6.5.1) PREVENTION OF ABSORPTION/PREHOSPITAL
A) ACTIVATED CHARCOAL 1) PREHOSPITAL ACTIVATED CHARCOAL ADMINISTRATION a) Consider prehospital administration of activated charcoal as an aqueous slurry in patients with a potentially toxic ingestion who are awake and able to protect their airway. Activated charcoal is most effective when administered within one hour of ingestion. Administration in the prehospital setting has the potential to significantly decrease the time from toxin ingestion to activated charcoal administration, although it has not been shown to affect outcome (Alaspaa et al, 2005; Thakore & Murphy, 2002; Spiller & Rogers, 2002). 1) In patients who are at risk for the abrupt onset of seizures or mental status depression, activated charcoal should not be administered in the prehospital setting, due to the risk of aspiration in the event of spontaneous emesis. 2) The addition of flavoring agents (cola drinks, chocolate milk, cherry syrup) to activated charcoal improves the palatability for children and may facilitate successful administration (Guenther Skokan et al, 2001; Dagnone et al, 2002).
2) CHARCOAL DOSE a) Use a minimum of 240 milliliters of water per 30 grams charcoal (FDA, 1985). Optimum dose not established; usual dose is 25 to 100 grams in adults and adolescents; 25 to 50 grams in children aged 1 to 12 years (or 0.5 to 1 gram/kilogram body weight) ; and 0.5 to 1 gram/kilogram in infants up to 1 year old (Chyka et al, 2005). 1) Routine use of a cathartic with activated charcoal is NOT recommended as there is no evidence that cathartics reduce drug absorption and cathartics are known to cause adverse effects such as nausea, vomiting, abdominal cramps, electrolyte imbalances and occasionally hypotension (None Listed, 2004).
b) ADVERSE EFFECTS/CONTRAINDICATIONS 1) Complications: emesis, aspiration (Chyka et al, 2005). Aspiration may be complicated by acute respiratory failure, ARDS, bronchiolitis obliterans or chronic lung disease (Golej et al, 2001; Graff et al, 2002; Pollack et al, 1981; Harris & Filandrinos, 1993; Elliot et al, 1989; Rau et al, 1988; Golej et al, 2001; Graff et al, 2002). Refer to the ACTIVATED CHARCOAL/TREATMENT management for further information. 2) Contraindications: unprotected airway (increases risk/severity of aspiration) , nonfunctioning gastrointestinal tract, uncontrolled vomiting, and ingestion of most hydrocarbons (Chyka et al, 2005).
6.5.2) PREVENTION OF ABSORPTION
A) ACTIVATED CHARCOAL 1) CHARCOAL ADMINISTRATION a) Consider administration of activated charcoal after a potentially toxic ingestion (Chyka et al, 2005). Administer charcoal as an aqueous slurry; most effective when administered within one hour of ingestion.
2) CHARCOAL DOSE a) Use a minimum of 240 milliliters of water per 30 grams charcoal (FDA, 1985). Optimum dose not established; usual dose is 25 to 100 grams in adults and adolescents; 25 to 50 grams in children aged 1 to 12 years (or 0.5 to 1 gram/kilogram body weight) ; and 0.5 to 1 gram/kilogram in infants up to 1 year old (Chyka et al, 2005). 1) Routine use of a cathartic with activated charcoal is NOT recommended as there is no evidence that cathartics reduce drug absorption and cathartics are known to cause adverse effects such as nausea, vomiting, abdominal cramps, electrolyte imbalances and occasionally hypotension (None Listed, 2004).
b) ADVERSE EFFECTS/CONTRAINDICATIONS 1) Complications: emesis, aspiration (Chyka et al, 2005). Aspiration may be complicated by acute respiratory failure, ARDS, bronchiolitis obliterans or chronic lung disease (Golej et al, 2001; Graff et al, 2002; Pollack et al, 1981; Harris & Filandrinos, 1993; Elliot et al, 1989; Rau et al, 1988; Golej et al, 2001; Graff et al, 2002). Refer to the ACTIVATED CHARCOAL/TREATMENT management for further information. 2) Contraindications: unprotected airway (increases risk/severity of aspiration) , nonfunctioning gastrointestinal tract, uncontrolled vomiting, and ingestion of most hydrocarbons (Chyka et al, 2005).
