MOBILE VIEW  | 

SODIUM CARBONATE

Classification   |    Detailed evidence-based information

Therapeutic Toxic Class

    A) Sodium carbonate has many uses. It is an agricultural chemical, is used in the manufacture of glass, soaps, other sodium salts, for washing wool and textiles, and as a general cleaner used in laundry and dish cleansers.

Specific Substances

    1) Bisodium Carbonate
    2) Carbonic Acid, Disodium Salt
    3) Crystol Carbonate (monohydrate form)
    4) Disodium carbonate
    5) Natron (natural decahydrate form)
    6) Natrite (natural decahydrate form)
    7) Na-X
    8) Nevite, Soda (decahydrate form)
    9) Sal Soda (technical decahydrate form)
    10) Soda
    11) Soda Ash
    12) Soda Crystals (monohydrate form)
    13) Soda Monohydrate (monohydrate form)
    14) Sodium Carbonate
    15) Sodium Carbonate (2:1)
    16) Sodium Carbonate, Anhydrous ASTM D458
    17) Sodium Carbonate, Anhydrous GE Materials D4D5
    18) Solvay Soda
    19) Thermonatrite (natural hydrate form)
    20) Trona
    21) Washing Soda (technical decahydrate form)
    22) OHM/TADS NUMBER: 7216889
    23) NIOSH/RTECS VZ 4050000
    24) WISWESSER NOTATION: QVA &-NA-2
    25) CAS 497-19-8
    26) Molecular Formula: Na2-C-O3
    27) CARBONIC ACID SODIUM SALT
    28) CRYSTAL CARBONATE
    29) NATRITE
    30) NATRON
    31) NEVITE
    32) SAL SODA
    33) SODA, CALCINED
    34) SODIUM CARBONATE ANHYDROUS
    35) SODIUM CARBONATE MONOHYDRATE
    36) SODIUM CARBONATE, DECAHYDRATE
    37) THERMONATRITE
    38) WASHING SODA
    1.2.1) MOLECULAR FORMULA
    1) C-O3.2Na
    2) Na2CO3

Available Forms Sources

    A) FORMS
    1) Solvay soda. Technical grade (about 99% pure) is known as soda ash.
    2) Nevite, soda. Technical product is known as sal soda or washing soda (Budavari, 1996).
    3) GRADES: Dense 58%; Light 58%; Extra light; natural; refined USP; Technical (Hawley, 1981).
    B) USES
    1) INDUSTRIAL
    a) Manufacture of glass, soaps, other sodium salts
    b) Washing wool, textiles; a general cleaner used in laundry and dish cleansers
    c) Bleaching of linen or cotton
    d) In water softening or pH control
    e) In photography
    f) Pharmaceutical acid, reagent in analytical chemistry, intermediate in thermochemical reactions
    g) Disinfectant: At 3% concentration in hot water for disinfection of premises and trucks. It halves sterilization time of vegetative bacteria in boiling water. With sodium nitrite, it inhibits corrosion of metal instruments by quaternary ammonium disinfectants (Rossoff, 1974).
    h) Radioactives: Sodium carbonate is used in crystal technique in the decontamination of radioactive surfaces (HSDB , 1993).
    i) Sodium carbonate is released along with sodium hydroxide when automobile airbags are deployed (White et al, 1995).
    j) References (Budavari, 1996; Sax & Lewis, 1987):
    2) VETERINARY
    a) Formerly as an emetic
    b) Solutions are used to soften and cleanse skin and to soften the scabs of ringworm (Budavari, 1996).
    c) Also used as an antipruritic and antacid (Rossoff, 1974).
    3) MEDICAL
    a) As a mouthwash and vaginal douche (Osol, 1980)
    b) Occasionally used topically for dermatitis, and as a lotion (Osol, 1980)

Life Support

    A) This overview assumes that basic life support measures have been instituted.

Clinical Effects

    0.2.1) SUMMARY OF EXPOSURE
    A) USES: Sodium carbonate is an agricultural chemical, is used in the manufacture of glass, soaps, other sodium salts, for washing wool and textiles, and as a general cleaner used in laundry and dish cleansers.
    B) TOXICOLOGY: As an alkaline corrosive, sodium carbonate may cause liquefaction necrosis. It can saponify the fats in the cell membrane, destroying the cell and allowing deep penetration into mucosal tissue. In gastrointestinal tissue an initial inflammatory phase may be followed by tissue necrosis (sometimes resulting in perforation), then granulation and finally stricture formation.
    C) EPIDEMIOLOGY: Sodium carbonate is a common ingredient in household laundry and automatic dishwasher detergents. It is either an irritant or a corrosive agent, depending on the concentration used, contact time, areas of exposure, and other factors. Exposure to household products is common, but serious corrosive injury is not.
    D) WITH POISONING/EXPOSURE
    1) MILD TO MODERATE ORAL TOXICITY: Patients with mild ingestions may only develop irritation or grade I (superficial hyperemia and edema) burns of the oropharynx, esophagus or stomach; acute or chronic complications are unlikely. Patients with moderate toxicity may develop grade II burns (superficial blisters, erosions and ulcerations) are at risk for subsequent stricture formation, particularly esophageal. Some patients (particularly young children) may develop upper airway edema.
    a) Sodium carbonate ingestion may produce burns to the oropharynx, upper airway, esophagus and occasionally stomach. Spontaneous vomiting may occur. The absence of visible oral burns does NOT reliably exclude the presence of esophageal burns. The presence of stridor, vomiting, drooling, and abdominal pain are associated with serious esophageal injury in most cases.
    b) PREDICTIVE: The grade of mucosal injury at endoscopy is the strongest predictive factor for the occurrence of systemic and GI complications and mortality.
    2) SEVERE ORAL TOXICITY: May develop deep burns and necrosis of the gastrointestinal mucosa. Complications often include perforation (esophageal, gastric, rarely duodenal), fistula formation (tracheoesophageal, aortoesophageal), and gastrointestinal bleeding. Hypotension, tachycardia, tachypnea and, rarely, fever may develop. Stricture formation (esophageal, less often oral or gastric) is likely to develop long term. Esophageal carcinoma is another long term complication. Upper airway edema is common and often life threatening. Severe toxicity is generally limited to deliberate ingestions in adults in the US, because alkaline products available in the home are generally of low concentration.
    3) INHALATION EXPOSURE: Mild exposure may cause cough and bronchospasm. Severe inhalation may cause upper airway edema and burns, stridor, and rarely acute lung injury.
    4) OCULAR EXPOSURE: Ocular exposure can produce severe conjunctival irritation and chemosis, corneal epithelial defects, limbal ischemia, permanent visual loss and in severe cases perforation.
    5) DERMAL EXPOSURE: Mild exposure causes irritation and partial thickness burns. Prolonged exposure or high concentration products can cause full thickness burns.
    0.2.20) REPRODUCTIVE
    A) No teratogenic effect was noted in primates studied. No information on human effects.
    B) No or minimal effects were seen in experiments on mice, rats, and rabbits.

Laboratory Monitoring

    A) Obtain a complete blood count in symptomatic patients following sodium carbonate ingestion.
    B) In patients with signs and symptoms suggesting severe burns, perforation, or bleeding (or adults with deliberate, high volume or high concentration ingestions), obtain renal function tests, serum electrolytes, INR, PTT, type and crossmatch for blood, and monitor urine output. Serum lactate and base deficit may also be useful in these patients.
    C) Monitor pulse oximetry or arterial blood gases in patients with signs and symptoms suggestive of upper airway edema or burns.
    D) Obtain an upright chest x-ray in patients with signs and symptoms suggesting severe burns, perforation, or bleeding (or adults with deliberate, high volume or high concentration ingestions) to evaluate for pneumomediastinum or free air under the diaphragm. The absence of these findings DOES NOT rule out the possibility of necrosis or perforation of the esophagus or stomach. Obtain a chest radiograph in patients with pulmonary signs or symptoms.
    E) Several weeks after ingestion, barium contrast radiographs of the upper GI tract are useful in patients who sustained grade II or III burns, to evaluate for strictures.

Treatment Overview

    0.4.2) ORAL/PARENTERAL EXPOSURE
    A) MANAGEMENT OF MILD TO MODERATE ORAL TOXICITY
    1) Perform early (within 12 hours) endoscopy in patients with stridor, drooling, vomiting, significant oral burns, difficulty swallowing or abdominal pain, and in all patients with deliberate ingestion. If burns are absent or grade I severity, patient may be discharged when able to tolerate liquids and soft foods by mouth. If mild grade II burns, admit for intravenous fluids, slowly advance diet as tolerated. Perform barium swallow or repeat endoscopy several weeks after ingestion (sooner if difficulty swallowing) to evaluate for stricture formation.
    B) SEVERE ORAL TOXICITY
    1) Resuscitate with 0.9% saline; blood products may be necessary. Early airway management in patients with upper airway edema or respiratory distress. Early (within 12 hours) gastrointestinal endoscopy to evaluate for burns. Early bronchoscopy in patients with respiratory distress or upper airway edema. Early surgical consultation for patients with severe grade II or grade III burns, large deliberate ingestions, or signs, symptoms or laboratory findings concerning for tissue necrosis or perforation.
    C) DILUTION
    1) Dilute with 4 to 8 ounces of water may be useful if it can be performed shortly after ingestion in patients who are able to swallow, with no vomiting or respiratory distress; then the patient should be NPO until assessed for the need for endoscopy. Neutralization, activated charcoal, and gastric lavage are all contraindicated.
    D) AIRWAY MANAGEMENT
    1) Aggressive airway management in patients with deliberate ingestions or any indication of upper airway injury.
    E) ENDOSCOPY
    1) Should be performed as soon as possible (preferably within 12 hours, not more than 24 hours) in any patient with deliberate ingestion, adults with any signs or symptoms attributable to inadvertent ingestion, and in children with stridor, vomiting, or drooling after inadvertent ingestion. Endoscopy should also be considered in children with dysphagia or refusal to swallow, significant oral burns, or abdominal pain after unintentional ingestion. Children and adults who are asymptomatic after inadvertent ingestion do not require endoscopy. The grade of mucosal injury at endoscopy is the strongest predictive factor for the occurrence of systemic and GI complications and mortality. The absence of visible oral burns does NOT reliably exclude the presence of esophageal burns.
    F) CORTICOSTEROIDS
    1) The use of corticosteroids to prevent stricture formation is controversial. Corticosteroids should not be used in patients with grade I or grade III injury, as there is no evidence that it is effective. Evidence for grade II burns is conflicting, and the risk of perforation and infection is increased with steroid use.
    G) STRICTURE
    1) A barium swallow or repeat endoscopy should be performed several weeks after ingestion in any patient with grade II or III burns or with difficulty swallowing to evaluate for stricture formation. Recurrent dilation may be required. Some authors advocate early stent placement in these patients to prevent stricture formation.
    H) SURGICAL MANAGEMENT
    1) Immediate surgical consultation should be obtained on any patient with grade III or severe grade II burns on endoscopy, significant abdominal pain, metabolic acidosis, hypotension, coagulopathy, or a history of large ingestion. Early laparotomy can identify tissue necrosis and impending or unrecognized perforation, early resection and repair in these patients is associated with improved outcome.
    I) PATIENT DISPOSITION
    1) OBSERVATION CRITERIA: Patients with sodium carbonate ingestion should be sent to a health care facility for evaluation. Patients who remain asymptomatic over 4 to 6 hours of observation, and those with endoscopic evaluation that demonstrates no burns or only minor grade I burns and who can tolerate oral intake can be discharged home.
    2) ADMISSION CRITERIA: Symptomatic patients, and those with endoscopically demonstrated grade II or higher burns should be admitted. Patients with respiratory distress, grade III burns, acidosis, hemodynamic instability, gastrointestinal bleeding, or large ingestions should be admitted to an intensive care setting.
    J) PITFALLS
    1) The absence of oral burns does NOT reliably exclude the possibility of significant esophageal burns.
    2) Patients may have severe tissue necrosis and impending perforation requiring early surgical intervention without having severe hypotension, rigid abdomen, or radiographic evidence of intraperitoneal air.
    3) Patients with any evidence of upper airway involvement require early airway management before airway edema progresses.
    4) The extent of eye injury (degree of corneal opacification and perilimbal whitening) may not be apparent for 48 to 72 hours after the burn. All patients with corrosive eye injury should be evaluated by an ophthalmologist.
    K) DIFFERENTIAL DIAGNOSIS
    1) Acid ingestion, gastrointestinal hemorrhage, or perforated viscus.
    0.4.3) INHALATION EXPOSURE
    A) DECONTAMINATION
    1) Administer oxygen as necessary. Monitor for respiratory distress.
    B) AIRWAY MANAGEMENT
    1) Manage airway aggressively in patients with significant respiratory distress, stridor or any evidence of upper airway edema. Monitor for hypoxia or respiratory distress.
    C) BRONCHOSPASM
    1) Treat with oxygen, inhaled beta agonists and consider systemic corticosteroids.
    0.4.4) EYE EXPOSURE
    A) DECONTAMINATION
    1) Exposed eyes should be irrigated with copious amounts of 0.9% saline for at least 30 minutes, until pH is neutral and the cul de sacs are free of particulate material.
    2) An eye examination should always be performed, including slit lamp examination. Ophthalmologic consultation should be obtained. Antibiotics and mydriatics may be indicated.
    0.4.5) DERMAL EXPOSURE
    A) OVERVIEW
    1) DECONTAMINATION
    a) Remove contaminated clothes and any particulate matter adherent to skin. Irrigate exposed skin with copious amounts of water for at least 15 minutes or longer, depending on concentration, amount and duration of exposure to the chemical. A physician may need to examine the area if irritation or pain persist.

Range Of Toxicity

    A) Serious burns are less likely if the pH is less than 11.5. Injury is potentially greater with large exposures and high concentrations.
    B) With highly concentrated liquids, esophageal burns may occur in up to 100% of patients, even after accidental ingestion.

Summary Of Exposure

    A) USES: Sodium carbonate is an agricultural chemical, is used in the manufacture of glass, soaps, other sodium salts, for washing wool and textiles, and as a general cleaner used in laundry and dish cleansers.
    B) TOXICOLOGY: As an alkaline corrosive, sodium carbonate may cause liquefaction necrosis. It can saponify the fats in the cell membrane, destroying the cell and allowing deep penetration into mucosal tissue. In gastrointestinal tissue an initial inflammatory phase may be followed by tissue necrosis (sometimes resulting in perforation), then granulation and finally stricture formation.
    C) EPIDEMIOLOGY: Sodium carbonate is a common ingredient in household laundry and automatic dishwasher detergents. It is either an irritant or a corrosive agent, depending on the concentration used, contact time, areas of exposure, and other factors. Exposure to household products is common, but serious corrosive injury is not.
    D) WITH POISONING/EXPOSURE
    1) MILD TO MODERATE ORAL TOXICITY: Patients with mild ingestions may only develop irritation or grade I (superficial hyperemia and edema) burns of the oropharynx, esophagus or stomach; acute or chronic complications are unlikely. Patients with moderate toxicity may develop grade II burns (superficial blisters, erosions and ulcerations) are at risk for subsequent stricture formation, particularly esophageal. Some patients (particularly young children) may develop upper airway edema.
    a) Sodium carbonate ingestion may produce burns to the oropharynx, upper airway, esophagus and occasionally stomach. Spontaneous vomiting may occur. The absence of visible oral burns does NOT reliably exclude the presence of esophageal burns. The presence of stridor, vomiting, drooling, and abdominal pain are associated with serious esophageal injury in most cases.
    b) PREDICTIVE: The grade of mucosal injury at endoscopy is the strongest predictive factor for the occurrence of systemic and GI complications and mortality.
    2) SEVERE ORAL TOXICITY: May develop deep burns and necrosis of the gastrointestinal mucosa. Complications often include perforation (esophageal, gastric, rarely duodenal), fistula formation (tracheoesophageal, aortoesophageal), and gastrointestinal bleeding. Hypotension, tachycardia, tachypnea and, rarely, fever may develop. Stricture formation (esophageal, less often oral or gastric) is likely to develop long term. Esophageal carcinoma is another long term complication. Upper airway edema is common and often life threatening. Severe toxicity is generally limited to deliberate ingestions in adults in the US, because alkaline products available in the home are generally of low concentration.
    3) INHALATION EXPOSURE: Mild exposure may cause cough and bronchospasm. Severe inhalation may cause upper airway edema and burns, stridor, and rarely acute lung injury.
    4) OCULAR EXPOSURE: Ocular exposure can produce severe conjunctival irritation and chemosis, corneal epithelial defects, limbal ischemia, permanent visual loss and in severe cases perforation.
    5) DERMAL EXPOSURE: Mild exposure causes irritation and partial thickness burns. Prolonged exposure or high concentration products can cause full thickness burns.

