers in cable industry. JOEM 1997; 39:258-260.
- Baselt RC & Cravey RH: Disposition of Toxic Drugs and Chemicals in Man, 3rd ed, Year Book Medical Publishers, Chicago, IL, 1989.
- Baselt RC: Biological Monitoring Methods for Industrial Chemicals, 2nd ed, PSG Publishing Company, Littleton, MA, 1988.
- Baselt RC: Disposition of Toxic Drugs and Chemicals in Man, 2nd ed, Biomedical Publications, Davis, CA, 1982, pp 209-214.
- Bata Shoe Company: Industrial Footwear Catalog, Bata Shoe Company, Belcamp, MD, 1995.
- Berlin CM Jr: Treatment of cyanide poisoning in children. Pediatrics 1970; 46:793-796.
- Berlin: Treatment of cyanide poisoning in children. Pediatr 1970a; 46:793-796.
- Berumen U Jr: Dog poisons man. JAMA 1983; 249:353.
- Best Manufacturing: ChemRest Chemical Resistance Guide. Best Manufacturing. Menlo, GA. 2002. Available from URL: http://www.chemrest.com. As accessed 10/8/2002.
- Best Manufacturing: Degradation and Permeation Data. Best Manufacturing. Menlo, GA. 2004. Available from URL: http://www.chemrest.com/DomesticPrep2/. As accessed 04/09/2004.
- Bhattacharya R & Vijayaraghavan R: Promising role of alpha-ketoglutarate in protecting against the lethal effects of cyanide. Hum Exp Toxicol 2002; 21(6):297-303.
- Bismuth C, Cantineau J-P, & Pontal P: Priorite de l'oxygenation dans l'intoxication cyanhydrique: A propos de 25 cas (French). J Toxicol Med 1984; 4:107-121.
- Bismuth C, Cantineau J-P, & Pontal P: Priorite de l'oxygenation dans l'intoxication cyanhydrique: A propos de 25 cas. J Toxicol Med 1984a; 4:107-121.
- Blanc P, Hogan M, & Malin K: Cyanide intoxication among silver-reclaiming workers. JAMA 1985; 253:367-371.
- Bonnichsen R & Maely AC: Poisoning by volatile compounds. J Forens Sci 1966; 11:516-527.
- Bonsall JL: Survival without sequelae following exposure to 500 mg/m3 of hydrogen cyanide. Human Toxicol 1984; 3:57-60.
- Borgohain R, Singh AK, & Radhakrishna H: Delayed onset generalized dystonia after cyanide poisoning. Clin Neurol Neurosurg 1995; 97:213-215.
- Borron SW, Baud FJ, Barriot P, et al: Prospective study of hydroxocobalamin for acute cyanide poisoning in smoke inhalation. Ann Emerg Med 2007a; 49(6):794-801, 801.
- Borron SW, Baud FJ, Megarbane B, et al: Hydroxocobalamin for severe acute cyanide poisoning by ingestion or inhalation. Am J Emerg Med 2007; 25(5):551-558.
- Boss Manufacturing Company: Work Gloves, Boss Manufacturing Company, Kewanee, IL, 1998.
- Bourrelier J & Paulet G: Intoxication cyanhydrique consecutive a des brulures graves par cyanure de sodium fondu. Sur trois cas traites par EDTA cobaltique. Presse Med 1971; 22:1013-1014.
- Breen PH, Isserles SA, & Tabac E: Protective effect of stroma-free methemoglobin during cyanide poisoning in dogs. Anesthesiology 1996; 85:558-564.
- Bright JE & Marrs TC: Effects of p-aminopropiophenone (PAPP), a cyanide antidote, on cyanide given by intravenous infusion. Hum Toxicol 1987; 6:133-137.
- Bright JE, Inns RH, & Tuckwell NJ: The effect of storage upon cyanide in blood samples. Human Exp Toxicol 1990; 9:125-129.
- Brophy GM, Bell R, Claassen J, et al: Guidelines for the evaluation and management of status epilepticus. Neurocrit Care 2012; 17(1):3-23.
- Brower RG, Matthay AM, & Morris A: Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Eng J Med 2000; 342:1301-1308.
- Bryson DD: Acute industrial cyanide intoxication and its treatment, in: Ballantyne B & Marrs TC (Eds), Clinical and Experimental Toxicology of Cyanides, Wright, Bristol, UK, 1987, pp 348-358.
- Buchanan IS, Dhamee MS, & Griffith FED: Abnormal fundal appearances in a case of poisoning by a cyanide capsule. Med Sci Law 1976; 16:29.
- Buchter A & Peter H: Clinical toxicology of acrylonitrile. G Ital Med Lav 1984; 6:83-86.
- Budavari S: The Merck Index, 11th ed. Merck & Co, Inc, Rahway, NJ, 1989. E.SK 1 Burrows G & Way GL: Antagonism of cyanide toxicity by phenoxybenzamine. Fed Proc 1976; 35:533.
- Budavari S: The Merck Index, 12th ed, Merck & Co, Inc, Rahway, NJ, 1996.
- Burgess JL, Kirk M, Borron SW, et al: Emergency department hazardous materials protocol for contaminated patients. Ann Emerg Med 1999; 34(2):205-212.
- Burrows GE & Way JL: Cyanide intoxication in sheeps: Therapeutic value of oxygen or colbalt. Am J Vet Res 1977; 38:223-227.
- CDC: Cyanide poisonings associated with over-the-counter medication -- Washington State, 1991. CDC: MMWR 1991; 40:161-168.
- CHRIS : CHRIS Hazardous Chemical Data. US Department of Transportation, US Coast Guard. Washington, DC (Internet Version). Edition expires 10/31/1998; provided by Truven Health Analytics Inc., Greenwood Village, CO.
- CHRIS : CHRIS Hazardous Chemical Data. US Department of Transportation, US Coast Guard. Washington, DC (Internet Version). Edition expires 2002; provided by Truven Health Analytics Inc., Greenwood Village, CO.
- Caravati EM, Knight HH, & Linscott MS: Esophageal laceration and charcoal mediastinum complicating gastric lavage. J Emerg Med 2001; 20:273-276.
- Carden E: Hyperbaric oxygen in cyanide poisoning. Anaesthesia 1970; 25:442-443.
- Carella F, Grassi MP, & Savoiardo M: Dystonic-Parkinsonian syndrome after cyanide poisoning: clinical and MRI findings. J Neurol Neurosurg Psychiatr 1988; 51:1345-1348.
- Casadei E, Cliff J, & Neves J: Surveillance of urinary thiocyanate concentration after epidemic spastic paraparesis in Mozambique. J Trop Med Hygiene 1990; 93:257-261.
- Cataletto M: Respiratory Distress Syndrome, Acute(ARDS). In: Domino FJ, ed. The 5-Minute Clinical Consult 2012, 20th ed. Lippincott Williams & Wilkins, Philadelphia, PA, 2012.
- Chamberlain JM, Altieri MA, & Futterman C: A prospective, randomized study comparing intramuscular midazolam with intravenous diazepam for the treatment of seizures in children. Ped Emerg Care 1997; 13:92-94.
- Chandra H: J Anal Toxicol 1980; 4:161-165.
- Chapatwala KD, Babu GRV, & Wolfram JH: Screening of encapsulated microbial cells for the degradation of inorganic cyanides. J Ind Microbiol 1993; 11:69-72.
- Chaumont M: Chronic intoxication caused by cyanides and by cyanohydric acid (French). Soc Med Hyg Trav 1960; 660-662.
- ChemFab Corporation: Chemical Permeation Guide Challenge Protective Clothing Fabrics, ChemFab Corporation, Merrimack, NH, 1993.
- Chin RF , Neville BG , Peckham C , et al: Treatment of community-onset, childhood convulsive status epilepticus: a prospective, population-based study. Lancet Neurol 2008; 7(8):696-703.
- Choonara IA & Rane A: Therapeutic drug monitoring of anticonvulsants state of the art. Clin Pharmacokinet 1990; 18:318-328.