B) GASTRIC LAVAGE 1) INDICATIONS: Consider gastric lavage with a large-bore orogastric tube (ADULT: 36 to 40 French or 30 English gauge tube {external diameter 12 to 13.3 mm}; CHILD: 24 to 28 French {diameter 7.8 to 9.3 mm}) after a potentially life threatening ingestion if it can be performed soon after ingestion (generally within 60 minutes). a) Consider lavage more than 60 minutes after ingestion of sustained-release formulations and substances known to form bezoars or concretions.
2) PRECAUTIONS: a) SEIZURE CONTROL: Is mandatory prior to gastric lavage. b) AIRWAY PROTECTION: Place patients in the head down left lateral decubitus position, with suction available. Patients with depressed mental status should be intubated with a cuffed endotracheal tube prior to lavage.
3) LAVAGE FLUID: a) Use small aliquots of liquid. Lavage with 200 to 300 milliliters warm tap water (preferably 38 degrees Celsius) or saline per wash (in older children or adults) and 10 milliliters/kilogram body weight of normal saline in young children(Vale et al, 2004) and repeat until lavage return is clear. b) The volume of lavage return should approximate amount of fluid given to avoid fluid-electrolyte imbalance. c) CAUTION: Water should be avoided in young children because of the risk of electrolyte imbalance and water intoxication. Warm fluids avoid the risk of hypothermia in very young children and the elderly.
4) COMPLICATIONS: a) Complications of gastric lavage have included: aspiration pneumonia, hypoxia, hypercapnia, mechanical injury to the throat, esophagus, or stomach, fluid and electrolyte imbalance (Vale, 1997). Combative patients may be at greater risk for complications (Caravati et al, 2001). b) Gastric lavage can cause significant morbidity; it should NOT be performed routinely in all poisoned patients (Vale, 1997).
5) CONTRAINDICATIONS: a) Loss of airway protective reflexes or decreased level of consciousness if patient is not intubated, following ingestion of corrosive substances, hydrocarbons (high aspiration potential), patients at risk of hemorrhage or gastrointestinal perforation, or trivial or non-toxic ingestion.
C) MULTIPLE-DOSE ACTIVATED CHARCOAL 1) Despite quinine's relatively large volume of distribution, high protein binding, and poor in vitro adsorption by charcoal (White et al, 1982; Corby & Decker, 1974), studies have shown enhanced elimination with multiple-dose-charcoal regimens in therapeutic doses and overdoses (Lockey & Bateman, 1989; Prescott et al, 1989). It should be considered in patients with potentially life threatening overdose. a) Multiple dose charcoal has not been shown to affect outcome after quinine overdose. It is recommended in patients with severe toxicity and those with rising levels despite initial decontamination. b) Lockey & Bateman (1989) demonstrated an increase of oral clearance by 56% and decrease in half-life from 8.23 to 4.55 hours after therapeutic doses of quinine and MDC 50 grams every 4 hours (Lockey & Bateman, 1989). c) In a study of quinine overdose patients, the same regimen of MDC resulted in a mean half-life of 8.1 hours, compared to 26 hours in previous reports of overdosed patients (Prescott et al, 1989). d) A half-life of 33 hours prior to charcoal decreased to 10 hours after charcoal administration in a single patient (Prescott et al, 1989).