Heent

    3.4.3) EYES
    A) WITH POISONING/EXPOSURE
    1) Aqueous solutions may have a pH up to 11.6, and if instilled into the eye may cause damage to the corneal epithelium. Corneal stroma damage is unlikely if the eye is promptly irrigated (Grant & Schuman, 1993). Is considered an eye irritant (Lewis, 1992).
    2) Cases of permanent damage to the cornea have been reported, but in one case the molten chemical at 820 degrees C was splashed in the eye. In the other, the exposure was to a mixture of calcium hydroxide and sodium carbonate (Duke-Elder, 1954; Walsh & Hoyt, 1969; HSDB , 1993).
    3) CORNEAL BURNS: A corneal burn of the right eye was reported after exposure to a non-phosphate laundry detergent containing both sodium silicate and sodium carbonate (Einhorn et al, 1989).
    a) CASE REPORT: A 52-year-old woman sustained corneal burns after deployment of an airbag in a motor vehicle accident liberated sodium hydroxide and sodium carbonate. Initial evaluation revealed corneal opacification, chemotic conjunctivae, and diffuse corneal and conjunctival epithelial damage with an elevated pH (8.5 to 9.0). She was treated with prolonged irrigation, topical steroids, ascorbic acid, NAC and lubricants. Her left eye slowly re-epithelialized over 5 weeks but remained dry with mild adenexal scarring and best corrected visual acuity of 20/30 (White et al, 1995).
    4) CONJUNCTIVITIS was reported (Elder, 1987).
    B) ANIMAL STUDIES
    1) MONKEY: Dried, powdered sodium carbonate in concentrations of 25% to 75% was mixed with dried sodium sulfate and applied to the eyes of monkeys.
    a) Administered in this manner, it was considered harmful to corrosive, even if irrigated at 2 minutes of exposure. Eyes exposed to 50% concentrations showed little persistent damage 21 days later (Green et al, 1978).
    2) RABBIT: A few drops of a 10% solution (pH 10.7) was placed in the eyes of a rabbit. The eyes were irrigated with water within 30 seconds and no damage was noted via inspection or fluorescein examination (Grant & Schuman, 1993).
    3.4.5) NOSE
    A) WITH POISONING/EXPOSURE
    1) IRRITATION: May be irritating to the nasal passages (Clayton & Clayton, 1982).
    3.4.6) THROAT
    A) WITH POISONING/EXPOSURE
    1) May be irritating to the mucous membranes of the throat.
    2) IRRITATION
    a) Swollen lips, drooling, erythema of the uvula, pharynx and soft palate have been reported in children after ingestion of sodium carbonate containing laundry detergent (Einhorn et al, 1989).
    b) Concentrated solutions tend to produce local necrosis of mucous membranes (Gosselin et al, 1976).
    B) ANIMAL STUDIES
    1) PHARYNGEAL LESIONS
    a) Rodents exposed to aerosols of sodium combustion products developed lesions of the pharynx and larynx (Bush et al, 1983).

Respiratory

    3.6.2) CLINICAL EFFECTS
    A) IRRITATION SYMPTOM
    1) WITH POISONING/EXPOSURE
    a) Non-phosphate laundry detergents usually contain a combination of sodium carbonate (30% to 34%) and sodium silicate (10% to 15%). These agents are both alkaline and may cause respiratory irritation or burns.
    b) In one study of non-phosphate laundry detergent ingestions in children cough, stridor, hoarseness, nasal flaring, epiglottic edema and erythema, and retractions developed (Einhorn et al, 1989).
    B) SUFFOCATING
    1) WITH POISONING/EXPOSURE
    a) CASE SERIES: One child in a series of 8 children ingesting sodium carbonate containing laundry detergent developed fever, retractions, tachypnea and infiltrates on chest radiograph, presumably secondary to aspiration (Einhorn et al, 1989).
    3.6.3) ANIMAL EFFECTS
    A) ANIMAL STUDIES
    1) RESPIRATORY DISORDER
    a) Male rats were exposed to a 2% aerosol (particle size under 5 microns) for 4 hours per day, 5 days per week for 3.5 months. When the concentration was 10 to 20 mg/m(3), no pronounced effect was seen. At a concentration of about 70 mg/m(3), the weight of exposed animals was 24% less than controls.
    1) Examination of lung tissue showed thickening of the intra-alveolar walls, hyperemia, lymphoid infiltration, and desquamation (Clayton & Clayton, 1982).
    2) EDEMA OF LARYNX
    a) Rodents exposed to aerosols of sodium combustion products (primarily sodium carbonate) developed lesions of the pharynx and larynx (excessive mucous, vesiculation, and mucosal swelling), pulmonary hemorrhage, and tracheal edema and vesiculation (Bush et al, 1983).

Gastrointestinal

    3.8.2) CLINICAL EFFECTS
    A) BURN
    1) WITH POISONING/EXPOSURE
    a) Non-phosphate laundry detergents usually contain a combination of sodium carbonate (30% to 34%) and sodium silicate (10% to 15%). These agents are both alkaline and may cause gastrointestinal irritation or burns.
    b) In one study of non-phosphate laundry detergent ingestions in children, vomiting, nasal flaring, hyperemic or swollen lips, drooling, erythema of the uvula, pharynx, epiglottis, proximal esophagus, soft palate, and epiglottic edema developed (Einhorn et al, 1989).
    1) Three of the 8 patients in this study had esophageal damage, and that was minimal. Symptoms of mucosal injury developed up to 5 hours post ingestion.
    c) Ingestion of large quantities of concentrated products may produce corrosion of the gastrointestinal tract, vomiting, diarrhea, circulatory collapse, and death (Windholz, 1983; OHM/TADS , 1993).
    3.8.3) ANIMAL EFFECTS
    A) ANIMAL STUDIES
    1) GASTROENTERITIS
    a) There may be evidence of thirst, severe abdominal pain, and gastroenteritis. Postmortem examination may show patches of inflammation present in the alimentary tract, particularly the stomach. There is edema and thickening of mucous membranes, and hyperemia of the small intestine (Clarke et al, 1981).
    2) PANCREATIC DISORDER
    a) Intraduodenal perfusion of a sodium carbonate solution (pH 11.4) stimulated flow rate and bicarbonate output in experiments on rabbits. Pancreatic exocrine response was focused on hydroelectric secretion (Garcia et al, 1992).
    b) Intraduodenal instillation of 0.1 molar sodium carbonate in rats significantly stimulated (7 fold) pancreatic exocrine secretion. Protein concentration and amylase activity decreased (Kato, 1985).
    3) GASTROINTESTINAL DISORDER
    a) An experimental chemical cholecystectomy has been developed in which sodium carbonate is instilled into the gall bladder for 10 to 15 minutes, which produces the destruction of the gall bladder (Cuschieri et al, 1989).

Dermatologic

    3.14.2) CLINICAL EFFECTS
    A) SKIN IRRITATION
    1) WITH POISONING/EXPOSURE
    a) May be a skin irritant or caustic depending on the concentration of the solution.
    b) EXPERIMENTAL: A 50% solution was applied to intact and abraded skin. It produced no erythema, edema, or corrosion on intact skin. Abraded skin showed moderate erythema and swelling. One-third of the volunteers showed tissue destruction at the application site (Clayton & Clayton, 1982).
    c) MIXED EXPOSURE: Twenty-seven individuals immersed their bare hands for 4 to 8 hours in hot water containing a mixture of sodium carbonate, sodium metasilicate, and sodium tripolyphosphate. All developed irritation of exposed areas; 6 developed giant bullae and vesicles within 10 to 12 hours. Three had subungual purpura. Some secondary infections were noted (Clayton & Clayton, 1982).
    1) The extent of the effect due to sodium carbonate alone cannot be determined.
    B) HYPERSENSITIVITY REACTION
    1) WITH POISONING/EXPOSURE
    a) Sensitivity reactions may occur from repeated topical use (Budavari, 1989; Lewis, 1992).

Reproductive

    3.20.1) SUMMARY
    A) No teratogenic effect was noted in primates studied. No information on human effects.
    B) No or minimal effects were seen in experiments on mice, rats, and rabbits.
    3.20.2) TERATOGENICITY
    A) LACK OF INFORMATION
    1) No information on potential human effects is available.
    B) ANIMAL STUDIES
    1) No teratogenic effect was noted in primates studied (Schardein, 1985).
    2) Sodium carbonate has been tested for teratogenicity in mice, rats, and rabbits, but the results were not available at the time of this review (Food and Drug Research Labs, 1974).
    3.20.3) EFFECTS IN PREGNANCY
    A) PREGNANCY DISORDER
    1) One unusual report found an increased incidence of prolapsed uterus and vaginal wall in female glassworkers exposed mainly to sodium carbonate dust from the glass melting tanks (Miroshnichenko, 1980). As the above conditions are generally related to physical exertion and straining rather than exposure to chemicals, and because sodium carbonate is used in vaginal douches, it is unlikely that sodium carbonate caused these effects. By analogy to ingestion of antacids, exposure and uptake of large amounts of sodium carbonate might pose some risk of TOXEMIA OF PREGNANCY in susceptible pregnant women (Bishop, 1978).
    B) ANIMAL STUDIES
    1) MICE - Pregnant mice were given daily oral doses of sodium carbonate 3.4 to 340 mg/kg on days 6 through 15 of gestation. No effects on nidation or survival of the fetuses or mothers were seen and no unusual abnormalities were reported (Clayton & Clayton, 1982).
    2) RATS - Pregnant rats were given doses up to 245 mg/kg without adverse effects (Clayton & Clayton, 1982).
    3) RABBITS - Pregnant rabbits were given does up to 179 mg/kg without adverse effects (Clayton & Clayton, 1982).
    3.20.4) EFFECTS DURING BREAST-FEEDING
    A) HUMANS
    1) Effects on humans not noted.
    B) ANIMAL STUDIES
    1) COWS - Addition of 1.2% sodium carbonate to the diet of cows or ingestion of hay dried with sodium carbonate did not alter the milk yield or composition (Belibaskis & Triantos, 1991; (Ziemer et al, 1991).

Carcinogenicity

    3.21.1) IARC CATEGORY
    A) IARC Carcinogenicity Ratings for CAS497-19-8 (International Agency for Research on Cancer (IARC), 2016; International Agency for Research on Cancer, 2015; IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, 2010; IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, 2010a; IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, 2008; IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, 2007; IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, 2006; IARC, 2004):
    1) Not Listed
    3.21.3) HUMAN STUDIES
    A) LACK OF INFORMATION
    1) At the time of this review, no data were available to assess the carcinogenic potential of this agent.

Genotoxicity

    A) At the time of this review, no data were available to assess the mutagenic or genotoxic potential of this agent.

Monitoring Parameters Levels

    4.1.1) SUMMARY
    A) Obtain a complete blood count in symptomatic patients following sodium carbonate ingestion.
    B) In patients with signs and symptoms suggesting severe burns, perforation, or bleeding (or adults with deliberate, high volume or high concentration ingestions), obtain renal function tests, serum electrolytes, INR, PTT, type and crossmatch for blood, and monitor urine output. Serum lactate and base deficit may also be useful in these patients.
    C) Monitor pulse oximetry or arterial blood gases in patients with signs and symptoms suggestive of upper airway edema or burns.
    D) Obtain an upright chest x-ray in patients with signs and symptoms suggesting severe burns, perforation, or bleeding (or adults with deliberate, high volume or high concentration ingestions) to evaluate for pneumomediastinum or free air under the diaphragm. The absence of these findings DOES NOT rule out the possibility of necrosis or perforation of the esophagus or stomach. Obtain a chest radiograph in patients with pulmonary signs or symptoms.
    E) Several weeks after ingestion, barium contrast radiographs of the upper GI tract are useful in patients who sustained grade II or III burns, to evaluate for strictures.
    4.1.2) SERUM/BLOOD
    A) HEMATOLOGIC
    1) Obtain a complete blood count in patients with symptomatic sodium carbonate ingestion.
    B) COAGULATION STUDIES
    1) In patients with signs and symptoms suggesting severe burns, perforation, or bleeding, obtain renal function tests, PT or INR, PTT, and type and crossmatch for blood.
    4.1.3) URINE
    A) OTHER
    1) Monitor urine output in patients with significant gastrointestinal burns, perforation, or bleeding.
    4.1.4) OTHER
    A) OTHER
    1) MONITORING
    a) Monitor pulse oximetry or arterial blood gases in patients with signs and symptoms suggestive of upper airway burns.

Radiographic Studies

    A) CHEST RADIOGRAPH
    1) Obtain an upright chest x-ray in patients with significant signs and symptoms to evaluate for pneumomediastinum or free air under the diaphragm.
    2) The absence of these findings does not rule out the possibility of necrosis or perforation of the esophagus or stomach (Davis et al, 1972; Allen et al, 1970).
    3) Obtain a chest x-ray in patients with significant pulmonary signs or symptoms
    4) A water-soluble contrast material should be used initially to exclude esophageal perforation in patients with GI burns associated with alkaline ingestions, as water soluble contrast causes less injury than barium if it extravasates into tissue (Kirsh & Ritter, 1976; Chen et al, 1988).
    5) Barium esophagogram performed once perforation has been excluded may be useful to evaluate extent of injury or presence of strictures (Leape et al, 1971; Lowe et al, 1979; Chen et al, 1988).

Life Support

    A) Support respiratory and cardiovascular function.

Patient Disposition

    6.3.1) DISPOSITION/ORAL EXPOSURE
    6.3.1.1) ADMISSION CRITERIA/ORAL
    A) Symptomatic patients, and those with endoscopically demonstrated grade II or higher burns should be admitted. Patients with respiratory distress, grade III burns, acidosis, hemodynamic instability, gastrointestinal bleeding, or large ingestions should be admitted to an intensive care setting.
    6.3.1.5) OBSERVATION CRITERIA/ORAL
    A) Patients with sodium carbonate ingestion should be sent to a health care facility for evaluation. Patients who remain asymptomatic over 4 to 6 hours of observation, and those with endoscopic evaluation that demonstrates no burns or only minor grade I burns and who can tolerate oral intake can be discharged home.
    6.3.3) DISPOSITION/INHALATION EXPOSURE
    6.3.3.5) OBSERVATION CRITERIA/INHALATION
    A) Patients symptomatic following exposure should be observed in a controlled setting until all signs and symptoms have fully resolved.

Monitoring

    A) Obtain a complete blood count in symptomatic patients following sodium carbonate ingestion.
    B) In patients with signs and symptoms suggesting severe burns, perforation, or bleeding (or adults with deliberate, high volume or high concentration ingestions), obtain renal function tests, serum electrolytes, INR, PTT, type and crossmatch for blood, and monitor urine output. Serum lactate and base deficit may also be useful in these patients.
    C) Monitor pulse oximetry or arterial blood gases in patients with signs and symptoms suggestive of upper airway edema or burns.
    D) Obtain an upright chest x-ray in patients with signs and symptoms suggesting severe burns, perforation, or bleeding (or adults with deliberate, high volume or high concentration ingestions) to evaluate for pneumomediastinum or free air under the diaphragm. The absence of these findings DOES NOT rule out the possibility of necrosis or perforation of the esophagus or stomach. Obtain a chest radiograph in patients with pulmonary signs or symptoms.
    E) Several weeks after ingestion, barium contrast radiographs of the upper GI tract are useful in patients who sustained grade II or III burns, to evaluate for strictures.