- Chyka PA, Seger D, Krenzelok EP, et al: Position paper: Single-dose activated charcoal. Clin Toxicol (Phila) 2005; 43(2):61-87.
- Clark CJ, Campbell D, & Reid WH: Blood carboxyhemoglobin and cyanide levels in fire survivors. Lancet 1981; 1:1332-1335.
- Clayton GD & Clayton FE: Patty's Industrial Hygiene and Toxicology, Vol 2D, Toxicology, 3rd ed, John Wiley & Sons, New York, NY, 1994.
- Cliff J, Essers S, & Rosling H: Ankle clonus correlating with cyanide intake from cassava in rural children from Mozambique. J Trop Peds 1986; 32:186-189.
- Colle R: L'intoxication cyanhydrique chronique (French). Maroc Medicale 1972; 50:750-757.
- Comasec Safety, Inc.: Chemical Resistance to Permeation Chart. Comasec Safety, Inc.. Enfield, CT. 2003. Available from URL: http://www.comasec.com/webcomasec/english/catalogue/mtabgb.html. As accessed 4/28/2003.
- Comasec Safety, Inc.: Product Literature, Comasec Safety, Inc., Enfield, CT, 2003a.
- Cope C: The importance of oxygen in the treatment of cyanide poisoning. JAMA 1961; 175:1061.
- DFG: List of MAK and BAT Values 2002, Report No. 38, Deutsche Forschungsgemeinschaft, Commission for the Investigation of Health Hazards of Chemical Compounds in the Work Area, Wiley-VCH, Weinheim, Federal Republic of Germany, 2002.
- Dagnone D, Matsui D, & Rieder MJ: Assessment of the palatability of vehicles for activated charcoal in pediatric volunteers. Pediatr Emerg Care 2002; 18:19-21.
- Davis FM & Ewer T: Acute cyanide poisoning: case report of the use of hyperbaric oxygen. J Hyperb Med 1988; 3:103-106.
- Davison V: Cyanide poisoning: Kelocyanor -- a new treatment. Occup Health 1969; 21:306-308.
- De Busk RF & Seidl LG: Attempted suicide by cyanide. A report of two cases. Calif Med 1969; 110:394-396.
- DiNapoli J, Hall AH, & Drake R: Cyanide and arsenic poisoning by intravenous injection. Ann Emerg Med 1989; 18:308-311.
- Dodds C & McKnight C: Cyanide toxicity after immersion and the hazards of dicobalt edetate. Br Med J 1985; 291:785-786.
- Doherty PA, Ferm VH, & Smith RP: Congenital malformations induced by infusion of sodium cyanide in the Golden hamster. Toxicol Appl Pharmacol 1982; 64:456-464.
- DuPont: DuPont Suit Smart: Interactive Tool for the Selection of Protective Apparel. DuPont. Wilmington, DE. 2002. Available from URL: http://personalprotection.dupont.com/protectiveapparel/suitsmart/smartsuit2/na_english.asp. As accessed 10/31/2002.
- DuPont: Permeation Guide for DuPont Tychem Protective Fabrics. DuPont. Wilmington, DE. 2003. Available from URL: http://personalprotection.dupont.com/en/pdf/tyvektychem/pgcomplete20030128.pdf. As accessed 4/26/2004.
- DuPont: Permeation Test Results. DuPont. Wilmington, DE. 2002a. Available from URL: http://www.tyvekprotectiveapprl.com/databases/default.htm. As accessed 7/31/2002.
- Dubinsky B, Sierchio JN, & Temple DE: Flunarizine and verapamil: effects on central nervous system and peripheral consequences of cytotoxic hypoxia in rats. Life Sci 1984; 34:1299-1306.
- Dunipace AJ, Beaven R, Noblitt T, et al: Mutagenic potential of toluidine blue evaluated in the Ames test. Mutat Res 1992; 279(4):255-259.
- EPA: EPA chemical profile on sodium cyanide, Environmental Protection Agency, Washington, DC, 1985.
- EPA: Search results for Toxic Substances Control Act (TSCA) Inventory Chemicals. US Environmental Protection Agency, Substance Registry System, U.S. EPA's Office of Pollution Prevention and Toxics. Washington, DC. 2005. Available from URL: http://www.epa.gov/srs/.
- ERG: Emergency Response Guidebook. A Guidebook for First Responders During the Initial Phase of a Dangerous Goods/Hazardous Materials Incident, U.S. Department of Transportation, Research and Special Programs Administration, Washington, DC, 2004.
- Edwards AC & Thomas ID: Cyanide poisoning. Lancet 1978; 1:92-93.
- El Ghawabi SH, Gaafar MA, & El-Saharti AA: Chronic cyanide exposure: a clinical, radioisotope, and laboratory study. Br J Ind Med 1975; 32:215-219.
- Elliot CG, Colby TV, & Kelly TM: Charcoal lung. Bronchiolitis obliterans after aspiration of activated charcoal. Chest 1989; 96:672-674.
- Ermans AM, Delange F, & Van Der Velden M: Possible role of cyanide and thiocyanate in the etiology of endemic cretinism. Adv Exp Med Biol 1972; 30:455-486.
- FDA: Poison treatment drug product for over-the-counter human use; tentative final monograph. FDA: Fed Register 1985; 50:2244-2262.
- Feihl F, Domenighetti D, & Perret CI: Intoxication massive au cyanure avec evolution favorable (French). Schweiz Med Wschr 1982; 112:1280-1282.
- Feldman JM & Feldman MD: Sequelae of attempted suicide by cyanide ingestion: a case report. Int J Psychiatry Med 1990; 20:173-179.
- Finkel AJ: Hamilton and Hardy's Industrial Toxicology, 4th ed, John Wright, PSG Inc, Boston, MA, 1983, pp 171-176.
- Fligner CL, Luthi R, & Linkaityte-Weiss E: Paper strip screening method for detection of cyanide in blood using CYANTESMO test paper. Am J Forens Med Pathol 1992; 13:81-84.
- Forsyth JC, Becker CE, & Osterloh J: Hydroxocobalamin as a cyanide antidote: safety, efficacy, and pharmacokinetics in heavy smokers. Vet Hum Toxicol 1992; 34:338.
- Forsyth JC, Mueller PD, & Becker CE: Hydroxocobalamin as a cyanide antidote: safety, efficacy and pharmacokinetics in heavily smoking normal volunteers. Clin Toxicol 1993; 31:277-294.
- Freeman AG: Optic neuropathy and chronic cyanide intoxication: a review. J R Soc Med 1988; 81:103-106.
- Geiger LE, Hogy LL, & Guengerich FP: Metabolism of acrylonitrile by isolated rat hepatocytes. Cancer Res 1983; 43:3080-3087.
- Gettler AD & St George V: Cyanide poisoning. Am J Clin Pathol 1934; 4:429-437.
- Golej J, Boigner H, Burda G, et al: Severe respiratory failure following charcoal application in a toddler. Resuscitation 2001; 49:315-318.
- Gonzales J & Sabatini S: Cyanide poisoning: pathophysiology and current approaches to therapy. Internat J Artif Organs 1989; 12:347-355.
- Goodhart GL: Patient treated with antidote kit and hyperbaric oxygen survives cyanide poisoning. Southern Med J 1994; 87:814-816.
- Gosselin RE, Smith RP, & Hodge HC: Clinical Toxicology of Commercial Products, 5th ed, Williams & Wilkins, Baltimore, MD, 1984.
- Graff GR, Stark J, & Berkenbosch JW: Chronic lung disease after activated charcoal aspiration. Pediatrics 2002; 109:959-961.
- Graham DL, Laman D, & Theodore J: Acute cyanide poisoning complicated by lactic acidosis and pulmonary edema. Arch Intern Med 1977; 137:1051-1055.
- Grandas F, Artieda J, & Obeso JA: Clinical and CT scan findings in a case of cyanide intoxication. Mov Disord 1989; 4:188-193.
- Grant WM: Toxicology of the Eye, 3rd ed, Charles C Thomas, Springfield, IL, 1986, pp 287-290.