2) MULTIPLE DOSE ACTIVATED CHARCOAL a) ADULT DOSE: Optimal dose not established. After an initial dose of 50 to 100 grams of activated charcoal, subsequent doses may be administered every 1, 2 or 4 hours at a dose equivalent to 12.5 grams/hour (Vale et al, 1999), do not exceed: 0.5 g/kg charcoal every 2 hours (Ghannoum & Gosselin, 2013; Mauro et al, 1994). There is some evidence that smaller more frequent doses are more effective at enhancing drug elimination than larger less frequent doses (Park et al, 1983; Ilkhanipour et al, 1992). PEDIATRIC DOSE: Optimal dose not established. After an initial dose of 25 to 50 grams in children aged 1 to 12 years (or 0.5 to 1 gram/kilogram body weight) (Chyka & Seger, 1997), subsequent doses may be administered every 1, 2 or 4 hours (Vale et al, 1999) in a dose equivalent to 6.25 grams/hour in children 1 to 12 years old. b) Activated charcoal should be continued until the patient's clinical and laboratory parameters, including drug concentrations if available, are improving (Vale et al, 1999). The patient should be frequently assessed for the ability to protect the airway and evidence of decreased peristalsis or intestinal obstruction. c) Use of cathartics has not been shown to increase drug elimination and may increase the likelihood of vomiting. Routine coadministration of a cathartic is NOT recommended (Vale et al, 1999). d) AGENTS AMENABLE TO MDAC THERAPY: The following properties of a drug that are likely to allow MDAC therapy to be effective include: small volume of distribution, low protein binding, prolonged half-life, low intrinsic clearance, and a nonionized state at physiologic pH (Chyka, 1995; Ghannoum & Gosselin, 2013). e) Vomiting is a common adverse effect; antiemetics may be necessary. f) CONTRAINDICATIONS: Absolute contraindications include an unprotected airway, intestinal obstruction, a gastrointestinal tract that is not intact and agents that may increase the risk of aspiration (eg, hydrocarbons). Relative contraindications include decreased peristalsis (eg, decreased bowel sounds, abdominal distention, ileus, severe constipation) (Vale et al, 1999; Mauro et al, 1994). g) COMPLICATIONS: Include constipation, intestinal bleeding, bowel obstruction, appendicitis, charcoal bezoars, and aspiration which may be complicated by acute respiratory failure, adult respiratory distress syndrome or bronchiolitis obliterans (Ghannoum & Gosselin, 2013; Ray et al, 1988; Atkinson et al, 1992; Gomez et al, 1994; Mizutani et al, 1991; Pollack et al, 1981; Harris & Filandrinos, 1993; Elliot et al, 1989; Mina et al, 2002; Harsch, 1986; Rau et al, 1988; Golej et al, 2001; Graff et al, 2002).
6.5.3) TREATMENT
A) MONITORING OF PATIENT 1) Specific laboratory studies for confirming quinine ingestion are not readily available in most clinical laboratories, and are not generally useful for guiding therapy. 2) Monitor serum electrolytes, BUN, creatinine, glucose, CBC, CPK, urinalysis, and ECG. 3) In the acutely ill patient, blood gas analysis may demonstrate metabolic acidosis. Lactate is also usually elevated.
B) SEIZURE 1) SUMMARY a) Attempt initial control with a benzodiazepine (eg, diazepam, lorazepam). If seizures persist or recur, administer phenobarbital or propofol. b) Monitor for respiratory depression, hypotension, and dysrhythmias. Endotracheal intubation should be performed in patients with persistent seizures. c) Evaluate for hypoxia, electrolyte disturbances, and hypoglycemia (or, if immediate bedside glucose testing is not available, treat with intravenous dextrose).
2) DIAZEPAM a) ADULT DOSE: Initially 5 to 10 mg IV, OR 0.15 mg/kg IV up to 10 mg per dose up to a rate of 5 mg/minute; may be repeated every 5 to 20 minutes as needed (Brophy et al, 2012; Prod Info diazepam IM, IV injection, 2008; Manno, 2003). b) PEDIATRIC DOSE: 0.1 to 0.5 mg/kg IV over 2 to 5 minutes; up to a maximum of 10 mg/dose. May repeat dose every 5 to 10 minutes as needed (Loddenkemper & Goodkin, 2011; Hegenbarth & American Academy of Pediatrics Committee on Drugs, 2008). c) Monitor for hypotension, respiratory depression, and the need for endotracheal intubation. Consider a second agent if seizures persist or recur after repeated doses of diazepam .
3) NO INTRAVENOUS ACCESS a) DIAZEPAM may be given rectally or intramuscularly (Manno, 2003). RECTAL DOSE: CHILD: Greater than 12 years: 0.2 mg/kg; 6 to 11 years: 0.3 mg/kg; 2 to 5 years: 0.5 mg/kg (Brophy et al, 2012). b) MIDAZOLAM has been used intramuscularly and intranasally, particularly in children when intravenous access has not been established. ADULT DOSE: 0.2 mg/kg IM, up to a maximum dose of 10 mg (Brophy et al, 2012). PEDIATRIC DOSE: INTRAMUSCULAR: 0.2 mg/kg IM, up to a maximum dose of 7 mg (Chamberlain et al, 1997) OR 10 mg IM (weight greater than 40 kg); 5 mg IM (weight 13 to 40 kg); INTRANASAL: 0.2 to 0.5 mg/kg up to a maximum of 10 mg/dose (Loddenkemper & Goodkin, 2011; Brophy et al, 2012). BUCCAL midazolam, 10 mg, has been used in adolescents and older children (5-years-old or more) to control seizures when intravenous access was not established (Scott et al, 1999).