Oral Exposure

    6.5.1) PREVENTION OF ABSORPTION/PREHOSPITAL
    A) SUMMARY
    1) Dilution should be performed immediately. DO NOT ADMINISTER ACTIVATED CHARCOAL. Observe for clinical findings, and send to medical facility.
    B) DILUTION
    1) If no respiratory compromise is present, administer milk or water as soon as possible after ingestion. The exact ideal amount is unknown; no more than 8 ounces (240 mL) in adults and 4 ounces (120 mL) in children is recommended to minimize the risk of vomiting (Caravati, 2004).
    2) USE OF DILUENTS IS CONTROVERSIAL: While experimental models have suggested that immediate dilution may lessen caustic injury (Homan et al, 1993; Homan et al, 1994; Homan et al, 1995), this has not been adequately studied in humans.
    3) DILUENT TYPE: Use any readily available nontoxic, cool liquid. Both milk and water have been shown to be effective in experimental studies of caustic ingestion (Maull et al, 1985; Rumack & Burrington, 1977; Homan et al, 1995; Homan et al, 1994; Homan et al, 1993).
    4) ADVERSE EFFECTS: Potential adverse effects include vomiting and airway compromise (Caravati, 2004).
    5) CONTRAINDICATIONS: Do NOT attempt dilution in patients with respiratory distress, altered mental status, severe abdominal pain, nausea or vomiting, or patients who are unable to swallow or protect their airway. Diluents should not be force fed to any patient who refuses to swallow (Rao & Hoffman, 2002).
    6.5.2) PREVENTION OF ABSORPTION
    A) DILUTION
    1) If no respiratory compromise is present, administer milk or water as soon as possible after ingestion. The exact ideal amount is unknown; no more than 8 ounces (240 mL) in adults and 4 ounces (120 mL) in children is recommended to minimize the risk of vomiting (Caravati, 2004).
    2) USE OF DILUENTS IS CONTROVERSIAL: While experimental models have suggested that immediate dilution may lessen caustic injury (Homan et al, 1993; Homan et al, 1994; Homan et al, 1995), this has not been adequately studied in humans.
    3) DILUENT TYPE: Use any readily available nontoxic, cool liquid. Both milk and water have been shown to be effective in experimental studies of caustic ingestion (Maull et al, 1985; Rumack & Burrington, 1977; Homan et al, 1995; Homan et al, 1994; Homan et al, 1993).
    4) ADVERSE EFFECTS: Potential adverse effects include vomiting and airway compromise (Caravati, 2004).
    5) CONTRAINDICATIONS: Do NOT attempt dilution in patients with respiratory distress, altered mental status, severe abdominal pain, nausea or vomiting, or patients who are unable to swallow or protect their airway. Diluents should not be force fed to any patient who refuses to swallow (Rao & Hoffman, 2002).
    B) GASTRIC ASPIRATION
    1) INDICATIONS: Consider insertion of a small, flexible nasogastric tube to aspirate gastric contents after large, recent ingestion of caustics. The risk of worsening mucosal injury (including perforation) must be weighed against the potential benefit.
    2) PRECAUTIONS:
    a) SEIZURE CONTROL: Is mandatory prior to gastric emptying.
    b) AIRWAY PROTECTION: Alert patients - place in Trendelenburg and left lateral decubitus position, with suction available. Obtunded or unconscious patients - cuffed endotracheal intubation. COMPLICATIONS:
    1) Complications of gastric aspiration may include: aspiration pneumonia, hypoxia, hypercapnia, mechanical injury to the throat, esophagus, or stomach (Vale, 1997). Combative patients may be at greater risk for complications.
    C) CONTRAINDICATION
    1) Sodium carbonate is irritating to mucous membranes. Toxicity is moderate; the primary risk is alkaline irritation or corrosion. Activated charcoal are NOT INDICATED.
    6.5.3) TREATMENT
    A) SUPPORT
    1) There is no specific treatment or antidote. Provide symptomatic and supportive care. If large amounts have been ingested, evaluate for elevated serum sodium levels with serum electrolytes. The potential for upper airway obstruction from edema constitutes the greatest life threat.
    B) ENDOSCOPIC PROCEDURE
    1) SUMMARY: Obtain consultation concerning endoscopy as soon as possible, and perform endoscopy within the first 24 hours when indicated.
    2) INDICATIONS: Endoscopy should be performed in adults with a history of deliberate ingestion, adults with any signs or symptoms attributable to inadvertent ingestion, and in children with stridor, vomiting, or drooling after unintentional ingestion (Crain et al, 1984). Endoscopy should also be performed in children with dysphagia or refusal to swallow, significant oral burns, or abdominal pain after unintentional ingestion (Gaudreault et al, 1983; Nuutinen et al, 1994). Children and adults who are asymptomatic after accidental ingestion do not require endoscopy (Gupta et al, 2001; Lamireau et al, 2001; Gorman et al, 1992).
    3) RISKS: Numerous large case series attest to the relative safety and utility of early endoscopy in the management of caustic ingestion.
    a) REFERENCES: (Dogan et al, 2006; Symbas et al, 1983; Crain et al, 1984a; Gaudreault et al, 1983a; Schild, 1985; Moazam et al, 1987; Sugawa & Lucas, 1989; Previtera et al, 1990; Zargar et al, 1991; Vergauwen et al, 1991; Gorman et al, 1992)
    4) The risk of perforation during endoscopy is minimized by (Zargar et al, 1991):
    a) Advancing across the cricopharynx under direct vision
    b) Gently advancing with minimal air insufflation
    c) Never retroverting or retroflexing the endoscope
    d) Using a pediatric flexible endoscope
    e) Using extreme caution in advancing beyond burn lesion areas
    f) Most authors recommend endoscopy within the first 24 hours of injury, not advancing the endoscope beyond areas of severe esophageal burns, and avoiding endoscopy during the subacute phase of healing when tissue slough increases the risk of perforation (5 to 15 days after ingestion) (Zargar et al, 1991).
    5) GRADING
    a) Several scales for grading caustic injury exist. The likelihood of complications such as strictures, obstruction, bleeding, and perforation is related to the severity of the initial burn (Zargar et al, 1991):
    b) Grade 0 - Normal examination
    c) Grade 1 - Edema and hyperemia of the mucosa; strictures unlikely.
    d) Grade 2A - Friability, hemorrhages, erosions, blisters, whitish membranes, exudates and superficial ulcerations; strictures unlikely.
    e) Grade 2B - Grade 2A plus deep discreet or circumferential ulceration; strictures may develop.
    f) Grade 3A - Multiple ulcerations and small scattered areas of necrosis; strictures are common, complications such as perforation, fistula formation or gastrointestinal bleeding may occur.
    g) Grade 3B - Extensive necrosis through visceral wall; strictures are common, complications such as perforation, fistula formation, or gastrointestinal bleeding are more likely than with 3A.
    6) FOLLOW UP - If burns are found, follow 10 to 20 days later with barium swallow or esophagram.
    7) SCINTIGRAPHY - Scans utilizing radioisotope labelled sucralfate (technetium 99m) were performed in 22 patients with caustic ingestion and compared with endoscopy for the detection of esophageal burns. Two patients had minimal residual isotope activity on scanning but normal endoscopy and two patients had normal activity on scan but very mild erythema on endoscopy. Overall the radiolabeled sucralfate scan had a sensitivity of 100%, specificity of 81%, positive predictive value of 84% and negative predictive value of 100% for detecting clinically significant burns in this population (Millar et al, 2001). This may represent an alternative to endoscopy, particularly in young children, as no sedation is required for this procedure. Further study is required.
    8) MINIPROBE ULTRASONOGRAPHY - was performed in 11 patients with corrosive ingestion . Findings were categorized as grade 0 (distinct muscular layers without thickening, grade I (distinct muscular layers with thickening), grade II (obscured muscular layers with indistinct margins) and grade III (muscular layers that could not be differentiated). Findings were further categorized as to whether the worst appearing image involved part of the circumference (type a) or the whole circumference (type b). Strictures did not develop in patients with grade 0 (5 patients) or grade I (4 patients) lesions. Transient stricture formation developed in the only patient with grade IIa lesions, and stricture requiring repeated dilatation developed in the only patient with grade IIIb lesions (Kamijo et al, 2004).
    C) CORTICOSTEROID
    1) CORROSIVE INGESTION/SUMMARY: The use of corticosteroids for the treatment of caustic ingestion is controversial. Most animal studies have involved alkali-induced injury (Haller & Bachman, 1964; Saedi et al, 1973). Most human studies have been retrospective and generally involve more alkali than acid-induced injury and small numbers of patients with documented second or third degree mucosal injury.
    2) FIRST DEGREE BURNS: These burns generally heal well and rarely result in stricture formation (Zargar et al, 1989; Howell et al, 1992). Corticosteroids are generally not beneficial in these patients (Howell et al, 1992).
    3) SECOND DEGREE BURNS: Some authors recommend corticosteroid treatment to prevent stricture formation in patients with a second degree, deep-partial thickness burn (Howell et al, 1992). However, no well controlled human study has documented efficacy. Corticosteroids are generally not beneficial in patients with a second degree, superficial-partial thickness burn (Caravati, 2004; Howell et al, 1992).
    4) THIRD DEGREE BURNS: Some authors have recommended steroids in this group as well (Howell et al, 1992). A high percentage of patients with third degree burns go on to develop strictures with or without corticosteroid therapy and the risk of infection and perforation may be increased by corticosteroid use. Most authors feel that the risk outweighs any potential benefit and routine use is not recommended (Boukthir et al, 2004; Oakes et al, 1982; Pelclova & Navratil, 2005).
    5) CONTRAINDICATIONS: Include active gastrointestinal bleeding and evidence of gastric or esophageal perforation. Corticosteroids are thought to be ineffective if initiated more than 48 hours after a burn (Howell, 1987).
    6) DOSE: Administer daily oral doses of 0.1 milligram/kilogram of dexamethasone or 1 to 2 milligrams/kilogram of prednisone. Continue therapy for a total of 3 weeks and then taper (Haller et al, 1971; Marshall, 1979). An alternative regimen in children is intravenous prednisolone 2 milligrams/kilogram/day followed by 2.5 milligrams/kilogram/day of oral prednisone for a total of 3 weeks then tapered (Anderson et al, 1990).
    7) ANTIBIOTICS: Animal studies suggest that the addition of antibiotics can prevent the infectious complications associated with corticosteroid use in the setting of caustic burns. Antibiotics are recommended if corticosteroids are used or if perforation or infection is suspected. Agents that cover anaerobes and oral flora such as penicillin, ampicillin, or clindamycin are appropriate (Rosenberg et al, 1953).
    8) STUDIES
    a) ANIMAL
    1) Some animal studies have suggested that corticosteroid therapy may reduce the incidence of stricture formation after severe alkaline corrosive injury (Haller & Bachman, 1964; Saedi et al, 1973a).
    2) Animals treated with steroids and antibiotics appear to do better than animals treated with steroids alone (Haller & Bachman, 1964).
    3) Other studies have shown no evidence of reduced stricture formation in steroid treated animals (Reyes et al, 1974). An increased rate of esophageal perforation related to steroid treatment has been found in animal studies (Knox et al, 1967).
    b) HUMAN
    1) Most human studies have been retrospective and/or uncontrolled and generally involve small numbers of patients with documented second or third degree mucosal injury. No study has proven a reduced incidence of stricture formation from steroid use in human caustic ingestions (Haller et al, 1971; Hawkins et al, 1980; Yarington & Heatly, 1963; Adam & Brick, 1982).
    2) META ANALYSIS
    a) Howell et al (1992), analyzed reports concerning 361 patients with corrosive esophageal injury published in the English language literature since 1956 (10 retrospective and 3 prospective studies). No patients with first degree burns developed strictures. Of 228 patients with second or third degree burns treated with corticosteroids and antibiotics, 54 (24%) developed strictures. Of 25 patients with similar burn severity treated without steroids or antibiotics, 13 (52%) developed strictures (Howell et al, 1992).
    b) Another meta-analysis of 10 studies found that in patients with second degree esophageal burns from caustics, the overall rate of stricture formation was 14.8% in patients who received corticosteroids compared with 36% in patients who did not receive corticosteroids (LoVecchio et al, 1996).
    c) Another study combined results of 10 papers evaluating therapy for corrosive esophageal injury in humans published between January 1991 and June 2004. There were a total of 572 patients, all patients received corticosteroids in 6 studies, in 2 studies no patients received steroids, and in 2 studies, treatment with and without corticosteroids was compared. Of 109 patients with grade 2 esophageal burns who were treated with corticosteroids, 15 (13.8%) developed strictures, compared with 2 of 32 (6.3%) patients with second degree burns who did not receive steroids (Pelclova & Navratil, 2005).
    3) Smaller studies have questioned the value of steroids (Ferguson et al, 1989; Anderson et al, 1990), thus they should be used with caution.
    4) Ferguson et al (1989) retrospectively compared 10 patients who did not receive antibiotics or steroids with 31 patients who received both antibiotics and steroids in a study of caustic ingestion and found no difference in the incidence of esophageal stricture between the two groups (Ferguson et al, 1989).
    5) A randomized, controlled, prospective clinical trial involving 60 children with lye or acid induced esophageal injury did not find an effect of corticosteroids on the incidence of stricture formation (Anderson et al, 1990).
    a) These 60 children were among 131 patients who were managed and followed-up for ingestion of caustic material from 1971 through 1988; 88% of them were between 1 and 3 years old (Anderson et al, 1990).
    b) All patients underwent rigid esophagoscopy after being randomized to receive either no steroids or a course consisting initially of intravenous prednisolone (2 milligrams/kilogram per day) followed by 2.5 milligrams/kilogram/day of oral prednisone for a total of 3 weeks prior to tapering and discontinuation (Anderson et al, 1990).
    c) Six (19%), 15 (48%), and 10 (32%) of those in the treatment group had first, second and third degree esophageal burns, respectively. In contrast, 13 (45%), 5 (17%), and 11 (38%) of the control group had the same levels of injury (Anderson et al, 1990).
    d) Ten (32%) of those receiving steroids and 11 (38%) of the control group developed strictures. Four (13%) of those receiving steroids and 7 (24%) of the control group required esophageal replacement. All but 1 of the 21 children who developed strictures had severe circumferential burns on initial esophagoscopy (Anderson et al, 1990).
    e) Because of the small numbers of patients in this study, it lacked the power to reliably detect meaningful differences in outcome between the treatment groups (Anderson et al, 1990).
    6) ADVERSE EFFECTS
    a) The use of corticosteroids in the treatment of caustic ingestion in humans has been associated with gastric perforation (Cleveland et al, 1963) and fatal pulmonary embolism (Aceto et al, 1970).
    D) SURGICAL PROCEDURE
    1) SUMMARY: Initially if severe esophageal burns are found a string may be placed in the stomach to facilitate later dilation. Insertion of a specialized nasogastric tube after confirmation of a circumferential burn may prevent strictures. Dilation is indicated after 2 to 4 weeks if strictures are confirmed. If dilation is unsuccessful colonic intraposition or gastric tube placement may be needed. Early laparotomy should be considered in patients with evidence of severe esophageal or gastric burns on endoscopy.
    2) STRING - If a second degree or circumferential burn of the esophagus is found a string may be placed in the stomach to avoid false channel and to provide a guide for later dilation procedures (Gandhi et al, 1989).
    3) STENT - The insertion of a specialized nasogastric tube or stent immediately after endoscopically proven deep circumferential burns is preferred by some surgeons to prevent stricture formation (Mills et al, 1978; (Wijburg et al, 1985; Coln & Chang, 1986).
    a) STUDY - In a study of 11 children with deep circumferential esophageal burns after caustic ingestion, insertion of a silicone rubber nasogastric tube for 5 to 6 weeks without steroids or antibiotics was associated with stricture formation in only one case (Wijburg et al, 1989).
    4) DILATION - Dilation should be performed at 1 to 4 week intervals when stricture is present(Gundogdu et al, 1992). Repeated dilation may be required over many months to years in some patients. Successful dilation of gastric antral strictures has also been reported (Hogan & Polter, 1986; Treem et al, 1987).
    5) COLONIC REPLACEMENT - Intraposition of colon may be necessary if dilation fails to provide an adequate sized esophagus (Chiene et al, 1974; Little et al, 1988; Huy & Celerier, 1988).
    6) LAPAROTOMY/LAPAROSCOPY - Several authors advocate laparotomy or laparoscopy in patients with endoscopic evidence of severe esophageal or gastric burns to evaluate for the presence of transmural gastric or esophageal necrosis (Cattan et al, 2000; Estrera et al, 1986; Meredith et al, 1988; Wu & Lai, 1993).
    a) STUDY - In a retrospective study of patients with extensive transmural esophageal necrosis after caustic ingestion, all 4 patients treated in the conventional manner (esophagoscopy, steroids, antibiotics, and repeated evaluation for the occurrence of esophagogastric necrosis and perforation) died while all 3 patients treated with early laparotomy and immediate esophagogastric resection survived (Estrera et al, 1986).
    E) AIRWAY MANAGEMENT
    1) Monitor for evidence of upper airway edema or respiratory distress. Laryngoscopy, soft tissue lateral films of the neck and pulse oximetry may be helpful. Consider early intubation in symptomatic patients to prevent airway obstruction due to progressive edema.
    2) In a series of 8 children hospitalized after ingestion of sodium carbonate containing laundry detergent, 7 developed symptoms of airway irritation or edema (stridor, retractions, coughing, tachypnea, nasal flaring, respiratory distress), all within 2 hours of exposure (Einhorn et al, 1989).
    a) Seven of these children underwent laryngoscopy or endoscopy; 5 had upper airway edema and 4 were intubated to prevent upper airway obstruction.