- Groff WA, Stemler FW, & Kaminskis A: Plasma free cyanide and blood total cyanide: A rapid completely automated microdistillation assay. Clin Toxicol 1985; 23:133-163.
- Guardian Manufacturing Group: Guardian Gloves Test Results. Guardian Manufacturing Group. Willard, OH. 2001. Available from URL: http://www.guardian-mfg.com/guardianmfg.html. As accessed 12/11/2001.
- Guenther Skokan E, Junkins EP, & Corneli HM: Taste test: children rate flavoring agents used with activated charcoal. Arch Pediatr Adolesc Med 2001; 155:683-686.
- HSDB : Hazardous Substances Data Bank. National Library of Medicine. Bethesda, MD (Internet Version). Edition expires 10/31/1998; provided by Truven Health Analytics Inc., Greenwood Village, CO.
- HSDB : Hazardous Substances Data Bank. National Library of Medicine. Bethesda, MD (Internet Version). Edition expires 1991; provided by Truven Health Analytics Inc., Greenwood Village, CO.
- Haas CF: Mechanical ventilation with lung protective strategies: what works?. Crit Care Clin 2011; 27(3):469-486.
- Haguenoer JM, Dequidt J, & Levy JC: Intoxications experimentales par l'acetonitrile. 4e note: Influence de l'hydroxocobalamine sur l'intoxication a moyen terme. Eur J Toxicol 1975; 8:113-121.
- Hall AH & Rumack BH: Clinical toxicology of cyanide. Ann Emerg Med 1986; 15:1067-1074.
- Hall AH & Rumack BH: Hydroxycobalamin/sodium thiosulfate as a cyanide antidote. J Emerg Med 1987; 5:115-121.
- Harris CR & Filandrinos D: Accidental administration of activated charcoal into the lung: aspiration by proxy. Ann Emerg Med 1993; 22:1470-1473.
- Hart GB, Strauss MB, & Lennon PA: Treatment of smoke inhalation by hyperbaric oxygen. J Emerg Med 1985; 3:211-215.
- Hartung R: Cyanides and Nitriles, in Clayton GD & Clayton FE (eds): Patty's Industrial Hygiene and Toxicology, Vol 2C, Toxicology, 3rd ed, John Wiley & Sons, New York, NY, 1982.
- Hathaway GJ, Proctor NH, & Hughes JP: Chemical Hazards of the Workplace, 4th ed, Van Nostrand Reinhold Company, New York, NY, 1996.
- Hegenbarth MA & American Academy of Pediatrics Committee on Drugs: Preparing for pediatric emergencies: drugs to consider. Pediatrics 2008; 121(2):433-443.
- Herman MI, Chyka PA, & Butlse AY: Methylene blue by intraosseous infusion for methemoglobinemia. Ann Emerg Med 1999; 33:111-113.
- Hillman B, Bardhan KD, & Bain JTB: The use of dicobalt edetate (Kelocyanor) in cyanide poisoning. Postgrad Med J 1974; 50:171-174.
- Hix WR & Wilson WR: Toluidine blue staining of the esophagus: a useful adjunct in the panendoscopic evaluation of patients with squamous cell carcinoma of the head and neck. Arch Otolaryngol Head Neck Surg 1987; 113(8):864-865.
- Hjelt K, Lund JT, Scherling B, et al: Methaemoglobinaemia among neonates in a neonatal intensive care unit. Acta Paediatr 1995; 84(4):365-370.
- Howland MA: Antidotes in Depth. In: Goldfrank LR, Flomenbaum N, Hoffman RS, et al, eds. Goldfrank's Toxicologic Emergencies. 8th ed., 8th ed. McGraw-Hill, New York, NY, 2006, pp 826-828.
- Howland MA: Sodium Thiosulfate. In: Nelson LS, Lewin NA, Howland MA, et al, eds. Goldfrank's Toxicologic Emergencies, 9th ed. McGraw Hill Medical, New York, NY, 2011, pp 1692-1694.
- Hvidberg EF & Dam M: Clinical pharmacokinetics of anticonvulsants. Clin Pharmacokinet 1976; 1:161.
- IARC Working Group on the Evaluation of Carcinogenic Risks to Humans : IARC Monographs on the Evaluation of Carcinogenic Risks to Humans: 1,3-Butadiene, Ethylene Oxide and Vinyl Halides (Vinyl Fluoride, Vinyl Chloride and Vinyl Bromide), 97, International Agency for Research on Cancer, Lyon, France, 2008.
- IARC Working Group on the Evaluation of Carcinogenic Risks to Humans : IARC Monographs on the Evaluation of Carcinogenic Risks to Humans: Formaldehyde, 2-Butoxyethanol and 1-tert-Butoxypropan-2-ol, 88, International Agency for Research on Cancer, Lyon, France, 2006.
- IARC Working Group on the Evaluation of Carcinogenic Risks to Humans : IARC Monographs on the Evaluation of Carcinogenic Risks to Humans: Household Use of Solid Fuels and High-temperature Frying, 95, International Agency for Research on Cancer, Lyon, France, 2010a.
- IARC Working Group on the Evaluation of Carcinogenic Risks to Humans : IARC Monographs on the Evaluation of Carcinogenic Risks to Humans: Smokeless Tobacco and Some Tobacco-specific N-Nitrosamines, 89, International Agency for Research on Cancer, Lyon, France, 2007.
- IARC Working Group on the Evaluation of Carcinogenic Risks to Humans : IARC Monographs on the Evaluation of Carcinogenic Risks to Humans: Some Non-heterocyclic Polycyclic Aromatic Hydrocarbons and Some Related Exposures, 92, International Agency for Research on Cancer, Lyon, France, 2010.
- IARC: List of all agents, mixtures and exposures evaluated to date - IARC Monographs: Overall Evaluations of Carcinogenicity to Humans, Volumes 1-88, 1972-PRESENT. World Health Organization, International Agency for Research on Cancer. Lyon, FranceAvailable from URL: http://monographs.iarc.fr/monoeval/crthall.html. As accessed Oct 07, 2004.
- ICAO: Technical Instructions for the Safe Transport of Dangerous Goods by Air, 2003-2004. International Civil Aviation Organization, Montreal, Quebec, Canada, 2002.
- ILC Dover, Inc.: Ready 1 The Chemturion Limited Use Chemical Protective Suit, ILC Dover, Inc., Frederica, DE, 1998.
- ITI: Toxic and Hazardous Industrial Chemicals Safety Manual, The International Technical Information Institute, Tokyo, Japan, 1995.
- International Agency for Research on Cancer (IARC): IARC monographs on the evaluation of carcinogenic risks to humans: list of classifications, volumes 1-116. International Agency for Research on Cancer (IARC). Lyon, France. 2016. Available from URL: http://monographs.iarc.fr/ENG/Classification/latest_classif.php. As accessed 2016-08-24.
- International Agency for Research on Cancer: IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. World Health Organization. Geneva, Switzerland. 2015. Available from URL: http://monographs.iarc.fr/ENG/Classification/. As accessed 2015-08-06.
- Ivanov KP: The effect of elevated oxygen pressure on animals poisoned with potassium cyanide. Pharmacol Toxicol 1959; 22:476-479.
- Johnson JD, Meisenheimer TL, & Isom GE: Cyanide-induced neurotoxicity: role of neuronal calcium. Toxicol Appl Pharmacol 1986; 84:464-469.
- Johnson RP & Mellors JW: Arteriolization of venous blood gases: a clue to the diagnosis of cyanide poisoning. J Emerg Med 1988; 6:401-404.
- Johnson WS, Hall AH, & Rumack BH: Cyanide poisoning successfully treated without 'therapeutic methemoglobin levels'. Am J Emerg Med 1989; 7:437-440.
- Jones J, McMullen MJ, & Dougherty J: Toxic smoke inhalation: cyanide poisoning in fire victims. Am J Emerg Med 1987; 5:318-321.