4) LORAZEPAM a) MAXIMUM RATE: The rate of intravenous administration of lorazepam should not exceed 2 mg/min (Brophy et al, 2012; Prod Info lorazepam IM, IV injection, 2008). b) ADULT DOSE: 2 to 4 mg IV initially; repeat every 5 to 10 minutes as needed, if seizures persist (Manno, 2003; Brophy et al, 2012). c) PEDIATRIC DOSE: 0.05 to 0.1 mg/kg IV over 2 to 5 minutes, up to a maximum of 4 mg/dose; may repeat in 5 to 15 minutes as needed, if seizures continue (Brophy et al, 2012; Loddenkemper & Goodkin, 2011; Hegenbarth & American Academy of Pediatrics Committee on Drugs, 2008; Sreenath et al, 2009; Chin et al, 2008).
5) PHENOBARBITAL a) ADULT LOADING DOSE: 20 mg/kg IV at an infusion rate of 50 to 100 mg/minute IV. An additional 5 to 10 mg/kg dose may be given 10 minutes after loading infusion if seizures persist or recur (Brophy et al, 2012). b) Patients receiving high doses will require endotracheal intubation and may require vasopressor support (Brophy et al, 2012). c) PEDIATRIC LOADING DOSE: 20 mg/kg may be given as single or divided application (2 mg/kg/minute in children weighing less than 40 kg up to 100 mg/min in children weighing greater than 40 kg). A plasma concentration of about 20 mg/L will be achieved by this dose (Loddenkemper & Goodkin, 2011). d) REPEAT PEDIATRIC DOSE: Repeat doses of 5 to 20 mg/kg may be given every 15 to 20 minutes if seizures persist, with cardiorespiratory monitoring (Loddenkemper & Goodkin, 2011). e) MONITOR: For hypotension, respiratory depression, and the need for endotracheal intubation (Loddenkemper & Goodkin, 2011; Manno, 2003). f) SERUM CONCENTRATION MONITORING: Monitor serum concentrations over the next 12 to 24 hours. Therapeutic serum concentrations of phenobarbital range from 10 to 40 mcg/mL, although the optimal plasma concentration for some individuals may vary outside this range (Hvidberg & Dam, 1976; Choonara & Rane, 1990; AMA Department of Drugs, 1992).
6) OTHER AGENTS a) If seizures persist after phenobarbital, propofol or pentobarbital infusion, or neuromuscular paralysis with general anesthesia (isoflurane) and continuous EEG monitoring should be considered (Manno, 2003). Other anticonvulsants can be considered (eg, valproate sodium, levetiracetam, lacosamide, topiramate) if seizures persist or recur; however, there is very little data regarding their use in toxin induced seizures, controlled trials are not available to define the optimal dosage ranges for these agents in status epilepticus (Brophy et al, 2012): 1) VALPROATE SODIUM: ADULT DOSE: An initial dose of 20 to 40 mg/kg IV, at a rate of 3 to 6 mg/kg/minute; may give an additional dose of 20 mg/kg 10 minutes after loading infusion. PEDIATRIC DOSE: 1.5 to 3 mg/kg/minute (Brophy et al, 2012). 2) LEVETIRACETAM: ADULT DOSE: 1000 to 3000 mg IV, at a rate of 2 to 5 mg/kg/min IV. PEDIATRIC DOSE: 20 to 60 mg/kg IV (Brophy et al, 2012; Loddenkemper & Goodkin, 2011). 3) LACOSAMIDE: ADULT DOSE: 200 to 400 mg IV; 200 mg IV over 15 minutes (Brophy et al, 2012). PEDIATRIC DOSE: In one study, median starting doses of 1.3 mg/kg/day and maintenance doses of 4.7 mg/kg/day were used in children 8 years and older (Loddenkemper & Goodkin, 2011). 4) TOPIRAMATE: ADULT DOSE: 200 to 400 mg nasogastric/orally OR 300 to 1600 mg/day orally divided in 2 to 4 times daily (Brophy et al, 2012).