Inhalation Exposure

    6.7.1) DECONTAMINATION
    A) Move patient from the toxic environment to fresh air. Monitor for respiratory distress. If cough or difficulty in breathing develops, evaluate for hypoxia, respiratory tract irritation, bronchitis, or pneumonitis.
    B) OBSERVATION: Carefully observe patients with inhalation exposure for the development of any systemic signs or symptoms and administer symptomatic treatment as necessary.
    C) INITIAL TREATMENT: Administer 100% humidified supplemental oxygen, perform endotracheal intubation and provide assisted ventilation as required. Administer inhaled beta-2 adrenergic agonists, if bronchospasm develops. Consider systemic corticosteroids in patients with significant bronchospasm (National Heart,Lung,and Blood Institute, 2007). Exposed skin and eyes should be flushed with copious amounts of water.
    6.7.2) TREATMENT
    A) OBSERVATION REGIMES
    1) Carefully observe patients with inhalation exposure for the development of any systemic signs or symptoms and administer symptomatic treatment as necessary.
    B) IRRITATION SYMPTOM
    1) Respiratory tract irritation, if severe, can progress to pulmonary edema which may be delayed in onset up to 24 to 72 hours after exposure in some cases.
    C) PULMONARY EDEMA
    1) ONSET: Onset of acute lung injury after toxic exposure may be delayed up to 24 to 72 hours after exposure in some cases.
    2) NON-PHARMACOLOGIC TREATMENT: The treatment of acute lung injury is primarily supportive (Cataletto, 2012). Maintain adequate ventilation and oxygenation with frequent monitoring of arterial blood gases and/or pulse oximetry. If a high FIO2 is required to maintain adequate oxygenation, mechanical ventilation and positive-end-expiratory pressure (PEEP) may be required; ventilation with small tidal volumes (6 mL/kg) is preferred if ARDS develops (Haas, 2011; Stolbach & Hoffman, 2011).
    a) To minimize barotrauma and other complications, use the lowest amount of PEEP possible while maintaining adequate oxygenation. Use of smaller tidal volumes (6 mL/kg) and lower plateau pressures (30 cm water or less) has been associated with decreased mortality and more rapid weaning from mechanical ventilation in patients with ARDS (Brower et al, 2000). More treatment information may be obtained from ARDS Clinical Network website, NIH NHLBI ARDS Clinical Network Mechanical Ventilation Protocol Summary, http://www.ardsnet.org/node/77791 (NHLBI ARDS Network, 2008)
    3) FLUIDS: Crystalloid solutions must be administered judiciously. Pulmonary artery monitoring may help. In general the pulmonary artery wedge pressure should be kept relatively low while still maintaining adequate cardiac output, blood pressure and urine output (Stolbach & Hoffman, 2011).
    4) ANTIBIOTICS: Indicated only when there is evidence of infection (Artigas et al, 1998).
    5) EXPERIMENTAL THERAPY: Partial liquid ventilation has shown promise in preliminary studies (Kollef & Schuster, 1995).
    6) CALFACTANT: In a multicenter, randomized, blinded trial, endotracheal instillation of 2 doses of 80 mL/m(2) calfactant (35 mg/mL of phospholipid suspension in saline) in infants, children, and adolescents with acute lung injury resulted in acute improvement in oxygenation and lower mortality; however, no significant decrease in the course of respiratory failure measured by duration of ventilator therapy, intensive care unit, or hospital stay was noted. Adverse effects (transient hypoxia and hypotension) were more frequent in calfactant patients, but these effects were mild and did not require withdrawal from the study (Wilson et al, 2005).
    7) However, in a multicenter, randomized, controlled, and masked trial, endotracheal instillation of up to 3 doses of calfactant (30 mg) in adults only with acute lung injury/ARDS due to direct lung injury was not associated with improved oxygenation and longer term benefits compared to the placebo group. It was also associated with significant increases in hypoxia and hypotension (Willson et al, 2015).
    D) Treatment should include recommendations listed in the ORAL EXPOSURE section when appropriate.

Eye Exposure

    6.8.1) DECONTAMINATION
    A) Begin irrigation immediately with copious amounts of water or sterile 0.9% saline, which ever is more rapidly available. Lactated Ringer's solution may also be effective. Once irrigation has begun, instill a drop of local anesthetic (eg, 0.5% proparacaine) for comfort; switching from water to slightly warmed sterile saline may also improve patient comfort (Singh et al, 2013; Spector & Fernandez, 2008; Ernst et al, 1998; Grant & Schuman, 1993a). In one study, isotonic saline, lactated Ringer's solution, normal saline with bicarbonate, and balanced saline plus (BSS Plus) were compared and no difference in normalization of pH were found; however, BSS Plus was better tolerated and more comfortable (Fish & Davidson, 2010).
    1) Continue irrigation for at least an hour or until the superior and inferior cul-de-sacs have returned to neutrality (check pH every 30 minutes), pH of 7.0 to 8.0, and remain so for 30 minutes after irrigation is discontinued (Spector & Fernandez, 2008; Brodovsky et al, 2000). After severe alkaline burns, the pH of the conjunctival sac may only return to a pH of 8 or 8.5 even after extensive irrigation (Grant & Schuman, 1993a). Irrigating volumes up to 20 L or more have been used to neutralize the pH (Singh et al, 2013; Fish & Davidson, 2010). Immediate and prolonged irrigation is associated with improved visual acuity, shorter hospital stay and fewer surgical interventions (Kuckelkorn et al, 1995; Saari et al, 1984).
    2) Search the conjunctival sac for solid particles and remove them while continuing irrigation (Grant & Schuman, 1993a).
    3) For significant alkaline or concentrated acid burns with evidence of eye injury irrigation should be continued for at least 2 to 3 hours, potentially as long as 24 to 48 hours if pH not normalized, in an attempt to normalize the pH of the anterior chamber (Smilkstein & Fraunfelder, 2002). Emergent ophthalmologic consultation is needed in these cases (Spector & Fernandez, 2008).
    6.8.2) TREATMENT
    A) INJURY OF GLOBE OF EYE
    1) IRRIGATION
    a) Begin irrigation immediately with copious amounts of water or sterile 0.9% saline, which ever is more rapidly available. Lactated Ringer's solution may also be effective. Once irrigation has begun, instill a drop of local anesthetic (eg, 0.5% proparacaine) for comfort; switching from water to slightly warmed sterile saline may also improve patient comfort (Singh et al, 2013; Spector & Fernandez, 2008; Ernst et al, 1998; Grant & Schuman, 1993a). In one study, isotonic saline, lactated Ringer's solution, normal saline with bicarbonate, and balanced saline plus (BSS Plus) were compared and no difference in normalization of pH were found; however, BSS Plus was better tolerated and more comfortable (Fish & Davidson, 2010).
    1) Continue irrigation for at least an hour or until the superior and inferior cul-de-sacs have returned to neutrality (check pH every 30 minutes), pH of 7.0 to 8.0, and remain so for 30 minutes after irrigation is discontinued (Spector & Fernandez, 2008; Brodovsky et al, 2000). After severe alkaline burns, the pH of the conjunctival sac may only return to a pH of 8 or 8.5 even after extensive irrigation (Grant & Schuman, 1993a). Irrigating volumes up to 20 L or more have been used to neutralize the pH (Singh et al, 2013; Fish & Davidson, 2010). Immediate and prolonged irrigation is associated with improved visual acuity, shorter hospital stay and fewer surgical interventions (Kuckelkorn et al, 1995; Saari et al, 1984).
    2) Search the conjunctival sac for solid particles and remove them while continuing irrigation (Grant & Schuman, 1993a).
    3) For significant alkaline or concentrated acid burns with evidence of eye injury irrigation should be continued for at least 2 to 3 hours, potentially as long as 24 to 48 hours if pH not normalized, in an attempt to normalize the pH of the anterior chamber (Smilkstein & Fraunfelder, 2002). Emergent ophthalmologic consultation is needed in these cases (Spector & Fernandez, 2008).
    2) EVALUATION
    a) ASSESSMENT CAUSTIC EYE BURNS: It may take 48 to 72 hours after the burn to assess correctly the degree of ocular damage (Brodovsky et al, 2000a).
    b) The 1965 Roper-Hall classification uses the size of the corneal epithelial defect, the degree of corneal opacification and extent of limbal ischemia to evaluate the extent of the chemical ocular injury (Brodovsky et al, 2000a; Singh et al, 2013):
    1) GRADE 1 (prognosis good): Corneal epithelial damage; no limbal ischemia.
    2) GRADE 2 (prognosis good): Cornea hazy; iris details visible, ischemia less than one-third of limbus.
    3) GRADE 3 (prognosis guarded): Total loss of corneal epithelium; stromal haze obscures iris details; ischemia of one-third to one-half of limbus.
    4) GRADE 4 (prognosis poor): Cornea opaque; iris and pupil obscured, ischemia affects more than one-half of limbus.
    c) A newer classification (Dua) is based on clock hour limbal involvement as well as a percentage of bulbar conjunctival involvement (Singh et al, 2013):
    1) GRADE 1 (prognosis very good): 0 clock hour of limbal involvement and 0% conjunctival involvement.
    2) GRADE 2 (prognosis good): Less than 3 clock hour of limbal involvement and less than 30% conjunctival involvement.
    3) GRADE 3 (prognosis good): Greater than 3 and up to 6 clock hour of limbal involvement and greater than 30% to 50% conjunctival involvement.
    4) GRADE 4 (prognosis good to guarded): Greater than 6 and up to 9 clock hour of limbal involvement and greater than 50% to 75% conjunctival involvement.
    5) GRADE 5 (prognosis guarded to poor): Greater than 9 and less than 12 clock hour of limbal involvement and greater than 75% and less than 100% conjunctival involvement.
    6) GRADE 6 (very poor): Total limbus (12 clock hour) involved and 100% conjunctival involvement.
    3) MINOR INJURY
    a) SUMMARY
    1) If ocular damage is minor, artificial tears/lubricants, topical cycloplegics, and antibiotics may be all that are needed.
    b) ARTIFICIAL TEARS
    1) To promote re-epithelization, preservative-free artificial tears/lubricants (eg, hyaluronic acid hourly) may be used (Fish & Davidson, 2010; Tuft & Shortt, 2009).
    c) TOPICAL CYCLOPLEGIC
    1) Use to guard against development of posterior synechiae and ciliary spasm (Brodovsky et al, 2000b; Grant & Schuman, 1993a). Cyclopentolate 0.5% or 1% eye drops may be administered 4 times daily to control pain (Tuft & Shortt, 2009; Spector & Fernandez, 2008).
    d) TOPICAL ANTIBIOTICS
    1) An antibiotic ophthalmic ointment or drops should be used for as long as epithelial defects persist (Brodovsky et al, 2000b; Grant & Schuman, 1993a). Topical erythromycin or tetracycline ointment may be used (Spector & Fernandez, 2008).
    e) PAIN CONTROL
    1) If pain control is required, oral or parenteral NSAIDs or narcotics are preferred to topical ocular anesthetics, which may cause local corneal epithelial damage if used repeatedly (Spector & Fernandez, 2008; Grant & Schuman, 1993a). However, topical 0.5% proparacaine has been recommended (Spector & Fernandez, 2008).
    4) SEVERE INJURY
    a) SUMMARY
    1) If the damage is minor, the above may be all that is needed. For grade 3 or 4 injuries, one or more of the following may be used, only with ophthalmologic consultation: acetazolamide, topical timolol, topical steroids, citrate, ascorbate, EDTA, cysteine, NAC, penicillamine, tetracycline, or soft contact lenses.
    b) ARTIFICIAL TEARS
    1) To promote re-epithelization, preservative-free artificial tears/lubricants (eg, hyaluronic acid hourly) may be used (Fish & Davidson, 2010; Tuft & Shortt, 2009).
    c) PAIN CONTROL
    1) If pain control is required, oral or parenteral NSAIDs or narcotics are preferred to topical ocular anesthetics, which may cause local corneal epithelial damage if used repeatedly (Spector & Fernandez, 2008; Grant & Schuman, 1993a). However, topical 0.5% proparacaine has been recommended (Spector & Fernandez, 2008).
    d) CARBONIC ANHYDRASE INHIBITOR
    1) Acetazolamide (250 mg orally 4 times daily) may be given to control increased intraocular pressure (Singh et al, 2013; Tuft & Shortt, 2009; Spector & Fernandez, 2008).
    e) TOPICAL STEROIDS
    1) DOSE: Dexamethasone 0.1% ointment 4 times daily to reduce inflammation. If persistent epithelial defect is present, discontinue dexamethasone by day 14 to reduce the risk of stromal melt (Tuft & Shortt, 2009). Other sources suggest that corticosteroids should be stopped if the epithelium has not covered surface defects by 5 to 7 days (Grant & Schuman, 1993b).
    2) Topical prednisolone 0.5% has also been used. A further increase in corneoscleral melt may occur if topical steroids are used alone. In one study, topical prednisolone 0.5% was used in combination with topical ascorbate 10%; no increase in corneoscleral melt was observed when topical steroids were used until re-epithelization (Singh et al, 2013; Fish & Davidson, 2010).
    3) In one retrospective study, fluorometholone 1% drops were administered every 2 hours initially, then decreased to four times daily when there was evidence of progressive corneal reepithelialization and lessened inflammation, and discontinued when corneal reepithelialization was complete (Brodovsky et al, 2000).
    a) STUDY: The combination of intensive topical corticosteroids, topical citrate and ascorbate, and oral citrate and ascorbate was associated with improved best corrected visual acuity and a trend towards more rapid corneal reepithelialization in Grade 3 alkali burns in one retrospective study (Brodovsky et al, 2000).
    f) ASCORBATE
    1) Oral or topical ascorbate may be used to promote epithelial healing and reduce the risk of stromal necrosis (Fish & Davidson, 2010).
    2) DOSE: Ascorbate 10% 4 times daily topically or 1 g orally (2 g/day) (Singh et al, 2013; Tuft & Shortt, 2009).
    3) Ascorbate is needed for the formation of collagen and the concentration of ascorbate in the anterior chamber is decreased when the ciliary body is damaged by alkali burns (Tuft & Shortt, 2009; Grant & Schuman, 1993b). In one retrospective study, ascorbate drops (10%) were administered every 2 hours, then decreased to 4 times a day when there was evidence of progressive corneal reepithelialization and lessened inflammation, and discontinued when corneal reepithelialization was complete. These patients also received 500 mg of oral ascorbate 4 times daily, until discharge from the hospital (Brodovsky et al, 2000).
    a) STUDY: The combination of intensive topical corticosteroids, topical citrate and ascorbate, and oral citrate and ascorbate was associated with improved best corrected visual acuity and a trend towards more rapid corneal reepithelialization in Grade 3 alkali burns in one retrospective study (Brodovsky et al, 2000).
    g) CITRATE
    1) Topical citrate may be used to promote epithelial healing and reduce the risk of stromal necrosis (Fish & Davidson, 2010).
    2) DOSE: Potassium citrate 10% 4 times daily topically (Tuft & Shortt, 2009).
    3) Citrate chelates calcium, and thereby interferes with the harmful effects of neutrophil accumulation, such as release of proteolytic enzymes and superoxide free radicals, phagocytosis and ulceration (Grant & Schuman, 1993b). In one retrospective study, 10% citrate drops were administered every 2 hours, then decreased to 4 times a day when there was evidence of progressive corneal reepithelialization and lessened inflammation, and discontinued when corneal reepithelialization was complete. These patients also received a urinary alkalinizer containing 720 mg of citric acid anhydrous and 630 mg of sodium citrate anhydrous 3 times daily, until discharge from the hospital (Brodovsky et al, 2000).
    a) STUDY: The combination of intensive topical corticosteroids, topical citrate and ascorbate, and oral citrate and ascorbate was associated with improved best corrected visual acuity and a trend towards more rapid corneal reepithelialization in Grade 3 alkali burns in one retrospective study (Brodovsky et al, 2000).
    h) COLLAGENASE INHIBITORS
    1) Inhibitors of collagenase can inhibit collagenolytic activity, prevent stromal ulceration, and promote wound healing. Several effective agents, such as cysteine, n-acetylcysteine, sodium ethylenediamine tetra acetic acid (EDTA), calcium EDTA, penicillamine, and citrate, have been recommended (Singh et al, 2013; Tuft & Shortt, 2009; Perry et al, 1993; Seedor et al, 1987).
    2) TETRACYCLINE: Has been found to have an anticollagenolytic effect. Systemic tetracycline 50 mg/kg/day reduced the incidence of alkali-induced corneal ulcerations in rabbits (Seedor et al, 1987).
    3) DOXYCYCLINE: Decreased epithelial defects and collagenase activity in a rabbit model of alkali burns to the eye (Perry et al, 1993). DOSE: 100 mg twice daily (Tuft & Shortt, 2009).
    i) ANTIBIOTICS
    1) An antibiotic ophthalmic ointment or drops should be used for as long as epithelial defects persist (Brodovsky et al, 2000b; Grant & Schuman, 1993a). Topical erythromycin or tetracycline ointment may be used (Spector & Fernandez, 2008). In patients with severe burns, a topical fluoroquinolone antibiotic drop 4 times daily may also be used (Tuft & Shortt, 2009). A topical fourth generation fluoroquinolone has been recommended as an antimicrobial prophylaxis in patients with large epithelial defect (Fish & Davidson, 2010).
    j) TOPICAL CYCLOPLEGIC
    1) Cyclopentolate 0.5% or 1% eye drops may be administered 4 times daily to control pain (Tuft & Shortt, 2009; Spector & Fernandez, 2008).
    k) SOFT CONTACT LENSES
    1) A bandage contact lens (eg, silicone hydrogel) may make the patient more comfortable and protect the surface (Fish & Davidson, 2010; Tuft & Shortt, 2009). Hydrophilic high oxygen permeability lenses are preferred (Singh et al, 2013). Soft lenses with intermediate water content and inherent rigidity may facilitate reepithelialization. The use of 0.5 normal sodium chloride drops hourly and artificial tears or lubricant eyedrops instilled 4 times a day may help maintain adequate hydration and lens mobility.
    5) SURGICAL THERAPY
    a) SURGICAL THERAPY CAUSTIC EYE INJURY
    1) Early insertion of methylmethacrylate ring or suturing saran wrap over palpebral and cul-de-sac conjunctiva may prevent fibrinosis adhesions and reduce fibrotic contracture of conjunctiva, but the advantage of such treatments is not clear.
    2) Limbal stem cell transplantation has been used successfully in both the acute stage of injury and the chronically scarred healing phase in patients with persistent epithelial defects after chemical burns (Azuara-Blanco et al, 1999; Morgan & Murray, 1996; Ronk et al, 1994).
    3) In some patients, amniotic membrane transplantation (AMT) has been successful in improving corneal healing and visual acuity in patients with persistent epithelial defects after chemical burns. It can restore the conjunctival surface and decrease limbal stromal inflammation (Fish & Davidson, 2010; Sridhar et al, 2000; Su & Lin, 2000; Meller et al, 2000; Azuara-Blanco et al, 1999).
    4) Control glaucoma. Remove any cataracts formed (Fish & Davidson, 2010; Tuft & Shortt, 2009).
    5) In patients with severe injury, tenonplasty can be performed to promote epithelialization and prevent melting (Tuft & Shortt, 2009).
    6) A keratoprosthesis placement has also been indicated in severe cases (Fish & Davidson, 2010). Penetrating keratoplasty is usually delayed as long as possible as results appear to be better with a greater lag time between injury and keratoplasty (Grant & Schuman, 1993a).
    B) GENERAL TREATMENT
    1) Treatment should include recommendations listed in the INHALATION EXPOSURE section when appropriate.
    C) Treatment should include recommendations listed in the ORAL EXPOSURE section when appropriate.