- Jouglard J, Fagot G, & Deguigne B: L'intoxication cyanhydrique aigue et son traitement d'urgence (French). Marseille Med 1971; 9:571-575.
- Jouglard J, Nava G, & Botta A: A propos d'une intoxication aigue par le cyanure de potassium traitee par l'hydroxocobalamine (French). Marseille Med 1974; 12:617-624.
- Kales SN, Dinklage D, & Dickey J: Paranoid psychosis after exposure to cyanide. Arch Environ Health 1997; 52:245-246.
- Kappler, Inc.: Suit Smart. Kappler, Inc.. Guntersville, AL. 2001. Available from URL: http://www.kappler.com/suitsmart/smartsuit2/na_english.asp?select=1. As accessed 7/10/2001.
- Kerns W, Beuhler M, & Tomaszewski C: Hydroxocobalamin versus thiosulfate for cyanide poisoning. Ann Emerg Med 2008; 51(3):338-339.
- Kiese M , Lorcher W , Weger N , et al: Comparative studies on the effects of toluidine blue and methylene blue on the reduction of ferrihaemoglobin in man and dog. Eur J Clin Pharmacol 1972; 4(2):115-118.
- Kimberly-Clark, Inc.: Chemical Test Results. Kimberly-Clark, Inc.. Atlanta, GA. 2002. Available from URL: http://www.kc-safety.com/tech_cres.html. As accessed 10/4/2002.
- Kirk MA, Gerace R, & Kulig KW: Cyanide and methemoglobin kinetics in smoke inhalation victims treated with the cyanide antidote kit. Ann Emerg Med 1993; 22:1413-1418.
- Kleinman ME, Chameides L, Schexnayder SM, et al: 2010 American Heart Association guidelines for cardiopulmonary resuscitation and emergency cardiovascular care. Part 14: pediatric advanced life support. Circulation 2010; 122(18 Suppl.3):S876-S908.
- Kollef MH & Schuster DP: The acute respiratory distress syndrome. N Engl J Med 1995; 332:27-37.
- Kraut JA & Madias NE: Metabolic acidosis: pathophysiology, diagnosis and management. Nat Rev Nephrol 2010; 6(5):274-285.
- Kreig A & Saxena K: Cyanide poisoning from metal cleaning solutions. Ann Emerg Med 1987; 16:582-584.
- Kruszyna R, Kruszyna H, & Smith RP: Comaprison of hydroxylamine, 4-dimethylaminophenol and nitrite protection against cyanide poisoning in mice. Arch Toxicol 1982; 49:191-202.
- LaCrosse-Rainfair: Safety Products, LaCrosse-Rainfair, Racine, WI, 1997.
- Lambert RJ, Kindler BL, & Schaeffer DJ: The efficacy of superactivated charcoal in treating rats exposed to a lethal oral dose of potassium cyanide. Ann Emerg Med 1988; 17:595-598.
- Lessell S & Kuwabara T: Invest Ophthalmol 1974; 13:748-756.
- Leung P, Sylvester DM, & Chiou F: Stereospecific effect of naloxone hydrochloride on cyanide intoxication. Toxicol Appl Pharmacol 1984; 83:525-530.
- Lewis RJ: Dangerous Properties of Industrial Materials, 9th ed, Van Nostrand Reinhold Co, New York, NY, 1996a.
- Lewis RJ: Sax's Dangerous Properties of Industrial Materials, 9th ed, Van Nostrand Reinhold Company, New York, NY, 1996.
- Lindenmann J, Matzi V, Kaufmann P, et al: Hyperbaric oxygenation in the treatment of life-threatening isobutyl nitrite-induced methemoglobinemia--a case report. Inhal Toxicol 2006; 18(13):1047-1049.
- Litovitz TL, Larkin RF, & Myers RAM: Cyanide poisoning treated with hyperbaric oxygen. Am J Emerg Med 1983; 1:94-101.
- Loddenkemper T & Goodkin HP: Treatment of Pediatric Status Epilepticus. Curr Treat Options Neurol 2011; Epub:Epub.
- MAPA Professional: Chemical Resistance Guide. MAPA North America. Columbia, TN. 2003. Available from URL: http://www.mapaglove.com/pro/ChemicalSearch.asp. As accessed 4/21/2003.
- MAPA Professional: Chemical Resistance Guide. MAPA North America. Columbia, TN. 2004. Available from URL: http://www.mapaglove.com/ProductSearch.cfm?id=1. As accessed 6/10/2004.
- Maduh EU, Johnson JD, & Ardelt BK: Cyanide-induced neurotoxicity: mechanisms of attenuation by chlorpromazine. Toxicol Appl Pharmacol 1988; 96:60-67.
- Manno EM: New management strategies in the treatment of status epilepticus. Mayo Clin Proc 2003; 78(4):508-518.
- Mar-Mac Manufacturing, Inc: Product Literature, Protective Apparel, Mar-Mac Manufacturing, Inc., McBee, SC, 1995.
- Marigold Industrial: US Chemical Resistance Chart, on-line version. Marigold Industrial. Norcross, GA. 2003. Available from URL: www.marigoldindustrial.com/charts/uschart/uschart.html. As accessed 4/14/2003.
- Marquez A & Todd M: Acute hemolytic anemia and agranulocytosis following intravenous administration of toluidine blue. Am Pract 1959; 10:1548-1550.
- Marrs TC: Antidotal treatment of acute cyanide poisoning. Adverse Drug React Acute Poisoning Rev 1988; 4:179-206.
- Memphis Glove Company: Permeation Guide. Memphis Glove Company. Memphis, TN. 2001. Available from URL: http://www.memphisglove.com/permeation.html. As accessed 7/2/2001.
- Montgomery Safety Products: Montgomery Safety Products Chemical Resistant Glove Guide, Montgomery Safety Products, Canton, OH, 1995.
- Moore SJ, Norris JC, & Ho IK: The efficacy of alphaketoglutaric acid in the antagonism of cyanide intoxication. Toxicol Appl Pharmacol 1986; 82:40-44.
- Moore SJ, Norris JC, & Walsh DA: Antidotal use of methemoglobin forming cyanide antagonists in concurrent carbon monoxide/cyanide intoxication. J Pharmacol Exp Ther 1987; 242:70-73.
- Myers RAM & Schnitzer BM: Hyperbaric oxygen use: Update 1984. Postgrad Med 1984; 76:83-95.
- NFPA: Fire Protection Guide on Hazardous Materials, 12th ed, National Fire Protection Association, Boston, MA, 1997.
- NFPA: Fire Protection Guide on Hazardous Materials, 9th ed, National Fire Protection Association, Quincy, MA, 1986.
- NFPA: Fire Protection Guide to Hazardous Materials, 13th ed., National Fire Protection Association, Quincy, MA, 2002.
- NHLBI ARDS Network: Mechanical ventilation protocol summary. Massachusetts General Hospital. Boston, MA. 2008. Available from URL: http://www.ardsnet.org/system/files/6mlcardsmall_2008update_final_JULY2008.pdf. As accessed 2013-08-07.
- NIOSH : Pocket Guide to Chemical Hazards. National Institute for Occupational Safety and Health. Cincinnati, OH (Internet Version). Edition expires 1998; provided by Truven Health Analytics Inc., Greenwood Village, CO.
- NRC: Acute Exposure Guideline Levels for Selected Airborne Chemicals - Volume 1, Subcommittee on Acute Exposure Guideline Levels, Committee on Toxicology, Board on Environmental Studies and Toxicology, Commission of Life Sciences, National Research Council. National Academy Press, Washington, DC, 2001.
- NRC: Acute Exposure Guideline Levels for Selected Airborne Chemicals - Volume 2, Subcommittee on Acute Exposure Guideline Levels, Committee on Toxicology, Board on Environmental Studies and Toxicology, Commission of Life Sciences, National Research Council. National Academy Press, Washington, DC, 2002.
- NRC: Acute Exposure Guideline Levels for Selected Airborne Chemicals - Volume 3, Subcommittee on Acute Exposure Guideline Levels, Committee on Toxicology, Board on Environmental Studies and Toxicology, Commission of Life Sciences, National Research Council. National Academy Press, Washington, DC, 2003.