C) VENTRICULAR ARRHYTHMIA 1) Treat QRS widening and/or ventricular dysrhythmias with intravenous sodium bicarbonate. A reasonable starting dose is 1 to 2 mEq/kilogram as an intravenous bolus. Repeat as necessary to maintain arterial pH 7.45 to 7.55. Monitor arterial blood gases, serum electrolytes, and serial ECGs and institute continuous cardiac monitoring. Avoid Class 1A antiarrhythmics such as disopyramide and procainamide. Phenytoin is theoretically preferable since it increases AV conduction. 2) Treatment of ventricular tachycardia (especially torsade de pointes variant) may require D-C cardioversion, overdrive pacing (Anderson & Mason, 1978), or isoproterenol infusion to decrease temporal dispersion in refractoriness.
D) TORSADES DE POINTES 1) SUMMARY a) Withdraw the causative agent. Hemodynamically unstable patients with Torsades de pointes (TdP) require electrical cardioversion. Emergent treatment with magnesium (first-line agent) or atrial overdrive pacing is indicated. Detect and correct underlying electrolyte abnormalities (ie, hypomagnesemia, hypokalemia, hypocalcemia). Correct hypoxia, if present (Drew et al, 2010; Neumar et al, 2010; Keren et al, 1981; Smith & Gallagher, 1980). b) Polymorphic VT associated with acquired long QT syndrome may be treated with IV magnesium. Overdrive pacing or isoproterenol may be successful in terminating TdP, particularly when accompanied by bradycardia or if TdP appears to be precipitated by pauses in rhythm (Neumar et al, 2010). In patients with polymorphic VT with a normal QT interval, magnesium is unlikely to be effective (Link et al, 2015).
2) MAGNESIUM SULFATE a) Magnesium is recommended (first-line agent) for the prevention and treatment of drug-induced torsades de pointes (TdP) even if the serum magnesium concentration is normal. QTc intervals greater than 500 milliseconds after a potential drug overdose may correlate with the development of TdP (Charlton et al, 2010; Drew et al, 2010). ADULT DOSE: No clearly established guidelines exist; an optimal dosing regimen has not been established. Administer 1 to 2 grams diluted in 10 milliliters D5W IV/IO over 15 minutes (Neumar et al, 2010). Followed if needed by a second 2 gram bolus and an infusion of 0.5 to 1 gram (4 to 8 mEq) per hour in patients not responding to the initial bolus or with recurrence of dysrhythmias (American Heart Association, 2005; Perticone et al, 1997). Rate of infusion may be increased if dysrhythmias recur. For persistent refractory dysrhythmias, a continuous infusion of up to 3 to 10 milligrams/minute in adults may be given (Charlton et al, 2010). b) PEDIATRIC DOSE: 25 to 50 milligrams/kilogram diluted to 10 milligrams/milliliter for intravenous infusion over 5 to 15 minutes up to 2 g (Charlton et al, 2010). c) PRECAUTIONS: Use with caution in patients with renal insufficiency. d) MAJOR ADVERSE EFFECTS: High doses may cause hypotension, respiratory depression, and CNS toxicity (Neumar et al, 2010). Toxicity may be observed at magnesium levels of 3.5 to 4.0 mEq/L or greater (Charlton et al, 2010). e) MONITORING PARAMETERS: Monitor heart rate and rhythm, blood pressure, respiratory rate, motor strength, deep tendon reflexes, serum magnesium, phosphorus, and calcium concentrations (Prod Info magnesium sulfate heptahydrate IV, IM injection, solution, 2009).
3) OVERDRIVE PACING a) Institute electrical overdrive pacing at a rate of 130 to 150 beats per minute, and decrease as tolerated. Rates of 100 to 120 beats per minute may terminate torsades (American Heart Association, 2005). Pacing can be used to suppress self-limited runs of TdP that may progress to unstable or refractory TdP, or for override refractory, persistent TdP before the potential development of ventricular fibrillation (Charlton et al, 2010). In a case series overdrive pacing was successful in terminating TdP associated with bradycardia and drug-induced QT prolongation (Neumar et al, 2010).