Dermal Exposure

    6.9.1) DECONTAMINATION
    A) DERMAL DECONTAMINATION
    1) Remove contaminated clothing and jewelry and irrigate exposed areas with copious amounts of water. A physician may need to examine the area if irritation or pain persists (Burgess et al, 1999).
    6.9.2) TREATMENT
    A) BURN
    1) APPLICATION
    a) These recommendations apply to patients with MINOR chemical burns (FIRST DEGREE; SECOND DEGREE: less than 15% body surface area in adults; less than 10% body surface area in children; THIRD DEGREE: less than 2% body surface area). Consultation with a clinician experienced in burn therapy or a burn unit should be obtained if larger area or more severe burns are present. Neutralizing agents should NOT be used.
    2) DEBRIDEMENT
    a) After initial flushing with large volumes of water to remove any residual chemical material, clean wounds with a mild disinfectant soap and water.
    b) DEVITALIZED SKIN: Loose, nonviable tissue should be removed by gentle cleansing with surgical soap or formal skin debridement (Moylan, 1980; Haynes, 1981). Intravenous analgesia may be required (Roberts, 1988).
    c) BLISTERS: Removal and debridement of closed blisters is controversial. Current consensus is that intact blisters prevent pain and dehydration, promote healing, and allow motion; therefore, blisters should be left intact until they rupture spontaneously or healing is well underway, unless they are extremely large or inhibit motion (Roberts, 1988; Carvajal & Stewart, 1987).
    3) TREATMENT
    a) TOPICAL ANTIBIOTICS: Prophylactic topical antibiotic therapy with silver sulfadiazine is recommended for all burns except superficial partial thickness (first-degree) burns (Roberts, 1988). For first-degree burns bacitracin may be used, but effectiveness is not documented (Roberts, 1988).
    b) SYSTEMIC ANTIBIOTICS: Systemic antibiotics are generally not indicated unless infection is present or the burn involves the hands, feet, or perineum.
    c) WOUND DRESSING:
    1) Depending on the site and area, the burn may be treated open (face, ears, or perineum) or covered with sterile nonstick porous gauze. The gauze dressing should be fluffy and thick enough to absorb all drainage.
    2) Alternatively, a petrolatum fine-mesh gauze dressing may be used alone on partial-thickness burns.
    d) DRESSING CHANGES:
    1) Daily dressing changes are indicated if a burn cream is used; changes every 3 to 4 days are adequate with a dry dressing.
    2) If dressing changes are to be done at home, the patient or caregiver should be instructed in proper techniques and given sufficient dressings and other necessary supplies.
    e) Analgesics such as acetaminophen with codeine may be used for pain relief if needed.
    4) TETANUS PROPHYLAXIS
    a) The patient's tetanus immunization status should be determined. Tetanus toxoid 0.5 milliliter intramuscularly or other indicated tetanus prophylaxis should be administered if required.
    B) GENERAL TREATMENT
    1) Treatment should include recommendations listed in the INHALATION EXPOSURE section when appropriate.
    C) Treatment should include recommendations listed in the ORAL EXPOSURE section when appropriate.

Enhanced Elimination

    A) EFFICACY
    1) No studies have addressed the utilization of extracorporeal elimination techniques in poisoning with this agent.

Summary

    A) Serious burns are less likely if the pH is less than 11.5. Injury is potentially greater with large exposures and high concentrations.
    B) With highly concentrated liquids, esophageal burns may occur in up to 100% of patients, even after accidental ingestion.

Minimum Lethal Exposure

    A) GENERAL/SUMMARY
    1) The minimum lethal human dose to this agent has not been delineated.

Maximum Tolerated Exposure

    A) ANIMAL DATA
    1) PULMONARY - Male rats were exposed to a 2% aerosol (particle size under 5 microns) for 4 hours per day 5 days per week for 3.5 months. When the concentration was 10 to 20 mg/m(3), no pronounced effect was seen. At a concentration of about 70 mg/m(3), the weight of exposed animals was 24% less than controls.
    2) GASTROINTESTINAL - Sodium carbonate is a primary irritant or caustic, depending on the concentration used, contact time, areas of exposure, and other factors.
    3) EYE - Aqueous solutions may have a pH up to 11.6, and if instilled in the eye, may cause damage to the corneal epithelium.
    a) A few drops of a 10% solution (pH 10.7) was placed in the eyes of a rabbit. The eyes were irrigated with water within 30 seconds; no damage was noted.

Workplace Standards

    A) ACGIH TLV Values for CAS497-19-8 (American Conference of Governmental Industrial Hygienists, 2010):
    1) Not Listed

    B) NIOSH REL and IDLH Values for CAS497-19-8 (National Institute for Occupational Safety and Health, 2007):
    1) Not Listed

    C) Carcinogenicity Ratings for CAS497-19-8 :
    1) ACGIH (American Conference of Governmental Industrial Hygienists, 2010): Not Listed
    2) EPA (U.S. Environmental Protection Agency, 2011): Not Listed
    3) IARC (International Agency for Research on Cancer (IARC), 2016; International Agency for Research on Cancer, 2015; IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, 2010; IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, 2010a; IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, 2008; IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, 2007; IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, 2006; IARC, 2004): Not Listed
    4) NIOSH (National Institute for Occupational Safety and Health, 2007): Not Listed
    5) MAK (DFG, 2002): Not Listed
    6) NTP (U.S. Department of Health and Human Services, Public Health Service, National Toxicology Project ): Not Listed

    D) OSHA PEL Values for CAS497-19-8 (U.S. Occupational Safety, and Health Administration (OSHA), 2010):
    1) Not Listed

Toxicity Information

    7.7.1) TOXICITY VALUES
    A) Reference: Lewis, 1992; RTECS, 1993
    1) LD50- (INTRAPERITONEAL)MOUSE:
    a) 117 mg/kg
    2) LD50- (ORAL)MOUSE:
    a) 6600 mg/kg
    3) LD50- (SUBCUTANEOUS)MOUSE:
    a) 2210 mg/kg
    4) LD50- (ORAL)RAT:
    a) 4090 mg/kg

Toxicologic Mechanism

    A) Sodium carbonate is an irritant or caustic depending on concentration, duration of exposure, condition of exposure site, and other factors.

Physical Characteristics

    A) Sodium carbonate occurs in three forms:
    1) ANHYDROUS: This form is an odorless, gray to white, hygroscopic powder or lumps with an alkaline taste (Budavari, 1996; Sax & Lewis, 1987).
    2) MONOHYDRATE: This form exists as odorless, small crystals or crystal powder with an alkaline taste (Budavari, 1996).
    3) DECAHYDRATE: This form exists as transparent crystals (Budavari, 1989).
    a) Sodium carbonate is usually encountered as the decahydrate (Na2CO3.10H2O), commonly called sal soda or washing soda (Clayton & Clayton, 1981).
    B) TASTE THRESHOLD: Lower 15 ppm; upper 78 ppm (OHM/TADS , 1993)

Ph

    A) ANHYDROUS
    1) 11.6 (aqueous solution) (Budavari, 1996)
    2) 11.5 (1% aqueous solution) (Clayton & Clayton, 1981)
    B) DECAHYDRATE: The aqueous solution is strongly alkaline to litmus (Budavari, 1996).

Molecular Weight

    A) 106 (Budavari, 1996)