- NRC: Acute Exposure Guideline Levels for Selected Airborne Chemicals - Volume 4, Subcommittee on Acute Exposure Guideline Levels, Committee on Toxicology, Board on Environmental Studies and Toxicology, Commission of Life Sciences, National Research Council. National Academy Press, Washington, DC, 2004.
- Nagasawa HT, Goon DJ, Crankshaw DL, et al: Novel, orally effective cyanide antidotes. J Med Chem 2007; 50(26):6462-6464.
- Naradzay J & Barish RA: Approach to ophthalmologic emergencies. Med Clin North Am 2006; 90(2):305-328.
- Nat-Wear: Protective Clothing, Hazards Chart. Nat-Wear. Miora, NY. 2001. Available from URL: http://www.natwear.com/hazchart1.htm. As accessed 7/12/2001.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for 1,2,3-Trimethylbenzene (Proposed). United States Environmental Protection Agency. Washington, DC. 2006k. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d68a&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for 1,2,4-Trimethylbenzene (Proposed). United States Environmental Protection Agency. Washington, DC. 2006m. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d68a&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for 1,2-Butylene Oxide (Proposed). United States Environmental Protection Agency. Washington, DC. 2008d. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648083cdbb&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for 1,2-Dibromoethane (Proposed). United States Environmental Protection Agency. Washington, DC. 2007g. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064802796db&disposition=attachment&contentType=pdf. As accessed 2010-08-18.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for 1,3,5-Trimethylbenzene (Proposed). United States Environmental Protection Agency. Washington, DC. 2006l. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d68a&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for 2-Ethylhexyl Chloroformate (Proposed). United States Environmental Protection Agency. Washington, DC. 2007b. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648037904e&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Acrylonitrile (Proposed). United States Environmental Protection Agency. Washington, DC. 2007c. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648028e6a3&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Adamsite (Proposed). United States Environmental Protection Agency. Washington, DC. 2007h. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020fd29&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Agent BZ (3-quinuclidinyl benzilate) (Proposed). United States Environmental Protection Agency. Washington, DC. 2007f. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064803ad507&disposition=attachment&contentType=pdf. As accessed 2010-08-18.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Allyl Chloride (Proposed). United States Environmental Protection Agency. Washington, DC. 2008. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648039d9ee&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Aluminum Phosphide (Proposed). United States Environmental Protection Agency. Washington, DC. 2005b. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c5ed&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Arsenic Trioxide (Proposed). United States Environmental Protection Agency. Washington, DC. 2007m. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480220305&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Automotive Gasoline Unleaded (Proposed). United States Environmental Protection Agency. Washington, DC. 2009a. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a7cc17&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Biphenyl (Proposed). United States Environmental Protection Agency. Washington, DC. 2005j. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064801ea1b7&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Bis-Chloromethyl Ether (BCME) (Proposed). United States Environmental Protection Agency. Washington, DC. 2006n. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648022db11&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Boron Tribromide (Proposed). United States Environmental Protection Agency. Washington, DC. 2008a. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064803ae1d3&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Bromine Chloride (Proposed). United States Environmental Protection Agency. Washington, DC. 2007d. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648039732a&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Bromoacetone (Proposed). United States Environmental Protection Agency. Washington, DC. 2008e. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064809187bf&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Calcium Phosphide (Proposed). United States Environmental Protection Agency. Washington, DC. 2005d. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c5ed&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Carbonyl Fluoride (Proposed). United States Environmental Protection Agency. Washington, DC. 2008b. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064803ae328&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Carbonyl Sulfide (Proposed). United States Environmental Protection Agency. Washington, DC. 2007e. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648037ff26&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Chlorobenzene (Proposed). United States Environmental Protection Agency. Washington, DC. 2008c. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064803a52bb&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Cyanogen (Proposed). United States Environmental Protection Agency. Washington, DC. 2008f. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064809187fe&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Dimethyl Phosphite (Proposed). United States Environmental Protection Agency. Washington, DC. 2009. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a7cbf3&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Diphenylchloroarsine (Proposed). United States Environmental Protection Agency. Washington, DC. 2007l. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020fd29&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Ethyl Isocyanate (Proposed). United States Environmental Protection Agency. Washington, DC. 2008h. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648091884e&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Ethyl Phosphorodichloridate (Proposed). United States Environmental Protection Agency. Washington, DC. 2008i. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480920347&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Ethylbenzene (Proposed). United States Environmental Protection Agency. Washington, DC. 2008g. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064809203e7&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Ethyldichloroarsine (Proposed). United States Environmental Protection Agency. Washington, DC. 2007j. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020fd29&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Germane (Proposed). United States Environmental Protection Agency. Washington, DC. 2008j. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480963906&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Hexafluoropropylene (Proposed). United States Environmental Protection Agency. Washington, DC. 2006. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064801ea1f5&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Ketene (Proposed). United States Environmental Protection Agency. Washington, DC. 2007. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020ee7c&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Magnesium Aluminum Phosphide (Proposed). United States Environmental Protection Agency. Washington, DC. 2005h. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c5ed&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Magnesium Phosphide (Proposed). United States Environmental Protection Agency. Washington, DC. 2005g. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c5ed&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Malathion (Proposed). United States Environmental Protection Agency. Washington, DC. 2009k. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064809639df&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Mercury Vapor (Proposed). United States Environmental Protection Agency. Washington, DC. 2009b. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a8a087&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Methyl Isothiocyanate (Proposed). United States Environmental Protection Agency. Washington, DC. 2008k. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480963a03&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Methyl Parathion (Proposed). United States Environmental Protection Agency. Washington, DC. 2008l. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480963a57&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Methyl tertiary-butyl ether (Proposed). United States Environmental Protection Agency. Washington, DC. 2007a. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064802a4985&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Methylchlorosilane (Proposed). United States Environmental Protection Agency. Washington, DC. 2005. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c5f4&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Methyldichloroarsine (Proposed). United States Environmental Protection Agency. Washington, DC. 2007i. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020fd29&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Methyldichlorosilane (Proposed). United States Environmental Protection Agency. Washington, DC. 2005a. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c646&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Nitrogen Mustard (HN1 CAS Reg. No. 538-07-8) (Proposed). United States Environmental Protection Agency. Washington, DC. 2006a. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d6cb&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Nitrogen Mustard (HN2 CAS Reg. No. 51-75-2) (Proposed). United States Environmental Protection Agency. Washington, DC. 2006b. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d6cb&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Nitrogen Mustard (HN3 CAS Reg. No. 555-77-1) (Proposed). United States Environmental Protection Agency. Washington, DC. 2006c. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d6cb&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Nitrogen Tetroxide (Proposed). United States Environmental Protection Agency. Washington, DC. 2008n. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648091855b&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Nitrogen Trifluoride (Proposed). United States Environmental Protection Agency. Washington, DC. 2009l. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480963e0c&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Parathion (Proposed). United States Environmental Protection Agency. Washington, DC. 2008o. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480963e32&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Perchloryl Fluoride (Proposed). United States Environmental Protection Agency. Washington, DC. 2009c. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a7e268&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Perfluoroisobutylene (Proposed). United States Environmental Protection Agency. Washington, DC. 2009d. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a7e26a&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Phenyl Isocyanate (Proposed). United States Environmental Protection Agency. Washington, DC. 2008p. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648096dd58&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Phenyl Mercaptan (Proposed). United States Environmental Protection Agency. Washington, DC. 2006d. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020cc0c&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Phenyldichloroarsine (Proposed). United States Environmental Protection Agency. Washington, DC. 2007k. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020fd29&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Phorate (Proposed). United States Environmental Protection Agency. Washington, DC. 2008q. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648096dcc8&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Phosgene (Draft-Revised). United States Environmental Protection Agency. Washington, DC. 2009e. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a8a08a&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Phosgene Oxime (Proposed). United States Environmental Protection Agency. Washington, DC. 2009f. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a7e26d&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Potassium Cyanide (Proposed). United States Environmental Protection Agency. Washington, DC. 2009g. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a7cbb9&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Potassium Phosphide (Proposed). United States Environmental Protection Agency. Washington, DC. 2005c. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c5ed&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Propargyl Alcohol (Proposed). United States Environmental Protection Agency. Washington, DC. 2006e. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020ec91&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Selenium Hexafluoride (Proposed). United States Environmental Protection Agency. Washington, DC. 2006f. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020ec55&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Silane (Proposed). United States Environmental Protection Agency. Washington, DC. 2006g. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d523&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Sodium Cyanide (Proposed). United States Environmental Protection Agency. Washington, DC. 2009h. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a7cbb9&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Sodium Phosphide (Proposed). United States Environmental Protection Agency. Washington, DC. 2005i. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c5ed&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Strontium Phosphide (Proposed). United States Environmental Protection Agency. Washington, DC. 2005f. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c5ed&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Sulfuryl Chloride (Proposed). United States Environmental Protection Agency. Washington, DC. 2006h. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020ec7a&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Tear Gas (Proposed). United States Environmental Protection Agency. Washington, DC. 2008s. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648096e551&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Tellurium Hexafluoride (Proposed). United States Environmental Protection Agency. Washington, DC. 2009i. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a7e2a1&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Tert-Octyl Mercaptan (Proposed). United States Environmental Protection Agency. Washington, DC. 2008r. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648096e5c7&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Tetramethoxysilane (Proposed). United States Environmental Protection Agency. Washington, DC. 2006j. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d632&disposition=attachment&contentType=pdf. As accessed 2010-08-17.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Trimethoxysilane (Proposed). United States Environmental Protection Agency. Washington, DC. 2006i. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d632&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Trimethyl Phosphite (Proposed). United States Environmental Protection Agency. Washington, DC. 2009j. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a7d608&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Trimethylacetyl Chloride (Proposed). United States Environmental Protection Agency. Washington, DC. 2008t. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648096e5cc&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Zinc Phosphide (Proposed). United States Environmental Protection Agency. Washington, DC. 2005e. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c5ed&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for n-Butyl Isocyanate (Proposed). United States Environmental Protection Agency. Washington, DC. 2008m. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064808f9591&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Heart,Lung,and Blood Institute: Expert panel report 3: guidelines for the diagnosis and management of asthma. National Heart,Lung,and Blood Institute. Bethesda, MD. 2007. Available from URL: http://www.nhlbi.nih.gov/guidelines/asthma/asthgdln.pdf.
- National Institute for Occupational Safety and Health: NIOSH Pocket Guide to Chemical Hazards, U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, Cincinnati, OH, 2007.
- National Research Council : Acute exposure guideline levels for selected airborne chemicals, 5, National Academies Press, Washington, DC, 2007.
- National Research Council: Acute exposure guideline levels for selected airborne chemicals, 6, National Academies Press, Washington, DC, 2008.
- National Research Council: Acute exposure guideline levels for selected airborne chemicals, 7, National Academies Press, Washington, DC, 2009.
- National Research Council: Acute exposure guideline levels for selected airborne chemicals, 8, National Academies Press, Washington, DC, 2010.
- Neese Industries, Inc.: Fabric Properties Rating Chart. Neese Industries, Inc.. Gonzales, LA. 2003. Available from URL: http://www.neeseind.com/new/TechGroup.asp?Group=Fabric+Properties&Family=Technical. As accessed 4/15/2003.
- Nemec K: Antidotes in acute poisoning. Eur J Hosp Pharm Sci Pract 2011; 17(4):53-55.
- None Listed: Abstracts of the XXVIII International Congress of the European Association of Poison Centres and Clinical Toxicologists. May 6-9, 2008. Seville, Spain. Clin Toxicol (Phila) 2008; 46(5):351-421.
- None Listed: Position paper: cathartics. J Toxicol Clin Toxicol 2004; 42(3):243-253.
- Norris JC, Utley WA, & Hume AS: Mechanism of antagonizing cyanide-induced lethality by alpha-ketoglutaric acid. Toxicol 1990; 62:275-283.
- North: Chemical Resistance Comparison Chart - Protective Footwear . North Safety. Cranston, RI. 2002. Available from URL: http://www.linkpath.com/index2gisufrm.php?t=N-USA1. As accessed April 30, 2004.
- North: eZ Guide Interactive Software. North Safety. Cranston, RI. 2002a. Available from URL: http://www.northsafety.com/feature1.htm. As accessed 8/31/2002.
- Peate WF: Work-related eye injuries and illnesses. Am Fam Physician 2007; 75(7):1017-1022.
- Peberdy MA , Callaway CW , Neumar RW , et al: 2010 American Heart Association guidelines for cardiopulmonary resuscitation and emergency cardiovascular care science. Part 9: post–cardiac arrest care. Circulation 2010; 122(18 Suppl 3):S768-S786.
- Peden NR, Taha A, & McSorley PD: Industrial exposure to hydrogen cyanide: implications for treatment. Br Med J 1986; 293:538.
- Pettigrew AR: Br J Obstet Gynaecol 1977; 84:31-34.
- Philbrick DJ: J Toxicol Environ Health 1979; 5:579-592.
- Playtex: Fits Tough Jobs Like a Glove, Playtex, Westport, CT, 1995.
- Pollack MM, Dunbar BS, & Holbrook PR: Aspiration of activated charcoal and gastric contents. Ann Emerg Med 1981; 10:528-529.
- Proctor NH, Hughes JP, & Fischman ML: Chemical Hazards of the Workplace, 2nd ed, JB Lippincott Co, Philadelphia, PA, 1988, pp 166-170.
- Product Information: CEREBYX(R) intravenous injection, fosphenytoin sodium intravenous injection. Pfizer Labs (per FDA), New York, NY, 2014.
- Product Information: CYANOKIT(R) 2.5g IV injection, hydroxocobalamin IV injection. Merck Lipha Sante, Lyon, France, 2006.
- Product Information: Dilantin(R) intravenous injection, intramuscular injection, phenytoin sodium intravenous injection, intramuscular injection. Parke-Davis (per FDA), New York, NY, 2013.
- Product Information: NITHIODOTE intravenous injection solution, sodium nitrite intravenous injection solution and sodium thiosulfate intravenous injection solution. Hope Pharmaceuticals (per manufacturer), Scottsdale, AZ, 2011.
- Product Information: PROVAYBLUE(TM) intravenous injection, methylene blue intravenous injection. American Regent (per FDA), Shirley, NY, 2016.
- Product Information: diazepam IM, IV injection, diazepam IM, IV injection. Hospira, Inc (per Manufacturer), Lake Forest, IL, 2008.
- Product Information: dopamine hcl, 5% dextrose IV injection, dopamine hcl, 5% dextrose IV injection. Hospira,Inc, Lake Forest, IL, 2004.
- Product Information: lorazepam IM, IV injection, lorazepam IM, IV injection. Akorn, Inc, Lake Forest, IL, 2008.
- Product Information: methylene blue 1% IV injection, methylene blue 1% IV injection. American Regent, Inc (per manufacturer), Shirley, NY, 2011.
- Product Information: methylene blue 1% intravenous injection, methylene blue 1% intravenous injection. Akorn, Inc. (per manufacturer), Lake Forest, IL, 2011.
- Product Information: norepinephrine bitartrate injection, norepinephrine bitartrate injection. Sicor Pharmaceuticals,Inc, Irvine, CA, 2005.
- Product Information: sodium thiosulfate IV injection, sodium thiosulfate IV injection. American Regent Inc, Shirley, NY, 2003.
- Pronczuk de Garbino JP & Bismuth C: Propositions therapeutiques actuelles en cas d'intoxication par les cyanures. Toxicol Eur Res 1981; 3:69-76.
- RTECS : Registry of Toxic Effects of Chemical Substances. National Institute for Occupational Safety and Health. Cincinnati, OH (Internet Version). Edition expires 1991; provided by Truven Health Analytics Inc., Greenwood Village, CO.