4) POTASSIUM REPLETION a) Potassium supplementation, even if serum potassium is normal, has been recommended by many experts (Charlton et al, 2010; American Heart Association, 2005). Supplementation to supratherapeutic potassium concentrations of 4.5 to 5 mmol/L has been suggested, although there is little evidence to determine the optimal range in dysrhythmia (Drew et al, 2010; Charlton et al, 2010).
5) ISOPROTERENOL a) Isoproterenol has been successful in aborting torsades de pointes that was resistant to magnesium therapy in a patient in whom transvenous overdrive pacing was not an option (Charlton et al, 2010) and has been successfully used to treat torsades de pointes associated with bradycardia and drug induced QT prolongation (Keren et al, 1981; Neumar et al, 2010). Isoproterenol may have a limited role in pharmacologic overdrive pacing in select patients with drug-induced torsades de pointes and acquired long QT syndrome (Charlton et al, 2010; Neumar et al, 2010). Isoproterenol should be avoided in patients with polymorphic VT associated with familial long QT syndrome (Neumar et al, 2010). b) DOSE: ADULT: 2 to 10 micrograms/minute via a continuous monitored intravenous infusion; titrate to heart rate and rhythm response (Neumar et al, 2010). c) PRECAUTIONS: Correct hypovolemia before using; contraindicated in patients with acute cardiac ischemia (Prod Info Isuprel(TM) intravenous injection, intramuscular injection, subcutaneous injection, intracardiac injection, 2013). 1) Contraindicated in patients with preexisting dysrhythmias; tachycardia or heart block due to digitalis toxicity; ventricular dysrhythmias that require inotropic therapy; and angina. Use with caution in patients with coronary insufficiency (Prod Info Isuprel(TM) intravenous injection, intramuscular injection, subcutaneous injection, intracardiac injection, 2013).
d) MAJOR ADVERSE EFFECTS: Tachycardia, cardiac dysrhythmias, palpitations, hypotension or hypertension, nervousness, headache, dizziness, and dyspnea (Prod Info Isuprel(TM) intravenous injection, intramuscular injection, subcutaneous injection, intracardiac injection, 2013). e) MONITORING PARAMETERS: Monitor heart rate and rhythm, blood pressure, respirations and central venous pressure to guide volume replacement (Prod Info Isuprel(TM) intravenous injection, intramuscular injection, subcutaneous injection, intracardiac injection, 2013). 6) OTHER DRUGS a) Mexiletine, verapamil, propranolol, and labetalol have also been used to treat TdP, but results have been inconsistent (Khan & Gowda, 2004).
7) AVOID a) Avoid class Ia antidysrhythmics (eg, quinidine, disopyramide, procainamide, aprindine), class Ic (eg, flecainide, encainide, propafenone) and most class III antidysrhythmics (eg, N-acetylprocainamide, sotalol) since they may further prolong the QT interval and have been associated with TdP.
E) HYPOTENSIVE EPISODE 1) Pure or predominant alpha agonists may be more effective in managing hypotension. These include norepinephrine or metaraminol. 2) Isoproterenol may be used to treat refractory bradycardia or heart block with slow ventricular response, while a temporary pacemaker is being inserted. 3) The MAST suit may be beneficial (Hoffman, 1983) as a temporary measure for hypotension by increasing systemic vascular resistance. Favorable results using an intraaortic balloon pump for refractory hypotension has also been reported (Shub et al, 1978). 4) NOREPINEPHRINE a) PREPARATION: 4 milligrams (1 amp) added to 1000 milliliters of diluent provides a concentration of 4 micrograms/milliliter of norepinephrine base. Norepinephrine bitartrate should be mixed in dextrose solutions (dextrose 5% in water, dextrose 5% in saline) since dextrose-containing solutions protect against excessive oxidation and subsequent potency loss. Administration in saline alone is not recommended (Prod Info norepinephrine bitartrate injection, 2005). b) DOSE 1) ADULT: Dose range: 0.1 to 0.5 microgram/kilogram/minute (eg, 70 kg adult 7 to 35 mcg/min); titrate to maintain adequate blood pressure (Peberdy et al, 2010). 2) CHILD: Dose range: 0.1 to 2 micrograms/kilogram/minute; titrate to maintain adequate blood pressure (Kleinman et al, 2010). 3) CAUTION: Extravasation may cause local tissue ischemia, administration by central venous catheter is advised (Peberdy et al, 2010).