General Bibliography

    1) 40 CFR 372.28: Environmental Protection Agency - Toxic Chemical Release Reporting, Community Right-To-Know, Lower thresholds for chemicals of special concern. National Archives and Records Administration (NARA) and the Government Printing Office (GPO). Washington, DC. Final rules current as of Apr 3, 2006.
    2) 40 CFR 372.65: Environmental Protection Agency - Toxic Chemical Release Reporting, Community Right-To-Know, Chemicals and Chemical Categories to which this part applies. National Archives and Records Association (NARA) and the Government Printing Office (GPO), Washington, DC. Final rules current as of Apr 3, 2006.
    3) 49 CFR 172.101 - App. B: Department of Transportation - Table of Hazardous Materials, Appendix B: List of Marine Pollutants. National Archives and Records Administration (NARA) and the Government Printing Office (GPO), Washington, DC. Final rules current as of Aug 29, 2005.
    4) 49 CFR 172.101: Department of Transportation - Table of Hazardous Materials. National Archives and Records Administration (NARA) and the Government Printing Office (GPO), Washington, DC. Final rules current as of Aug 11, 2005.
    5) 62 FR 58840: Notice of the National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances - Proposed AEGL Values, Environmental Protection Agency, NAC/AEGL Committee. National Archives and Records Administration (NARA) and the Government Publishing Office (GPO), Washington, DC, 1997.
    6) 65 FR 14186: Notice of the National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances - Proposed AEGL Values, Environmental Protection Agency, NAC/AEGL Committee. National Archives and Records Administration (NARA) and the Government Publishing Office (GPO), Washington, DC, 2000.
    7) 65 FR 39264: Notice of the National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances - Proposed AEGL Values, Environmental Protection Agency, NAC/AEGL Committee. National Archives and Records Administration (NARA) and the Government Publishing Office (GPO), Washington, DC, 2000.
    8) 65 FR 77866: Notice of the National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances - Proposed AEGL Values, Environmental Protection Agency, NAC/AEGL Committee. National Archives and Records Administration (NARA) and the Government Publishing Office (GPO), Washington, DC, 2000.
    9) 66 FR 21940: Notice of the National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances - Proposed AEGL Values, Environmental Protection Agency, NAC/AEGL Committee. National Archives and Records Administration (NARA) and the Government Publishing Office (GPO), Washington, DC, 2001.
    10) 67 FR 7164: Notice of the National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances - Proposed AEGL Values, Environmental Protection Agency, NAC/AEGL Committee. National Archives and Records Administration (NARA) and the Government Publishing Office (GPO), Washington, DC, 2002.
    11) 68 FR 42710: Notice of the National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances - Proposed AEGL Values, Environmental Protection Agency, NAC/AEGL Committee. National Archives and Records Administration (NARA) and the Government Publishing Office (GPO), Washington, DC, 2003.
    12) 69 FR 54144: Notice of the National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances - Proposed AEGL Values, Environmental Protection Agency, NAC/AEGL Committee. National Archives and Records Administration (NARA) and the Government Publishing Office (GPO), Washington, DC, 2004.
    13) AIHA: 2006 Emergency Response Planning Guidelines and Workplace Environmental Exposure Level Guides Handbook, American Industrial Hygiene Association, Fairfax, VA, 2006.
    14) Aceto T Jr, Terplan K, & Fiore RR: Chemical burns of the esophagus in children and glucocorticoid therapy. J Med 1970; 1:101-109.
    15) Adam JS & Brick HG: Pediatric caustic ingestion. Ann Otol Laryngol 1982; 91:656-658.
    16) Allen RE, Thoshinsky MJ, & Stallone RJ: Corrosive injuries of the stomach. Arch Surg 1970; 100:409-413.
    17) American Conference of Governmental Industrial Hygienists : ACGIH 2010 Threshold Limit Values (TLVs(R)) for Chemical Substances and Physical Agents and Biological Exposure Indices (BEIs(R)), American Conference of Governmental Industrial Hygienists, Cincinnati, OH, 2010.
    18) Anderson KD, Touse TM, & Randolph JG: A controlled trial of corticosteroids in children with corrosive injury of the esophagus. N Engl J Med 1990; 323:637-640.
    19) Ansell-Edmont: SpecWare Chemical Application and Recommendation Guide. Ansell-Edmont. Coshocton, OH. 2001. Available from URL: http://www.ansellpro.com/specware. As accessed 10/31/2001.
    20) Artigas A, Bernard GR, Carlet J, et al: The American-European consensus conference on ARDS, part 2: ventilatory, pharmacologic, supportive therapy, study design strategies, and issues related to recovery and remodeling.. Am J Respir Crit Care Med 1998; 157:1332-1347.
    21) Azuara-Blanco A, Pillai CT, & Dua HS: Amniotic membrane transplantation for ocular surface reconstruction. Br J Ophthalmol 1999; 83:399-402.
    22) Bata Shoe Company: Industrial Footwear Catalog, Bata Shoe Company, Belcamp, MD, 1995.
    23) Best Manufacturing: ChemRest Chemical Resistance Guide. Best Manufacturing. Menlo, GA. 2002. Available from URL: http://www.chemrest.com. As accessed 10/8/2002.
    24) Best Manufacturing: Degradation and Permeation Data. Best Manufacturing. Menlo, GA. 2004. Available from URL: http://www.chemrest.com/DomesticPrep2/. As accessed 04/09/2004.
    25) Bishop C: Canad Pharm J 1978; 111:357-358.
    26) Boss Manufacturing Company: Work Gloves, Boss Manufacturing Company, Kewanee, IL, 1998.
    27) Boukthir S, Fetni I, Mrad SM, et al: [High doses of steroids in the management of caustic esophageal burns in children]. Arch Pediatr 2004; 11(1):13-17.
    28) Brodovsky SC, McCarty AC, & Snibson G: Management of alkali burns an 11-year retrospective review. Ophthalmology 2000a; 107:1829-1835.
    29) Brodovsky SC, McCarty CA, & Snibson G: Management of alkali burns an 11-year retrospective review. Ophthalmology 2000; 107:1829-1835.
    30) Brodovsky SC, McCarty CA, & Snibson G: Management of alkali burns an 11-year review. Ophthalmology 2000b; 107:1829-1835.
    31) Brower RG, Matthay AM, & Morris A: Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Eng J Med 2000; 342:1301-1308.
    32) Budavari S: The Merck Index, 11th ed, Merck & Co, Inc, Rahway, NJ, 1989, pp 1359.
    33) Budavari S: The Merck Index, 12th ed, Merck & Co, Inc, Whitehouse Station, NJ, 1996.
    34) Burgess JL, Kirk M, Borron SW, et al: Emergency department hazardous materials protocol for contaminated patients. Ann Emerg Med 1999; 34(2):205-212.
    35) Caravati EM: Alkali. In: Dart RC, ed. Medical Toxicology, Lippincott Williams & Wilkins, Philadelphia, PA, 2004.
    36) Carvajal HF & Stewart CE: Emergency management of burn patients: the first few hours. Emerg Med Reports 1987; 8:129-136.
    37) Cataletto M: Respiratory Distress Syndrome, Acute(ARDS). In: Domino FJ, ed. The 5-Minute Clinical Consult 2012, 20th ed. Lippincott Williams & Wilkins, Philadelphia, PA, 2012.
    38) Cattan P, Munoz-Bongrand N, & Berney T: Extensive abdominal surgery after caustic ingestion. Ann Surg 2000; 231:519-523.
    39) ChemFab Corporation: Chemical Permeation Guide Challenge Protective Clothing Fabrics, ChemFab Corporation, Merrimack, NH, 1993.
    40) Chen YM, Ott DJ, & Thompson JN: Progressive roentgenographic appearance of caustic esophagitis. South Med J 1988; 81:724-728.
    41) Chiene KY, Wang PY, & Lu KS: Esophagoplasty of corrosive stricture of the esophagus. Ann Surg 1974; 179:510-515.
    42) Chivers CP: Br J Ind Med 1959; 16:51-60.
    43) Clarke ML, Harvey DG, & Humphreys DJ: Veterinary Toxicology, 2nd ed, Bailliere Tindall, London, UK, 1981.
    44) Clayton GD & Clayton FE: Patty's Industrial Hygiene and Toxicology, Vol 2B, Toxicology, 3rd ed, John Wiley & Sons, New York, NY, 1982, pp 3059-3061.
    45) Cleveland WW, Chandler JR, & Lawson RB: Treatment of caustic burns of the esophagus. JAMA 1963; 186:182-183.
    46) Coln D & Chang JHT: Experience with esophageal stenting for caustic burns in children. J Pediatr Surg 1986; 21:588-592.
    47) Comasec Safety, Inc.: Chemical Resistance to Permeation Chart. Comasec Safety, Inc.. Enfield, CT. 2003. Available from URL: http://www.comasec.com/webcomasec/english/catalogue/mtabgb.html. As accessed 4/28/2003.
    48) Comasec Safety, Inc.: Product Literature, Comasec Safety, Inc., Enfield, CT, 2003a.
    49) Crain EF, Gershel JC, & Mezey AP: Caustic ingestions. Symptoms as predictors of esophageal injury. Am J Dis Child 1984a; 138(9):863-865.
    50) Crain EF, Gershel JC, & Mezey AP: Caustic ingestions; symptoms as predictors of esophageal injury. Am J Dis Child 1984; 138:863-865.
    51) Cuschieri A, Abd el Ghany AA, & Holley MP: Successful chemical cholecystectomy: a laparoscopic guided technique. Gut 1989; 30:1786-1794.
    52) DFG: List of MAK and BAT Values 2002, Report No. 38, Deutsche Forschungsgemeinschaft, Commission for the Investigation of Health Hazards of Chemical Compounds in the Work Area, Wiley-VCH, Weinheim, Federal Republic of Germany, 2002.
    53) Davis WM, Madden JW, & Peacock EE Jr: A new approach to the control of esophageal stenosis. Ann Surg 1972; 176:469-476.
    54) Dogan Y, Erkan T, Cokugras FC, et al: Caustic gastroesophageal lesions in childhood: an analysis of 473 cases. Clin Pediatr (Phila) 2006; 45(5):435-438.
    55) DuPont: DuPont Suit Smart: Interactive Tool for the Selection of Protective Apparel. DuPont. Wilmington, DE. 2002. Available from URL: http://personalprotection.dupont.com/protectiveapparel/suitsmart/smartsuit2/na_english.asp. As accessed 10/31/2002.
    56) DuPont: Permeation Guide for DuPont Tychem Protective Fabrics. DuPont. Wilmington, DE. 2003. Available from URL: http://personalprotection.dupont.com/en/pdf/tyvektychem/pgcomplete20030128.pdf. As accessed 4/26/2004.
    57) DuPont: Permeation Test Results. DuPont. Wilmington, DE. 2002a. Available from URL: http://www.tyvekprotectiveapprl.com/databases/default.htm. As accessed 7/31/2002.
    58) Duke-Elder S: Chemical Injuries. Textbook of Ophthalmology, Vol 6, Mosby, St Louis, MO, 1954.
    59) EPA: Search results for Toxic Substances Control Act (TSCA) Inventory Chemicals. US Environmental Protection Agency, Substance Registry System, U.S. EPA's Office of Pollution Prevention and Toxics. Washington, DC. 2005. Available from URL: http://www.epa.gov/srs/.
    60) ERG: Emergency Response Guidebook. A Guidebook for First Responders During the Initial Phase of a Dangerous Goods/Hazardous Materials Incident, U.S. Department of Transportation, Research and Special Programs Administration, Washington, DC, 2004.
    61) Einhorn A, Horton L, & Altieri M: Serious respiratory consequences of detergent ingestions in children. Pediatrics 1989; 84:472-474.
    62) Elder RL: Final report on the safety assessment of sodium sesquicarbonate, sodium bicarbonate, and sodium carbonate. J Am Coll Toxicol 1987; 6:121-138.
    63) Ernst AA, Thomson T, & Haynes ML: Warmed versus room temperature saline solution for ocular irrigation: a randomized clinical trial. Ann Emerg Med 1998; 32:676-679.
    64) Estrera A, Taylor W, & Mills LJ: Corrosive burns of the esophagus and stomach: a recommendation of an aggressive surgical approach. Ann Thorac Surg 1986; 41:276-283.
    65) Ferguson MK, Migliore M, & Staszak VM: Early evaluation and therapy for caustic esophageal injury. Am J Surg 1989; 157:116-120.
    66) Fish R & Davidson RS: Management of ocular thermal and chemical injuries, including amniotic membrane therapy. Curr Opin Ophthalmol 2010; 21(4):317-321.
    67) Freeman HM: Standard Handbook of Hazardous Waste Treatment and Disposal, McGraw-Hill Book Company, New York, NY, 1989.
    68) Gandhi RP, Cooper A, & Barlow BA: Successful management of esophageal stricture without resection or replacement. J Pediatr 1989; 24:745-750.
    69) Garcia LJ, Montero A, & Minguela A: Cholinergic mechanisms for secretin release after intraduodenal alkalinization in the anaesthetized rabbit. Exp Physiol 1992; 77:601-613.
    70) Gaudreault P, Parent M, & McGuigan MA: Predictability of esophageal injury from signs and symptoms: a study of caustic ingestion in 378 children. Pediatrics 1983; 71:761-770.
    71) Gaudreault P, Parent M, McGuigan MA, et al: Predictability of esophageal injury from signs and symptoms: a study of caustic ingestion in 378 children. Pediatrics 1983a; 71(5):767-770.
    72) Gorman RL, Khin-Maung-Gyi MT, & Klein-Schwartz W: Initial symptoms as predictors of esophageal injury in alkaline corrosive ingestions. Am J Emerg Med 1992; 10:89-94.
    73) Gosselin RE, Hodge HC, & Smith RP: Clinical Toxicology of Commercial Products, 4th ed, Williams and Wilkins, Baltimore, MD, 1976.
    74) Grant WM & Schuman JS: Toxicology of the Eye, 4th ed, Charles C Thomas, Springfield, IL, 1993.
    75) Grant WM & Schuman JS: Toxicology of the Eye, 4th ed, Charles C Thomas, Springfield, IL, 1993a.
    76) Grant WM & Schuman JS: Toxicology of the Eye, 4th ed, Charles C Thomas, Springfield, IL, 1993b.
    77) Green WR, Sullivan JB, & Hehir RM: A Systematic Comparison of Chemically Induced Eye Injury in the Albino Rabbit and Rhesus Monkey, Soap and Detergent Association, New York, NY, 1978.
    78) Guardian Manufacturing Group: Guardian Gloves Test Results. Guardian Manufacturing Group. Willard, OH. 2001. Available from URL: http://www.guardian-mfg.com/guardianmfg.html. As accessed 12/11/2001.
    79) Gundogdu HZ, Tanyel FC, & Buyukpamukcu N: Conservative treatment of caustic esophageal strictures in children. J Pediatr Surg 1992; 27:767-770.
    80) Gupta SK, Croffie JM, & Fitzgerald JF: Is esophagogastroduodenoscopy necessary in all caustic ingestions?. J Ped Gastroenterol Nutr 2001; 32:50-53.
    81) HSDB : Hazardous Substances Data Bank. National Library of Medicine. Bethesda, MD (Internet Version). Edition expires 1993; provided by Truven Health Analytics Inc., Greenwood Village, CO.
    82) Haas CF: Mechanical ventilation with lung protective strategies: what works?. Crit Care Clin 2011; 27(3):469-486.
    83) Haller JA & Bachman K: The comparative effect of current therapy on experimental caustic burns of the esophagus. Pediatrics 1964; 236-245.
    84) Haller JA, Andrews HG, & White JJ: Pathophysiology and management of acute corrosive burns of the esophagus. J Pediatr Surg 1971; 6:578-584.
    85) Hawkins DB, Demeter MJ, & Barnett TE: Caustic ingestion: controversies in management. A review of 214 cases. Laryngoscope 1980; 90:98-109.
    86) Hawley GG: The Condensed Chemical Dictionary, 10th ed, Van Nostrand Reinhold Co, New York, NY, 1981.
    87) Haynes BW Jr: Emergency department management of minor burns. Top Emerg Med 1981; 3:35-40.
    88) Hogan RB & Polter DE: Nonsurgical management of lye-induced antral strictures with hydrostatic balloon dilation. Gastrointest Endosc 1986; 32:228-230.
    89) Homan CS, Maitra SR, & Lane BP: Effective treatment of acute alkali injury of the esopahgus with early saline dilution therapy. Ann Emerg Med 1993; 22:178-182.
    90) Homan CS, Maitra SR, & Lane BP: Histopathologic evaluation of the therapeutic efficacy of water and mild dilution for esophageal acid injury. Acad Emerg Med 1995; 2:587-591.
    91) Homan CS, Maitra SR, & Lane BP: Therapeutic effects of water and milk for acute alkali injury of the esophagus. Ann Emerg Med 1994; 24:14-19.
    92) Howell JM, Dalsey WC, & Hartsell FW: Steroids for the treatment of corrosive esophageal injury: a statistical analysis of past studies. Am J Emerg Med 1992; 10:421-425.
    93) Howell JM: Alkaline ingestions. Ann Emerg Med 1987; 15:820-825.
    94) Huy PTB & Celerier M: Management of severe caustic stenosis of the hypopharynx and esophagus by ileocolic transposition via suprahyoid or transepiglottic approach. Ann Surg 1988; 207:439-445.
    95) IARC Working Group on the Evaluation of Carcinogenic Risks to Humans : IARC Monographs on the Evaluation of Carcinogenic Risks to Humans: 1,3-Butadiene, Ethylene Oxide and Vinyl Halides (Vinyl Fluoride, Vinyl Chloride and Vinyl Bromide), 97, International Agency for Research on Cancer, Lyon, France, 2008.
    96) IARC Working Group on the Evaluation of Carcinogenic Risks to Humans : IARC Monographs on the Evaluation of Carcinogenic Risks to Humans: Formaldehyde, 2-Butoxyethanol and 1-tert-Butoxypropan-2-ol, 88, International Agency for Research on Cancer, Lyon, France, 2006.
    97) IARC Working Group on the Evaluation of Carcinogenic Risks to Humans : IARC Monographs on the Evaluation of Carcinogenic Risks to Humans: Household Use of Solid Fuels and High-temperature Frying, 95, International Agency for Research on Cancer, Lyon, France, 2010a.
    98) IARC Working Group on the Evaluation of Carcinogenic Risks to Humans : IARC Monographs on the Evaluation of Carcinogenic Risks to Humans: Smokeless Tobacco and Some Tobacco-specific N-Nitrosamines, 89, International Agency for Research on Cancer, Lyon, France, 2007.
    99) IARC Working Group on the Evaluation of Carcinogenic Risks to Humans : IARC Monographs on the Evaluation of Carcinogenic Risks to Humans: Some Non-heterocyclic Polycyclic Aromatic Hydrocarbons and Some Related Exposures, 92, International Agency for Research on Cancer, Lyon, France, 2010.
    100) IARC: List of all agents, mixtures and exposures evaluated to date - IARC Monographs: Overall Evaluations of Carcinogenicity to Humans, Volumes 1-88, 1972-PRESENT. World Health Organization, International Agency for Research on Cancer. Lyon, FranceAvailable from URL: http://monographs.iarc.fr/monoeval/crthall.html. As accessed Oct 07, 2004.
    101) ICAO: Technical Instructions for the Safe Transport of Dangerous Goods by Air, 2003-2004. International Civil Aviation Organization, Montreal, Quebec, Canada, 2002.
    102) ILC Dover, Inc.: Ready 1 The Chemturion Limited Use Chemical Protective Suit, ILC Dover, Inc., Frederica, DE, 1998.
    103) International Agency for Research on Cancer (IARC): IARC monographs on the evaluation of carcinogenic risks to humans: list of classifications, volumes 1-116. International Agency for Research on Cancer (IARC). Lyon, France. 2016. Available from URL: http://monographs.iarc.fr/ENG/Classification/latest_classif.php. As accessed 2016-08-24.
    104) International Agency for Research on Cancer: IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. World Health Organization. Geneva, Switzerland. 2015. Available from URL: http://monographs.iarc.fr/ENG/Classification/. As accessed 2015-08-06.
    105) Kamaldinova MM: Gig Tr Prof Zabol 1976; 11:55-57.
    106) Kamijo Y, Kondo I, Kokuto M, et al: Miniprobe ultrasonography for determining prognosis in corrosive esophagitis. Am J Gastroenterol 2004; 99(5):851-854.
    107) Kappler, Inc.: Suit Smart. Kappler, Inc.. Guntersville, AL. 2001. Available from URL: http://www.kappler.com/suitsmart/smartsuit2/na_english.asp?select=1. As accessed 7/10/2001.
    108) Kato S: Stimulating effect of duodenal alkalinization on pancreatic exocrine secretion in rats. Japan J Physiol 1985; 35:159-161.
    109) Kimberly-Clark, Inc.: Chemical Test Results. Kimberly-Clark, Inc.. Atlanta, GA. 2002. Available from URL: http://www.kc-safety.com/tech_cres.html. As accessed 10/4/2002.
    110) Kirsh MM & Ritter F: Caustic ingestion and subsequent damage to the oropharyngeal and digestive passages. Ann Thorac Surg 1976; 21:74-82.