- RTECS : Registry of Toxic Effects of Chemical Substances. National Institute for Occupational Safety and Health. Cincinnati, OH (Internet Version). Edition expires 1993; provided by Truven Health Analytics Inc., Greenwood Village, CO.
- RTECS : Registry of Toxic Effects of Chemical Substances. National Institute for Occupational Safety and Health. Cincinnati, OH (Internet Version). Edition expires 1997; provided by Truven Health Analytics Inc., Greenwood Village, CO.
- RTECS : Registry of Toxic Effects of Chemical Substances. National Institute for Occupational Safety and Health. Cincinnati, OH (Internet Version). Edition expires October/31/1998; provided by Truven Health Analytics Inc., Greenwood Village, CO.
- RTECS: Registry of Toxic Effects of Chemical Substances. National Institute for Occupational Safety and Health. Cincinnati, OH (Internet Version). Edition expires 2001; provided by Truven Health Analytics Inc., Greenwood Village, CO.
- Rau NR, Nagaraj MV, Prakash PS, et al: Fatal pulmonary aspiration of oral activated charcoal. Br Med J 1988; 297:918-919.
- River City: Protective Wear Product Literature, River City, Memphis, TN, 1995.
- Rosenberg NL, Myers JA, & Martin WRW: Cyanide-induced parkinsonism: clinical, MRI, and 6-fluorodopa PET studies. Neurology 1989; 39:142-144.
- Rosenow F, Herholz K, & Lanfermann H: Neurological sequelae of cyanide intoxication-The patterns of clinical, magnetic resonance imaging, and positron emission tomography findings. Ann Neurol 1995; 38:825-828.
- Safety 4: North Safety Products: Chemical Protection Guide. North Safety. Cranston, RI. 2002. Available from URL: http://www.safety4.com/guide/set_guide.htm. As accessed 8/14/2002.
- Saia B, DeRosa E, & Galzigna L: Considerations on chronic cyanide poisoning (Italian). Med Lav 1970; 62:580-586.
- Sax NI & Lewis RJ: Hawley's Condensed Chemical Dictionary, 11th ed, Van Nostrand Reinhold Company, New York, NY, 1987.
- Scolnick B, Hamel D, & Woolf AD: Successful treatment of life-threatening propionitrile exposure with sodium nitrite/sodium thiosulfate followed by hyperbaric oxygen. J Occup Environ Med 1993; 35:577-580.
- Scott R, Besag FMC, & Neville BGR: Buccal midazolam and rectal diazepam for treatment of prolonged seizures in childhood and adolescence: a randomized trial. Lancet 1999; 353:623-626.
- Servus: Norcross Safety Products, Servus Rubber, Servus, Rock Island, IL, 1995.
- Sheehy M & Way JL: Effect of oxygen on cyanide intoxication. III. Mithridate. J Pharmacol Exp Ther 1968; 161:163-168.
- Shepherd G & Keyes DC: Methylene blue. In: Dart,RC, ed. Medical Toxicology, 3rd ed. 3rd ed, Philadelphia, PA, 2004, pp -.
- Shepherd G & Velez LI: Role of hydroxocobalamin in acute cyanide poisoning. Ann Pharmacother 2008; 42(5):661-669.
- Singh BM, Coles N, & Lewis RA: The metabolic effects of fatal cyanide poisoning. Postgrad Med J 1989; 65:923-925.
- Singh JD: The teratogenic effects of dietary cassava on the pregnant albino rat: A preliminary report. Teratology 1981; 24:289-291.
- Skene WG, Norman JN, & Smith G: Effect of hyperbaric oxygen in cyanide poisoning. In Brown I, Cox B (Ed). Proceedings of the Third International Congress on hyperbaric oxygen, National Academy of Science, NRC, Washington, DC, 1966, pp 705-710.
- Smith RP: Teratology 1981; 23:317-324.
- Spiller HA & Rogers GC: Evaluation of administration of activated charcoal in the home. Pediatrics 2002; 108:E100.
- Sreenath TG, Gupta P, Sharma KK, et al: Lorazepam versus diazepam-phenytoin combination in the treatment of convulsive status epilepticus in children: A randomized controlled trial. Eur J Paediatr Neurol 2009; Epub:Epub.
- Standard Safety Equipment: Product Literature, Standard Safety Equipment, McHenry, IL, 1995.
- Stanford SC , Stanford BJ , & Gillman PK : Risk of severe serotonin toxicity following co-administration of methylene blue and serotonin reuptake inhibitors: an update on a case report of post-operative delirium. J Psychopharmacol 2010; 24(10):1433-1438.
- Stellpflug SJ, Gardner RL, Leroy JM, et al: Hydroxocobalamin hinders hemodialysis. Am J Kidney Dis 2013; 62(2):395-395.
- Stewart R: Cyanide poisoning. Clin Toxicol 1974; 5:561-564.
- Stolbach A & Hoffman RS: Respiratory Principles. In: Nelson LS, Hoffman RS, Lewin NA, et al, eds. Goldfrank's Toxicologic Emergencies, 9th ed. McGraw Hill Medical, New York, NY, 2011.
- Takano T, Miyazaki Y, & Nashimoto I: Effect of hyperbaric oxygen on cyanide intoxication: in situ changes in intracellular oxidation reduction. Undersea Biomed Res 1980; 7:191-197.
- Ten Eyck RP, Schaerdel AD, & Ottinger WE: Stroma-free methemoglobin solution: an effective antidote for acute cyanide poisoning. Am J Emerg Med 1985; 3:519-523.
- Teunis BS, Leftwich EI, & Pierce LE: Acute methemoglobinemia and hemolytic anemia due to toluidine blue. Arch Surg 1970; 101:527-531.
- Tewe OO & Maner JH: Toxicol Appl Pharmacol 1981; 58:1-7.
- Thakore S & Murphy N: The potential role of prehospital administration of activated charcoal. Emerg Med J 2002; 19:63-65.
- Tingley: Chemical Degradation for Footwear and Clothing. Tingley. South Plainfield, NJ. 2002. Available from URL: http://www.tingleyrubber.com/tingley/Guide_ChemDeg.pdf. As accessed 10/16/2002.
- Trapp W: Massive cyanide poisoning with recovery: a boxing day story. Can Med Assoc J 1970; 102:517.
- Trapp WG & Lepawsky M: 100% survival in five life-threatening acute cyanide poisoning victims treated by therapeutic spectrumm including hyperbaric oxygen, In: First European Conference on Hyperbaric Medicine, Amsterdam, The Netherlands, 1983.
- Trelleborg-Viking, Inc.: Chemical and Biological Tests (database). Trelleborg-Viking, Inc.. Portsmouth, NH. 2002. Available from URL: http://www.trelleborg.com/protective/. As accessed 10/18/2002.
- Trelleborg-Viking, Inc.: Trellchem Chemical Protective Suits, Interactive manual & Chemical Database. Trelleborg-Viking, Inc.. Portsmouth, NH. 2001.
- Turchen SG, Manoguerra AS, & Whitney C: Severe cyanide poisoning following suicidal ingestion of an acetonitrile-containing cosmetic. Am J Emerg Med 1991; 9:264-267.
- Tyrer FH: Treatment of cyanide poisoning. J Soc Occup Med 1981; 31:65-66.
- U.S. Department of Energy, Office of Emergency Management: Protective Action Criteria (PAC) with AEGLs, ERPGs, & TEELs: Rev. 26 for chemicals of concern. U.S. Department of Energy, Office of Emergency Management. Washington, DC. 2010. Available from URL: http://www.hss.doe.gov/HealthSafety/WSHP/Chem_Safety/teel.html. As accessed 2011-06-27.
- U.S. Department of Health and Human Services, Public Health Service, National Toxicology Project : 11th Report on Carcinogens. U.S. Department of Health and Human Services, Public Health Service, National Toxicology Program. Washington, DC. 2005. Available from URL: http://ntp.niehs.nih.gov/INDEXA5E1.HTM?objectid=32BA9724-F1F6-975E-7FCE50709CB4C932. As accessed 2011-06-27.