F) BLINDNESS AND/OR VISION IMPAIRMENT LEVEL 1) STELLATE GANGLION BLOCK a) Blindness usually resolves without treatment. Stellate ganglion block (SGB) has never been proven beneficial in any clinical study and is potentially dangerous. Its use is NOT recommended. b) Stellate ganglion block is theorized to improve regional blood supply (Valman & White, 1977; Boscoe et al, 1983; Thomas, 1984). c) Since the primary toxic effect of quinine is direct damage of photoelectric cells, any benefit of stellate block is probably minimal or coincident with spontaneous visual return, and the procedure has serious complications (Boland et al, 1985; Dyson & Proudfoot, 1985). d) Treatment of quinine overdose including stellate ganglion block had no apparent benefit in a series of 25 patients (Dyson et al, 1985a). This was recently confirmed (Bacon et al, 1988). e) In one case report, a late presentation of ocular quinine toxicity was managed with a combination of vasodilatory treatments (oral nimodipine, clonidine infusion, and SGB) (Vusirikala et al, 2005). 1) A 39-year-old woman with ocular toxicity (reduced visual acuity, dilated, sluggish pupils, and retinal arterial attenuation), presented late for ophthalmology review 40 hours after taking 28 quinine sulfate tablets (300 mg each). She was treated with nimodipine (60 mg for 6 days), clonidine infusion (300 mcg/24 hours), and stellate ganglion block (SGB) (ropivacaine 1% 10 mL). Since the left eye was amblyopic, it was difficult to quantify the effect of treatment; however, the unilateral block was performed late without complication on the side of the nonamblyopic eye and the right visual acuity improved 48 hours after the treatment (Vusirikala et al, 2005).
2) NITRATES a) Retinal arterial constriction is often noted with quinine toxicity. b) Hla et al (1992) treated a case of blindness (16-month-old who ingested 600 mg) with intravenous isosorbide dinitrate. An ophthalmological review 6 weeks post discharge showed full restoration of sight. c) A 36-year-old man presented with blindness 8 to 10 hours after quinine overdose (Moore et al, 1992). There was some evidence of visual recovery 1 to 2 hours after intravenous nitrates were begun, and he eventually had total visual recovery. 1) Since resolution of ocular toxicity is spontaneous in a significant number of patients, it is unclear what role nitrate played in this patient's course.
3) VASOSPASM THERAPY a) In a case of quinine poisoning resulting in bilateral visual loss with retinal arteriolar constriction, fluctuating visual loss suggested an element of vasospasm. The authors chose to use IV nimodipine (0.01 mg/kg/hr) for vasospasm, and IV hydration with 0.9% saline to maintain a central venous pressure of at least 9 mmHg. In addition, IV noradrenaline was administered to maintain a systolic blood pressure of 140 to 180 mmHg. Over the next 24 hours, the patient's vision improved to 6/9 bilaterally and did not deteriorate again. Within 12 hours of the therapy, retinal blood flow was noted to be improved on direct fundoscopy (Barrett & Solano, 2002).
|
A) DIURESIS
1) From 5% to 20% of quinine is excreted unchanged in the urine. In one case report (Sabto et al, 1981) forced diuresis over 75 hours accounted for removal of about 18% of a 9 g dose. The real danger of fluid overload with the myocardial depressant effects of quinine do NOT allow forced acid diuresis to be generally recommended, although some may have a slight benefit with increased urine flow.
B) HEMODIALYSIS
1) Hemodialysis has shown minimal effectiveness and peritoneal dialysis almost none. a) In one report, hemodialysis removed only 30 mg and 26 mg of quinine (Sabto et al, 1981). b) In another report, peritoneal dialysis removed 1.6 mg/hour over the first 48 hours and a 2L plasma exchange procedure (plasmapheresis) removed 8.5 mg (Floyd et al, 1974). c) Combined hemodialysis and hemoperfusion were not shown to be effective in enhancing elimination after ingestion of 6 g (Martin et al, 1992). d) None of these modalities can be currently recommended.