    111) Knox WG, Scott JR, & Zintel HA: Bouginage and steroids used singly or in combination in experimental corrosive esophagitis. Ann Surg 1967; 166:930-941.
    112) Kollef MH & Schuster DP: The acute respiratory distress syndrome. N Engl J Med 1995; 332:27-37.
    113) Kuckelkorn R, Kottek A, & Schrage N: Poor prognosis of severe chemical and thermal eye burns: the need for adequate emergency care and primary prevention. Int Arch Occup Environ Health 1995; 281-284.
    114) LaCrosse-Rainfair: Safety Products, LaCrosse-Rainfair, Racine, WI, 1997.
    115) Lamireau T, Rebouissoux L, & Denis D: Accidental caustic ingestion in children: is endoscopy always mandatory?. J Ped Gastroenterol Nutr 2001; 33:81-84.
    116) Leape LL, Ashcraft AW, & Scarpelli DG: Hazard to health - liquid lye. N Engl J Med 1971; 284:578-581.
    117) Lewis RJ: Sax's Dangerous Properties of Industrial Materials, 8th ed, Van Nostrand Reinhold Company, New York, NY, 1992.
    118) Little AG, Naunheim KS, & Ferguson MK: Surgical management of esophageal strictures. Ann Thorac Surg 1988; 45:144-147.
    119) LoVecchio F, Hamilton R, & Sturman K: A meta-analysis of the use of steroids in the prevention of stricture formation from second degree caustic burns of the esophagus (abstract). J Toxicol-Clin Toxicol 1996; 35:579-580.
    120) Lowe JE, Graham DY, & Boisaubin EV: Corrosive injury to the stomach: the natural history and role of fiberoptic endoscopy. Am J Surg 1979; 137:803.
    121) MAPA Professional: Chemical Resistance Guide. MAPA North America. Columbia, TN. 2003. Available from URL: http://www.mapaglove.com/pro/ChemicalSearch.asp. As accessed 4/21/2003.
    122) MAPA Professional: Chemical Resistance Guide. MAPA North America. Columbia, TN. 2004. Available from URL: http://www.mapaglove.com/ProductSearch.cfm?id=1. As accessed 6/10/2004.
    123) Mar-Mac Manufacturing, Inc: Product Literature, Protective Apparel, Mar-Mac Manufacturing, Inc., McBee, SC, 1995.
    124) Marigold Industrial: US Chemical Resistance Chart, on-line version. Marigold Industrial. Norcross, GA. 2003. Available from URL: www.marigoldindustrial.com/charts/uschart/uschart.html. As accessed 4/14/2003.
    125) Marshall F II: Caustic burns of the esophagus: ten year results of aggressive care. South Med J 1979; 72:1236-1237.
    126) Maull KI, Osman AP, & Maull CD: Liquid caustic ingestions: an in vitro study of the effects of buffer, neutralization, and dilution. Ann Emerg Med 1985; 4:1160-1162.
    127) Meller D, Pires RT, & Mack RJS: Amniotic membrane transplantation for acute chemical or thermal burns. Ophthalmology 2000; 107:980-990.
    128) Memphis Glove Company: Permeation Guide. Memphis Glove Company. Memphis, TN. 2001. Available from URL: http://www.memphisglove.com/permeation.html. As accessed 7/2/2001.
    129) Meredith JW, Kon ND, & Thompson JN: Management of injuries from liquid lye ingestion. J Trauma 1988; 28:1173-1180.
    130) Millar AJW, Numanoglu A, & Mann M: Detection of caustid oesophageal injury tiwh technetium 99m-labelled sucralfate. J Ped SUrg 2001; 36:262-265.
    131) Miroshnichenko VP: Gig Tr Prof Zabol 1980; 9:62-63.
    132) Moazam F, Talbert JL, & Miller D: Caustic ingestion and its sequelae in children. South Med J 1987; 80:187-188.
    133) Montgomery Safety Products: Montgomery Safety Products Chemical Resistant Glove Guide, Montgomery Safety Products, Canton, OH, 1995.
    134) Morgan S & Murray A: Limbal autotransplantation in the acute and chronic phases of severe chemical injuries. Eye 1996; 10:349-354.
    135) Moylan JA: Burn care after thermal injury. Top Emerg Med 1980; 2:39-52.
    136) NFPA: Fire Protection Guide to Hazardous Materials, 10th ed, National Fire Protection Association, Quincy, MA, 1991.
    137) NFPA: Fire Protection Guide to Hazardous Materials, 13th ed., National Fire Protection Association, Quincy, MA, 2002.
    138) NHLBI ARDS Network: Mechanical ventilation protocol summary. Massachusetts General Hospital. Boston, MA. 2008. Available from URL: http://www.ardsnet.org/system/files/6mlcardsmall_2008update_final_JULY2008.pdf. As accessed 2013-08-07.
    139) NRC: Acute Exposure Guideline Levels for Selected Airborne Chemicals - Volume 1, Subcommittee on Acute Exposure Guideline Levels, Committee on Toxicology, Board on Environmental Studies and Toxicology, Commission of Life Sciences, National Research Council. National Academy Press, Washington, DC, 2001.
    140) NRC: Acute Exposure Guideline Levels for Selected Airborne Chemicals - Volume 2, Subcommittee on Acute Exposure Guideline Levels, Committee on Toxicology, Board on Environmental Studies and Toxicology, Commission of Life Sciences, National Research Council. National Academy Press, Washington, DC, 2002.
    141) NRC: Acute Exposure Guideline Levels for Selected Airborne Chemicals - Volume 3, Subcommittee on Acute Exposure Guideline Levels, Committee on Toxicology, Board on Environmental Studies and Toxicology, Commission of Life Sciences, National Research Council. National Academy Press, Washington, DC, 2003.
    142) NRC: Acute Exposure Guideline Levels for Selected Airborne Chemicals - Volume 4, Subcommittee on Acute Exposure Guideline Levels, Committee on Toxicology, Board on Environmental Studies and Toxicology, Commission of Life Sciences, National Research Council. National Academy Press, Washington, DC, 2004.
    143) Nat-Wear: Protective Clothing, Hazards Chart. Nat-Wear. Miora, NY. 2001. Available from URL: http://www.natwear.com/hazchart1.htm. As accessed 7/12/2001.
    144) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for 1,2,3-Trimethylbenzene (Proposed). United States Environmental Protection Agency. Washington, DC. 2006k. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d68a&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    145) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for 1,2,4-Trimethylbenzene (Proposed). United States Environmental Protection Agency. Washington, DC. 2006m. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d68a&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    146) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for 1,2-Butylene Oxide (Proposed). United States Environmental Protection Agency. Washington, DC. 2008d. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648083cdbb&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    147) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for 1,2-Dibromoethane (Proposed). United States Environmental Protection Agency. Washington, DC. 2007g. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064802796db&disposition=attachment&contentType=pdf. As accessed 2010-08-18.
    148) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for 1,3,5-Trimethylbenzene (Proposed). United States Environmental Protection Agency. Washington, DC. 2006l. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d68a&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    149) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for 2-Ethylhexyl Chloroformate (Proposed). United States Environmental Protection Agency. Washington, DC. 2007b. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648037904e&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    150) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Acrylonitrile (Proposed). United States Environmental Protection Agency. Washington, DC. 2007c. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648028e6a3&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    151) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Adamsite (Proposed). United States Environmental Protection Agency. Washington, DC. 2007h. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020fd29&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    152) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Agent BZ (3-quinuclidinyl benzilate) (Proposed). United States Environmental Protection Agency. Washington, DC. 2007f. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064803ad507&disposition=attachment&contentType=pdf. As accessed 2010-08-18.
    153) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Allyl Chloride (Proposed). United States Environmental Protection Agency. Washington, DC. 2008. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648039d9ee&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    154) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Aluminum Phosphide (Proposed). United States Environmental Protection Agency. Washington, DC. 2005b. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c5ed&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    155) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Arsenic Trioxide (Proposed). United States Environmental Protection Agency. Washington, DC. 2007m. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480220305&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    156) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Automotive Gasoline Unleaded (Proposed). United States Environmental Protection Agency. Washington, DC. 2009a. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a7cc17&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    157) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Biphenyl (Proposed). United States Environmental Protection Agency. Washington, DC. 2005j. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064801ea1b7&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    158) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Bis-Chloromethyl Ether (BCME) (Proposed). United States Environmental Protection Agency. Washington, DC. 2006n. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648022db11&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    159) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Boron Tribromide (Proposed). United States Environmental Protection Agency. Washington, DC. 2008a. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064803ae1d3&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    160) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Bromine Chloride (Proposed). United States Environmental Protection Agency. Washington, DC. 2007d. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648039732a&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    161) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Bromoacetone (Proposed). United States Environmental Protection Agency. Washington, DC. 2008e. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064809187bf&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    162) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Calcium Phosphide (Proposed). United States Environmental Protection Agency. Washington, DC. 2005d. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c5ed&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    163) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Carbonyl Fluoride (Proposed). United States Environmental Protection Agency. Washington, DC. 2008b. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064803ae328&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    164) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Carbonyl Sulfide (Proposed). United States Environmental Protection Agency. Washington, DC. 2007e. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648037ff26&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    165) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Chlorobenzene (Proposed). United States Environmental Protection Agency. Washington, DC. 2008c. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064803a52bb&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    166) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Cyanogen (Proposed). United States Environmental Protection Agency. Washington, DC. 2008f. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064809187fe&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    167) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Dimethyl Phosphite (Proposed). United States Environmental Protection Agency. Washington, DC. 2009. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a7cbf3&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    168) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Diphenylchloroarsine (Proposed). United States Environmental Protection Agency. Washington, DC. 2007l. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020fd29&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    169) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Ethyl Isocyanate (Proposed). United States Environmental Protection Agency. Washington, DC. 2008h. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648091884e&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    170) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Ethyl Phosphorodichloridate (Proposed). United States Environmental Protection Agency. Washington, DC. 2008i. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480920347&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    171) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Ethylbenzene (Proposed). United States Environmental Protection Agency. Washington, DC. 2008g. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064809203e7&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    172) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Ethyldichloroarsine (Proposed). United States Environmental Protection Agency. Washington, DC. 2007j. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020fd29&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    173) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Germane (Proposed). United States Environmental Protection Agency. Washington, DC. 2008j. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480963906&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    174) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Hexafluoropropylene (Proposed). United States Environmental Protection Agency. Washington, DC. 2006. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064801ea1f5&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    175) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Ketene (Proposed). United States Environmental Protection Agency. Washington, DC. 2007. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020ee7c&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    176) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Magnesium Aluminum Phosphide (Proposed). United States Environmental Protection Agency. Washington, DC. 2005h. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c5ed&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    177) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Magnesium Phosphide (Proposed). United States Environmental Protection Agency. Washington, DC. 2005g. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c5ed&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    178) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Malathion (Proposed). United States Environmental Protection Agency. Washington, DC. 2009k. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064809639df&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    179) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Mercury Vapor (Proposed). United States Environmental Protection Agency. Washington, DC. 2009b. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a8a087&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    180) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Methyl Isothiocyanate (Proposed). United States Environmental Protection Agency. Washington, DC. 2008k. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480963a03&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    181) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Methyl Parathion (Proposed). United States Environmental Protection Agency. Washington, DC. 2008l. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480963a57&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    182) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Methyl tertiary-butyl ether (Proposed). United States Environmental Protection Agency. Washington, DC. 2007a. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064802a4985&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    183) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Methylchlorosilane (Proposed). United States Environmental Protection Agency. Washington, DC. 2005. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c5f4&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    184) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Methyldichloroarsine (Proposed). United States Environmental Protection Agency. Washington, DC. 2007i. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020fd29&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    185) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Methyldichlorosilane (Proposed). United States Environmental Protection Agency. Washington, DC. 2005a. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c646&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    186) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Nitrogen Mustard (HN1 CAS Reg. No. 538-07-8) (Proposed). United States Environmental Protection Agency. Washington, DC. 2006a. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d6cb&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    187) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Nitrogen Mustard (HN2 CAS Reg. No. 51-75-2) (Proposed). United States Environmental Protection Agency. Washington, DC. 2006b. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d6cb&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    188) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Nitrogen Mustard (HN3 CAS Reg. No. 555-77-1) (Proposed). United States Environmental Protection Agency. Washington, DC. 2006c. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d6cb&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    189) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Nitrogen Tetroxide (Proposed). United States Environmental Protection Agency. Washington, DC. 2008n. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648091855b&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    190) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Nitrogen Trifluoride (Proposed). United States Environmental Protection Agency. Washington, DC. 2009l. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480963e0c&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    191) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Parathion (Proposed). United States Environmental Protection Agency. Washington, DC. 2008o. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480963e32&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    192) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Perchloryl Fluoride (Proposed). United States Environmental Protection Agency. Washington, DC. 2009c. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a7e268&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    193) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Perfluoroisobutylene (Proposed). United States Environmental Protection Agency. Washington, DC. 2009d. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a7e26a&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    194) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Phenyl Isocyanate (Proposed). United States Environmental Protection Agency. Washington, DC. 2008p. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648096dd58&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    195) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Phenyl Mercaptan (Proposed). United States Environmental Protection Agency. Washington, DC. 2006d. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020cc0c&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    196) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Phenyldichloroarsine (Proposed). United States Environmental Protection Agency. Washington, DC. 2007k. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020fd29&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    197) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Phorate (Proposed). United States Environmental Protection Agency. Washington, DC. 2008q. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648096dcc8&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    198) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Phosgene (Draft-Revised). United States Environmental Protection Agency. Washington, DC. 2009e. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a8a08a&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    199) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Phosgene Oxime (Proposed). United States Environmental Protection Agency. Washington, DC. 2009f. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a7e26d&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    200) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Potassium Cyanide (Proposed). United States Environmental Protection Agency. Washington, DC. 2009g. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a7cbb9&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    201) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Potassium Phosphide (Proposed). United States Environmental Protection Agency. Washington, DC. 2005c. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c5ed&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    202) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Propargyl Alcohol (Proposed). United States Environmental Protection Agency. Washington, DC. 2006e. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020ec91&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    203) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Selenium Hexafluoride (Proposed). United States Environmental Protection Agency. Washington, DC. 2006f. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020ec55&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    204) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Silane (Proposed). United States Environmental Protection Agency. Washington, DC. 2006g. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d523&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    205) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Sodium Cyanide (Proposed). United States Environmental Protection Agency. Washington, DC. 2009h. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a7cbb9&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    206) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Sodium Phosphide (Proposed). United States Environmental Protection Agency. Washington, DC. 2005i. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c5ed&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    207) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Strontium Phosphide (Proposed). United States Environmental Protection Agency. Washington, DC. 2005f. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c5ed&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    208) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Sulfuryl Chloride (Proposed). United States Environmental Protection Agency. Washington, DC. 2006h. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020ec7a&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    209) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Tear Gas (Proposed). United States Environmental Protection Agency. Washington, DC. 2008s. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648096e551&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    210) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Tellurium Hexafluoride (Proposed). United States Environmental Protection Agency. Washington, DC. 2009i. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a7e2a1&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    211) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Tert-Octyl Mercaptan (Proposed). United States Environmental Protection Agency. Washington, DC. 2008r. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648096e5c7&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    212) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Tetramethoxysilane (Proposed). United States Environmental Protection Agency. Washington, DC. 2006j. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d632&disposition=attachment&contentType=pdf. As accessed 2010-08-17.
    213) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Trimethoxysilane (Proposed). United States Environmental Protection Agency. Washington, DC. 2006i. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d632&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    214) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Trimethyl Phosphite (Proposed). United States Environmental Protection Agency. Washington, DC. 2009j. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a7d608&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    215) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Trimethylacetyl Chloride (Proposed). United States Environmental Protection Agency. Washington, DC. 2008t. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648096e5cc&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    216) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Zinc Phosphide (Proposed). United States Environmental Protection Agency. Washington, DC. 2005e. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c5ed&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    217) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for n-Butyl Isocyanate (Proposed). United States Environmental Protection Agency. Washington, DC. 2008m. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064808f9591&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    218) National Heart,Lung,and Blood Institute: Expert panel report 3: guidelines for the diagnosis and management of asthma. National Heart,Lung,and Blood Institute. Bethesda, MD. 2007. Available from URL: http://www.nhlbi.nih.gov/guidelines/asthma/asthgdln.pdf.
    219) National Institute for Occupational Safety and Health: NIOSH Pocket Guide to Chemical Hazards, U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, Cincinnati, OH, 2007.
    220) National Research Council : Acute exposure guideline levels for selected airborne chemicals, 5, National Academies Press, Washington, DC, 2007.
    221) National Research Council: Acute exposure guideline levels for selected airborne chemicals, 6, National Academies Press, Washington, DC, 2008.
    222) National Research Council: Acute exposure guideline levels for selected airborne chemicals, 7, National Academies Press, Washington, DC, 2009.
    223) National Research Council: Acute exposure guideline levels for selected airborne chemicals, 8, National Academies Press, Washington, DC, 2010.
    224) Neese Industries, Inc.: Fabric Properties Rating Chart. Neese Industries, Inc.. Gonzales, LA. 2003. Available from URL: http://www.neeseind.com/new/TechGroup.asp?Group=Fabric+Properties&Family=Technical. As accessed 4/15/2003.
    225) North: Chemical Resistance Comparison Chart - Protective Footwear . North Safety. Cranston, RI. 2002. Available from URL: http://www.linkpath.com/index2gisufrm.php?t=N-USA1. As accessed April 30, 2004.
    226) North: eZ Guide Interactive Software. North Safety. Cranston, RI. 2002a. Available from URL: http://www.northsafety.com/feature1.htm. As accessed 8/31/2002.
    227) Nuutinen M, Uhari M, & Karvali T: Consequences of caustic ingestions in children. Acta Paediatr 1994; 83:1200-1205.
    228) OHM/TADS : Oil and Hazardous Materials/Technical Assistance Data System. US Environmental Protection Agency. Washington, DC (Internet Version). Edition expires 1993; provided by Truven Health Analytics Inc., Greenwood Village, CO.
    229) Oakes DD, Sherck JP, & Mark JBD: Lye ingestion. J Thorac Cardiovasc Surg 1982; 83:194-204.
    230) Osol A: Remington's Pharmaceutical Sciences, 16th ed, Mack Publishing Co, Easton, PA, 1980.
    231) Pazardzhikliev D: Chig Zdraveopaz 1985; 28:14-16.
    232) Pelclova D & Navratil T: Do corticosteroids prevent oesophageal stricture after corrosive ingestion?. Toxicol Rev 2005; 24(2):125-129.
    233) Perry HD, Hodes LW, & Seedor JA: Effect of doxycycline hyclate on corneal epithelial wound healing in the rabbit alkali-burn model. Preliminary observations. Cornea 1993; 12:379-82.
    234) Playtex: Fits Tough Jobs Like a Glove, Playtex, Westport, CT, 1995.
    235) Previtera C, Giusti F, & Gugliemi M: Predictive value of visible lesions (cheeks, lips, oropharynx) in suspected caustic ingestion: may endoscopy reasonably be omitted in completely negative pediatric patients?. Pediatr Emerg Care 1990; 6:176-178.
    236) Rao RB & Hoffman RS: Caustics and Batteries, in Goldfrank LR, Flomenbaum NE, Lewin NA et al (eds): Goldfrank's Toxicologic Emergencies, 7th ed, McGraw-Hill, New York, NY, 2002.
    237) Reyes HM, Lin CY, & Schluhk FF: Experimental treatment of corrosive esophageal burns. J Pediatr Surg 1974; 9:317-327.
    238) River City: Protective Wear Product Literature, River City, Memphis, TN, 1995.
    239) Roberts JR: Minor burns (Pt II). Emerg Med Ambulatory Care News 1988; 10:4-5.
    240) Ronk JF, Ruiz-Esmenjaud S, & Osorio M: Limbal conjunctival autograft in subacute alkaline corneal burn. Cornea 1994; 13:465-468.
    241) Rosenberg N, Kunderman PJ, & Vroman L: Prevention of experimental esophageal stricture by cortisone II. Arch Surg 1953; 66:593-598.
    242) Rossoff IS: Handbook of Veterinary Drugs, Springer Publishing Co, New York, NY, 1974.
    243) Rumack BH & Burrington JD: Caustic ingestions: a rational look at diluents. J Toxicol Clin Toxicol 1977; 11:27-34.
    244) Saari KM, Leinonen J, & Aine E: Management of chemical eye injuries with prolonged irrigation. Acta Ophthalmol Suppl 1984; 52-59.
    245) Saedi S, Nyhus LM, & Gabrys BF: Pharmacological prevention of esophageal stricture: an experimental study in the cat. Am Surg 1973a; 39:465-469.
    246) Saedi S, Nyhust LM, & Gabrys BF: Pharmacological prevention of esophageal stricture: an experimental study in the cat. Am Surg 1973; 39:465-469.
    247) Safety 4: North Safety Products: Chemical Protection Guide. North Safety. Cranston, RI. 2002. Available from URL: http://www.safety4.com/guide/set_guide.htm. As accessed 8/14/2002.
    248) Sax NI & Lewis RJ: Hawley's Condensed Chemical Dictionary, 11th ed, Van Nostrand Reinhold Company, New York, NY, 1987.
    249) Schardein JL: Chemically Induced Birth Defects, Marcel Dekker, Inc, New York, NY, 1985.
    250) Schild JA: Caustic ingestion in adult patients. Laryngoscope 1985; 95:1199-1201.
    251) Seedor JA, Perry HD, & McNamara TF: Systemic tetracycline treatment of alkali-induced corneal ulceration in rabbits. Arch Ophthalmol 1987; 105:268-271.
    252) Servus: Norcross Safety Products, Servus Rubber, Servus, Rock Island, IL, 1995.
    253) Singh P, Tyagi M, Kumar Y, et al: Ocular chemical injuries and their management. Oman J Ophthalmol 2013; 6(2):83-86.
    254) Smilkstein MJ & Fraunfelder F: Ophthalmic Principles, In: Goldfrank LR, Flomenbaum NE, Lewin NA, et al, eds. Goldfrank's Toxicologic Emergencies. 7th ed., McGraw-Hill, New York, NY, 2002.
    255) Spector J & Fernandez WG: Chemical, thermal, and biological ocular exposures. Emerg Med Clin North Am 2008; 26(1):125-136.
    256) Sridhar MS, Bansal AK, & Sangwan VS: Amniotic membrans transplantation in acute chemical and thermal injury. Am J Ophthalmol 2000; 130:134-137.
    257) Standard Safety Equipment: Product Literature, Standard Safety Equipment, McHenry, IL, 1995.
    258) Stolbach A & Hoffman RS: Respiratory Principles. In: Nelson LS, Hoffman RS, Lewin NA, et al, eds. Goldfrank's Toxicologic Emergencies, 9th ed. McGraw Hill Medical, New York, NY, 2011.
    259) Su CY & Lin CP: Combined use of an amniotic membrane and tissue adhesive in treating corneal perforation: a case report. Ophtalmic Sufr Lasers 2000; 31:151-154.
    260) Sugawa C & Lucas CE: Caustic injury of the upper gastrointestinal tract in adults: a clinical and endoscopic study. Surgery 1989; 106:802-807.
    261) Symbas PN, Vlasis SE, & Hatcher CR Jr: Esophagitis secondary to ingestion of caustic material. Ann Thorac Surg 1983; 36:73-77.
    262) Tingley: Chemical Degradation for Footwear and Clothing. Tingley. South Plainfield, NJ. 2002. Available from URL: http://www.tingleyrubber.com/tingley/Guide_ChemDeg.pdf. As accessed 10/16/2002.
    263) Treem WR, Long WR, & Friedman D: Successful management of an acquired gastric outlet obstruction with endoscopy guided balloon dilatation. J Pediatr Gastroenterol Nutr 1987; 6:992-996.
    264) Trelleborg-Viking, Inc.: Chemical and Biological Tests (database). Trelleborg-Viking, Inc.. Portsmouth, NH. 2002. Available from URL: http://www.trelleborg.com/protective/. As accessed 10/18/2002.
    265) Trelleborg-Viking, Inc.: Trellchem Chemical Protective Suits, Interactive manual & Chemical Database. Trelleborg-Viking, Inc.. Portsmouth, NH. 2001.
    266) Tuft SJ & Shortt AJ: Surgical rehabilitation following severe ocular burns. Eye (Lond) 2009; 23(10):1966-1971.
    267) U.S. Department of Energy, Office of Emergency Management: Protective Action Criteria (PAC) with AEGLs, ERPGs, & TEELs: Rev. 26 for chemicals of concern. U.S. Department of Energy, Office of Emergency Management. Washington, DC. 2010. Available from URL: http://www.hss.doe.gov/HealthSafety/WSHP/Chem_Safety/teel.html. As accessed 2011-06-27.
    268) U.S. Department of Health and Human Services, Public Health Service, National Toxicology Project : 11th Report on Carcinogens. U.S. Department of Health and Human Services, Public Health Service, National Toxicology Program. Washington, DC. 2005. Available from URL: http://ntp.niehs.nih.gov/INDEXA5E1.HTM?objectid=32BA9724-F1F6-975E-7FCE50709CB4C932. As accessed 2011-06-27.
    269) U.S. Environmental Protection Agency: Discarded commercial chemical products, off-specification species, container residues, and spill residues thereof. Environmental Protection Agency's (EPA) Resource Conservation and Recovery Act (RCRA); List of hazardous substances and reportable quantities 2010b; 40CFR(261.33, e-f):77-.
    270) U.S. Environmental Protection Agency: Integrated Risk Information System (IRIS). U.S. Environmental Protection Agency. Washington, DC. 2011. Available from URL: http://cfpub.epa.gov/ncea/iris/index.cfm?fuseaction=iris.showSubstanceList&list_type=date. As accessed 2011-06-21.
    271) U.S. Environmental Protection Agency: List of Radionuclides. U.S. Environmental Protection Agency. Washington, DC. 2010a. Available from URL: http://www.gpo.gov/fdsys/pkg/CFR-2010-title40-vol27/pdf/CFR-2010-title40-vol27-sec302-4.pdf. As accessed 2011-06-17.
    272) U.S. Environmental Protection Agency: List of hazardous substances and reportable quantities. U.S. Environmental Protection Agency. Washington, DC. 2010. Available from URL: http://www.gpo.gov/fdsys/pkg/CFR-2010-title40-vol27/pdf/CFR-2010-title40-vol27-sec302-4.pdf. As accessed 2011-06-17.
    273) U.S. Environmental Protection Agency: The list of extremely hazardous substances and their threshold planning quantities (CAS Number Order). U.S. Environmental Protection Agency. Washington, DC. 2010c. Available from URL: http://www.gpo.gov/fdsys/pkg/CFR-2010-title40-vol27/pdf/CFR-2010-title40-vol27-part355.pdf. As accessed 2011-06-17.
    274) U.S. Occupational Safety and Health Administration: Part 1910 - Occupational safety and health standards (continued) Occupational Safety, and Health Administration's (OSHA) list of highly hazardous chemicals, toxics and reactives. Subpart Z - toxic and hazardous substances. CFR 2010 2010; Vol6(SEC1910):7-.
    275) U.S. Occupational Safety, and Health Administration (OSHA): Process safety management of highly hazardous chemicals. 29 CFR 2010 2010; 29(1910.119):348-.
    276) United States Environmental Protection Agency Office of Pollution Prevention and Toxics: Acute Exposure Guideline Levels (AEGLs) for Vinyl Acetate (Proposed). United States Environmental Protection Agency. Washington, DC. 2006. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d6af&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    277) Vale JA: Position Statement: gastric lavage. American Academy of Clinical Toxicology; European Association of Poisons Centres and Clinical Toxicologists. J Toxicol Clin Toxicol 1997; 35:711-719.
    278) Vergauwen p, Moulin D, & Buts JP: Caustic burns of the upper digestive and respiratory tracts. Eur J Pediatr 1991; 150:700-703.
    279) Walsh FB & Hoyt WF: Clinical Neuro-Ophthalmology, 3rd ed, Williams & Wilkins, Baltimore, MD, 1969.
    280) Wells Lamont Industrial: Chemical Resistant Glove Application Chart. Wells Lamont Industrial. Morton Grove, IL. 2002. Available from URL: http://www.wellslamontindustry.com. As accessed 10/31/2002.
    281) White JE, McClafferty K, & Orton R: Ocular alkali burn associated with automobile air-bag activation. CMAJ 1995; 153:933-934.
    282) Wijburg FA, Beukers MM, & Heymans HS: Nasogastric intubation as sole treatment of caustic esophageal lesions. Ann Otol Rhinol Laryngol 1985; 94:337-341.
    283) Wijburg FA, Heymans HS, & Urbanus NA: Caustic esophageal lesions in childhood: prevention of stricture formation. J Pediatr Surg 1989; 24(2):171-173.
    284) Willson DF, Truwit JD, Conaway MR, et al: The adult calfactant in acute respiratory distress syndrome (CARDS) trial. Chest 2015; 148(2):356-364.
    285) Wilson DF, Thomas NJ, Markovitz BP, et al: Effect of exogenous surfactant (calfactant) in pediatric acute lung injury. A randomized controlled trial. JAMA 2005; 293:470-476.
    286) Windholz M: The Merck Index, 10th ed, Merck & Co, Inc, Rahway, NJ, 1983.
    287) Workrite: Chemical Splash Protection Garments, Technical Data and Application Guide, W.L. Gore Material Chemical Resistance Guide, Workrite, Oxnard, CA, 1997.
    288) Wu MH & Lai WW: Surgical management of extensive corrosive injuries of the alimentary tract. Surg Gynecol Obstetr 1993; 177:12-16.
    289) Yarington CT & Heatly CA: Steroids, antibiotics, and early esophagoscopy in caustic esophageal trauma. N Y State J Med 1963; 63:2960-2963.
    290) Zargar SA, Kochhar R, & Mehta S: The role of fiberoptic endoscopy in the management of corrosive ingestion and modified endoscopic classification of burns. Gastrointest Endosc 1991; 37:165-169.
    291) Zargar SA, Kochhar R, & Nagi B: Ingestion of corrosive acids: spectrum of injury to upper gastrointestinal tract and natural history. Gastroenterology 1989; 97:702-707.
    292) Ziemer CJ, Heinrichs AJ, & Canale CJ: Chemical drying agents for alfalfa hay: effect on nutrient digestibility and lactational performance. J Dairy Sci 1991; 74:2674-2680.