6.5.1) PREVENTION OF ABSORPTION/PREHOSPITAL
A) EMESIS/NOT RECOMMENDED 1) Emesis is NOT recommended because of the potential for significant arrhythmias, seizures, and coma in overdose.
B) ACTIVATED CHARCOAL 1) PREHOSPITAL ACTIVATED CHARCOAL ADMINISTRATION a) Consider prehospital administration of activated charcoal as an aqueous slurry in patients with a potentially toxic ingestion who are awake and able to protect their airway. Activated charcoal is most effective when administered within one hour of ingestion. Administration in the prehospital setting has the potential to significantly decrease the time from toxin ingestion to activated charcoal administration, although it has not been shown to affect outcome (Alaspaa et al, 2005; Thakore & Murphy, 2002; Spiller & Rogers, 2002). 1) In patients who are at risk for the abrupt onset of seizures or mental status depression, activated charcoal should not be administered in the prehospital setting, due to the risk of aspiration in the event of spontaneous emesis. 2) The addition of flavoring agents (cola drinks, chocolate milk, cherry syrup) to activated charcoal improves the palatability for children and may facilitate successful administration (Guenther Skokan et al, 2001; Dagnone et al, 2002).
2) CHARCOAL DOSE a) Use a minimum of 240 milliliters of water per 30 grams charcoal (FDA, 1985). Optimum dose not established; usual dose is 25 to 100 grams in adults and adolescents; 25 to 50 grams in children aged 1 to 12 years (or 0.5 to 1 gram/kilogram body weight) ; and 0.5 to 1 gram/kilogram in infants up to 1 year old (Chyka et al, 2005). 1) Routine use of a cathartic with activated charcoal is NOT recommended as there is no evidence that cathartics reduce drug absorption and cathartics are known to cause adverse effects such as nausea, vomiting, abdominal cramps, electrolyte imbalances and occasionally hypotension (None Listed, 2004).
b) ADVERSE EFFECTS/CONTRAINDICATIONS 1) Complications: emesis, aspiration (Chyka et al, 2005). Aspiration may be complicated by acute respiratory failure, ARDS, bronchiolitis obliterans or chronic lung disease (Golej et al, 2001; Graff et al, 2002; Pollack et al, 1981; Harris & Filandrinos, 1993; Elliot et al, 1989; Rau et al, 1988; Golej et al, 2001; Graff et al, 2002). Refer to the ACTIVATED CHARCOAL/TREATMENT management for further information. 2) Contraindications: unprotected airway (increases risk/severity of aspiration) , nonfunctioning gastrointestinal tract, uncontrolled vomiting, and ingestion of most hydrocarbons (Chyka et al, 2005).
6.5.2) PREVENTION OF ABSORPTION
A) ACTIVATED CHARCOAL 1) Studies of oral dosing with activated charcoal in human overdoses of quinidine have not been reported; however, animal data has shown significant enhancement of systemic elimination following this intervention (Prod Info Quinaglute(R), 1999). 2) CHARCOAL ADMINISTRATION a) Consider administration of activated charcoal after a potentially toxic ingestion (Chyka et al, 2005). Administer charcoal as an aqueous slurry; most effective when administered within one hour of ingestion.
3) CHARCOAL DOSE a) Use a minimum of 240 milliliters of water per 30 grams charcoal (FDA, 1985). Optimum dose not established; usual dose is 25 to 100 grams in adults and adolescents; 25 to 50 grams in children aged 1 to 12 years (or 0.5 to 1 gram/kilogram body weight) ; and 0.5 to 1 gram/kilogram in infants up to 1 year old (Chyka et al, 2005). 1) Routine use of a cathartic with activated charcoal is NOT recommended as there is no evidence that cathartics reduce drug absorption and cathartics are known to cause adverse effects such as nausea, vomiting, abdominal cramps, electrolyte imbalances and occasionally hypotension (None Listed, 2004).
b) ADVERSE EFFECTS/CONTRAINDICATIONS 1) Complications: emesis, aspiration (Chyka et al, 2005). Aspiration may be complicated by acute respiratory failure, ARDS, bronchiolitis obliterans or chronic lung disease (Golej et al, 2001; Graff et al, 2002; Pollack et al, 1981; Harris & Filandrinos, 1993; Elliot et al, 1989; Rau et al, 1988; Golej et al, 2001; Graff et al, 2002). Refer to the ACTIVATED CHARCOAL/TREATMENT management for further information. 2) Contraindications: unprotected airway (increases risk/severity of aspiration) , nonfunctioning gastrointestinal tract, uncontrolled vomiting, and ingestion of most hydrocarbons (Chyka et al, 2005).
B) GASTRIC LAVAGE 1) Repeated gastric lavage has been shown in one human case report to shorten the elimination half-life of quinidine in serum (Prod Info Quinaglute(R), 1999). 2) INDICATIONS: Consider gastric lavage with a large-bore orogastric tube (ADULT: 36 to 40 French or 30 English gauge tube {external diameter 12 to 13.3 mm}; CHILD: 24 to 28 French {diameter 7.8 to 9.3 mm}) after a potentially life threatening ingestion if it can be performed soon after ingestion (generally within 60 minutes). a) Consider lavage more than 60 minutes after ingestion of sustained-release formulations and substances known to form bezoars or concretions.
3) PRECAUTIONS: a) SEIZURE CONTROL: Is mandatory prior to gastric lavage. b) AIRWAY PROTECTION: Place patients in the head down left lateral decubitus position, with suction available. Patients with depressed mental status should be intubated with a cuffed endotracheal tube prior to lavage.