C) HEMOPERFUSION
1) Hemoperfusion is also ineffective in increasing quinine elimination (Morgan et al, 1983; Bateman et al, 1985; Heath, 1985).
D) MULTIPLE-DOSE ACTIVATED CHARCOAL
1) Despite quinine's relatively large volume of distribution, high protein binding, and poor in vitro adsorption by charcoal (White et al, 1982; Corby & Decker, 1974), studies have shown enhanced elimination with multiple-dose-charcoal regimens in therapeutic doses and overdoses (Lockey & Bateman, 1989; Prescott et al, 1989). It should be considered in patients with potentially life threatening overdose. a) Multiple dose charcoal has not been shown to affect outcome after quinine overdose. It is recommended in patients with severe toxicity and those with rising levels despite initial decontamination. b) Lockey & Bateman (1989) demonstrated an increase of oral clearance by 56% and decrease in half-life from 8.23 to 4.55 hours after therapeutic doses of quinine and MDC 50 g every 4 hours (Lockey & Bateman, 1989). c) In a study of quinine overdose patients, the same regimen of MDC resulted in a mean half-life of 8.1 hours, compared to 26 hours in previous reports of overdosed patients (Prescott et al, 1989). d) A half-life of 33 hours prior to charcoal decreased to 10 hours after charcoal administration in a single patient (Prescott et al, 1989).
2) MULTIPLE DOSE ACTIVATED CHARCOAL a) ADULT DOSE: Optimal dose not established. After an initial dose of 50 to 100 grams of activated charcoal, subsequent doses may be administered every 1, 2 or 4 hours at a dose equivalent to 12.5 grams/hour (Vale et al, 1999), do not exceed: 0.5 g/kg charcoal every 2 hours (Ghannoum & Gosselin, 2013; Mauro et al, 1994). There is some evidence that smaller more frequent doses are more effective at enhancing drug elimination than larger less frequent doses (Park et al, 1983; Ilkhanipour et al, 1992). PEDIATRIC DOSE: Optimal dose not established. After an initial dose of 25 to 50 grams in children aged 1 to 12 years (or 0.5 to 1 gram/kilogram body weight) (Chyka & Seger, 1997), subsequent doses may be administered every 1, 2 or 4 hours (Vale et al, 1999) in a dose equivalent to 6.25 grams/hour in children 1 to 12 years old. b) Activated charcoal should be continued until the patient's clinical and laboratory parameters, including drug concentrations if available, are improving (Vale et al, 1999). The patient should be frequently assessed for the ability to protect the airway and evidence of decreased peristalsis or intestinal obstruction. c) Use of cathartics has not been shown to increase drug elimination and may increase the likelihood of vomiting. Routine coadministration of a cathartic is NOT recommended (Vale et al, 1999). d) AGENTS AMENABLE TO MDAC THERAPY: The following properties of a drug that are likely to allow MDAC therapy to be effective include: small volume of distribution, low protein binding, prolonged half-life, low intrinsic clearance, and a nonionized state at physiologic pH (Chyka, 1995; Ghannoum & Gosselin, 2013). e) Vomiting is a common adverse effect; antiemetics may be necessary. f) CONTRAINDICATIONS: Absolute contraindications include an unprotected airway, intestinal obstruction, a gastrointestinal tract that is not intact and agents that may increase the risk of aspiration (eg, hydrocarbons). Relative contraindications include decreased peristalsis (eg, decreased bowel sounds, abdominal distention, ileus, severe constipation) (Vale et al, 1999; Mauro et al, 1994). g) COMPLICATIONS: Include constipation, intestinal bleeding, bowel obstruction, appendicitis, charcoal bezoars, and aspiration which may be complicated by acute respiratory failure, adult respiratory distress syndrome or bronchiolitis obliterans (Ghannoum & Gosselin, 2013; Ray et al, 1988; Atkinson et al, 1992; Gomez et al, 1994; Mizutani et al, 1991; Pollack et al, 1981; Harris & Filandrinos, 1993; Elliot et al, 1989; Mina et al, 2002; Harsch, 1986; Rau et al, 1988; Golej et al, 2001; Graff et al, 2002).
|