- U.S. Environmental Protection Agency: Discarded commercial chemical products, off-specification species, container residues, and spill residues thereof. Environmental Protection Agency's (EPA) Resource Conservation and Recovery Act (RCRA); List of hazardous substances and reportable quantities 2010b; 40CFR(261.33, e-f):77-.
- U.S. Environmental Protection Agency: Integrated Risk Information System (IRIS). U.S. Environmental Protection Agency. Washington, DC. 2011. Available from URL: http://cfpub.epa.gov/ncea/iris/index.cfm?fuseaction=iris.showSubstanceList&list_type=date. As accessed 2011-06-21.
- U.S. Environmental Protection Agency: List of Radionuclides. U.S. Environmental Protection Agency. Washington, DC. 2010a. Available from URL: http://www.gpo.gov/fdsys/pkg/CFR-2010-title40-vol27/pdf/CFR-2010-title40-vol27-sec302-4.pdf. As accessed 2011-06-17.
- U.S. Environmental Protection Agency: List of hazardous substances and reportable quantities. U.S. Environmental Protection Agency. Washington, DC. 2010. Available from URL: http://www.gpo.gov/fdsys/pkg/CFR-2010-title40-vol27/pdf/CFR-2010-title40-vol27-sec302-4.pdf. As accessed 2011-06-17.
- U.S. Environmental Protection Agency: The list of extremely hazardous substances and their threshold planning quantities (CAS Number Order). U.S. Environmental Protection Agency. Washington, DC. 2010c. Available from URL: http://www.gpo.gov/fdsys/pkg/CFR-2010-title40-vol27/pdf/CFR-2010-title40-vol27-part355.pdf. As accessed 2011-06-17.
- U.S. Food and Drug Administration: FDA Drug Safety Communication: Serious CNS reactions possible when methylene blue is given to patients taking certain psychiatric medications. U.S. Food and Drug Administration. Silver Spring, MD. 2011. Available from URL: http://www.fda.gov/Drugs/DrugSafety/ucm263190.htm. As accessed 2011-07-26.
- U.S. Occupational Safety and Health Administration: Part 1910 - Occupational safety and health standards (continued) Occupational Safety, and Health Administration's (OSHA) list of highly hazardous chemicals, toxics and reactives. Subpart Z - toxic and hazardous substances. CFR 2010 2010; Vol6(SEC1910):7-.
- U.S. Occupational Safety, and Health Administration (OSHA): Process safety management of highly hazardous chemicals. 29 CFR 2010 2010; 29(1910.119):348-.
- Uitti RJ, Rajput AH, & Ashenhurst EM: Cyanide-induced parkinsonism: a clinicopathologic report. Neurology 1985; 35:921-925.
- United States Environmental Protection Agency Office of Pollution Prevention and Toxics: Acute Exposure Guideline Levels (AEGLs) for Vinyl Acetate (Proposed). United States Environmental Protection Agency. Washington, DC. 2006. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d6af&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
- Urben PG: Bretherick's Handbook of Reactive Chemical Hazards, Volume 1, 5th ed, Butterworth-Heinemann Ltd, Oxford, England, 1995.
- Vale JA, Kulig K, American Academy of Clinical Toxicology, et al: Position paper: Gastric lavage. J Toxicol Clin Toxicol 2004; 42:933-943.
- Vale JA: Position Statement: gastric lavage. American Academy of Clinical Toxicology; European Association of Poisons Centres and Clinical Toxicologists. J Toxicol Clin Toxicol 1997; 35:711-719.
- Valenzuela R, Court J, & Godoy J: Delayed cyanide induced dystonia. J Neurol Neurosurg Psychiatr 1992; 55:198-199.
- Varnell RM, Stimac GK, & Fligner CL: CT diagnosis of toxic brain injury in cyanide poisoning:considerations for forensic medicine. AJNR Am J Neuroradiol 1987; 8(6):1063-1066.
- Vick JA & Froehlich HL: Studies of cyanide poisoning. Arch Int Pharmacodyn 1985; 273:314-322.
- Vogel SN, Sultan TR, & Ten Eyck RP: Cyanide poisoning. Clin Toxicol 1981; 18:367-383.
- Wallace KL: Toxin-Induced Seizures. In: Brent J, Wallace KL, Burkhart KK, et al, eds. Critical Care Toxicology, Elsevier Mosby, Philadelphia, PA, 2005.
- Walton DC & Witherspoon MG: Skin absorption of certain gases. J Pharmacol Exp Ther 1926; 26:315-324.
- Way JL, End E, & Sheehy MH: Effect of oxygen on cyanide intoxication. IV. Hyperbaric oxygen. Toxicol Appl Pharmacol 1972; 22:415-421.
- Weger NP: Treatment of cyanide poisoning with 4-dimethylaminophenol (DMAP): Experimental and clinical overview. Middle East J Anesth 1990; 10:389-412.
- Wells Lamont Industrial: Chemical Resistant Glove Application Chart. Wells Lamont Industrial. Morton Grove, IL. 2002. Available from URL: http://www.wellslamontindustry.com. As accessed 10/31/2002.
- Wesson DE, Foley R, & Sabatini S: Treatment of acute cyanide intoxication with hemodialysis. Am J Nephrol 1985; 5:121-126.
- Willhite CC, Ferm VH, & Smith RP: Teratogenic effects of aliphatic nitriles. Teratology 1981; 23:317-323.
- Willhite CC: Congenital malformations induced by laetrile. Science 1982; 215:1513-1515.
- Willhite CC: Developmental toxicology of acetonitrile in the Syrian golden hamster. Teratology 1983; 27:313-325.
- Williams CL: An unusual case of cyanide poisoning during fumigation. Publ Health Rep 1938; 53:2094-2095.
- Willson DF, Truwit JD, Conaway MR, et al: The adult calfactant in acute respiratory distress syndrome (CARDS) trial. Chest 2015; 148(2):356-364.
- Wilson DF, Thomas NJ, Markovitz BP, et al: Effect of exogenous surfactant (calfactant) in pediatric acute lung injury. A randomized controlled trial. JAMA 2005; 293:470-476.
- Windholz M, Budavari S, & Blumetti RF: The Merck Index, 10th ed, Merck & Co, Inc, Rahway, NJ, 1983.
- Winek CL, Collom WD, & Martineau P: Toluidine blue intoxication. Clin Toxicol 1969; 2:1-3.
- Wolnik KA, Fricke FL, & Bonnin E: Tylenol tampering incident -- tracing the source. Anal Chem 1984; 56:466A-474A.
- Workrite: Chemical Splash Protection Garments, Technical Data and Application Guide, W.L. Gore Material Chemical Resistance Guide, Workrite, Oxnard, CA, 1997.
- Wright IH & Vesey CJ: Acute poisoning with gold cyanide. Anaesthesia 1986; 41:936-939.
- Wuthrich F: Schw Med Woch 1954; 84:105-107.
- Yacoub M, Faure J, & Morena H: L'intoxication cyanhydrique aigue: Donnees actuelles sur le metabolisme du cyanure et le traitement par l'hydroxocobalamine (French). J Eur Toxicol 1974; 7:22-29.
- Yamamoto HA: Protection against cyanide-induced convulsions with alpha-ketoglutarate. Toxicol 1990; 61:221-228.
- do Nascimento TS, Pereira RO, de Mello HL, et al: Methemoglobinemia: from diagnosis to treatment. Rev Bras Anestesiol 2008; 58(6):651-664.
- van Dijk A, Douze JMC, & van Heijst ANP: Clinical evaluation of the cyanide antagonist 4-DMAP. (Abstract), II World Congress of the World Federation of Associations of Clinical Toxicology and Poison Control Centers, Brussels, Belgium, 1986.
- van Heijst ANP, Douze JMC, & van Kasteren RG: Therapeutic problems in cyanide poisoning. Clin Toxicol 1987; 25:383-398.
|