4) LAVAGE FLUID: a) Use small aliquots of liquid. Lavage with 200 to 300 milliliters warm tap water (preferably 38 degrees Celsius) or saline per wash (in older children or adults) and 10 milliliters/kilogram body weight of normal saline in young children(Vale et al, 2004) and repeat until lavage return is clear. b) The volume of lavage return should approximate amount of fluid given to avoid fluid-electrolyte imbalance. c) CAUTION: Water should be avoided in young children because of the risk of electrolyte imbalance and water intoxication. Warm fluids avoid the risk of hypothermia in very young children and the elderly.
5) COMPLICATIONS: a) Complications of gastric lavage have included: aspiration pneumonia, hypoxia, hypercapnia, mechanical injury to the throat, esophagus, or stomach, fluid and electrolyte imbalance (Vale, 1997). Combative patients may be at greater risk for complications (Caravati et al, 2001). b) Gastric lavage can cause significant morbidity; it should NOT be performed routinely in all poisoned patients (Vale, 1997).
6) CONTRAINDICATIONS: a) Loss of airway protective reflexes or decreased level of consciousness if patient is not intubated, following ingestion of corrosive substances, hydrocarbons (high aspiration potential), patients at risk of hemorrhage or gastrointestinal perforation, or trivial or non-toxic ingestion.
C) MULTIPLE-DOSE ACTIVATED CHARCOAL 1) Activated charcoal (15 grams) administered orally to rabbits significantly decreased serum concentrations and enhanced systemic elimination following intravenous administration of quinidine (Hasan et al, 1990). 2) Since there are reports of toxicity associated with more water-soluble polar metabolites of quinidine (including 3-hydroxy-quinidine), there exists a theoretical basis for the use of multiple-dose activated charcoal. The elimination of quinine, the stereoisomer of quinidine, is enhanced by multiple-dose-charcoal regimens after therapeutic doses and overdoses (Lockey & Bateman, 1989; Prescott et al, 1989). Multiple dose activated charcoal may be considered in patients with potentially life threatening overdose. 3) MULTIPLE DOSE ACTIVATED CHARCOAL a) ADULT DOSE: Optimal dose not established. After an initial dose of 50 to 100 grams of activated charcoal, subsequent doses may be administered every 1, 2 or 4 hours at a dose equivalent to 12.5 grams/hour (Vale et al, 1999), do not exceed: 0.5 g/kg charcoal every 2 hours (Ghannoum & Gosselin, 2013; Mauro et al, 1994). There is some evidence that smaller more frequent doses are more effective at enhancing drug elimination than larger less frequent doses (Park et al, 1983; Ilkhanipour et al, 1992). PEDIATRIC DOSE: Optimal dose not established. After an initial dose of 25 to 50 grams in children aged 1 to 12 years (or 0.5 to 1 gram/kilogram body weight) (Chyka & Seger, 1997), subsequent doses may be administered every 1, 2 or 4 hours (Vale et al, 1999) in a dose equivalent to 6.25 grams/hour in children 1 to 12 years old. b) Activated charcoal should be continued until the patient's clinical and laboratory parameters, including drug concentrations if available, are improving (Vale et al, 1999). The patient should be frequently assessed for the ability to protect the airway and evidence of decreased peristalsis or intestinal obstruction. c) Use of cathartics has not been shown to increase drug elimination and may increase the likelihood of vomiting. Routine coadministration of a cathartic is NOT recommended (Vale et al, 1999). d) AGENTS AMENABLE TO MDAC THERAPY: The following properties of a drug that are likely to allow MDAC therapy to be effective include: small volume of distribution, low protein binding, prolonged half-life, low intrinsic clearance, and a nonionized state at physiologic pH (Chyka, 1995; Ghannoum & Gosselin, 2013). e) Vomiting is a common adverse effect; antiemetics may be necessary. f) CONTRAINDICATIONS: Absolute contraindications include an unprotected airway, intestinal obstruction, a gastrointestinal tract that is not intact and agents that may increase the risk of aspiration (eg, hydrocarbons). Relative contraindications include decreased peristalsis (eg, decreased bowel sounds, abdominal distention, ileus, severe constipation) (Vale et al, 1999; Mauro et al, 1994). g) COMPLICATIONS: Include constipation, intestinal bleeding, bowel obstruction, appendicitis, charcoal bezoars, and aspiration which may be complicated by acute respiratory failure, adult respiratory distress syndrome or bronchiolitis obliterans (Ghannoum & Gosselin, 2013; Ray et al, 1988; Atkinson et al, 1992; Gomez et al, 1994; Mizutani et al, 1991; Pollack et al, 1981; Harris & Filandrinos, 1993; Elliot et al, 1989; Mina et al, 2002; Harsch, 1986; Rau et al, 1988; Golej et al, 2001; Graff et al, 2002).
D) WHOLE BOWEL IRRIGATION a) WHOLE BOWEL IRRIGATION/INDICATIONS: Whole bowel irrigation with a polyethylene glycol balanced electrolyte solution appears to be a safe means of gastrointestinal decontamination. It is particularly useful when sustained release or enteric coated formulations, substances not adsorbed by activated charcoal, or substances known to form concretions or bezoars are involved in the overdose. 1) Volunteer studies have shown significant decreases in the bioavailability of ingested drugs after whole bowel irrigation (Tenenbein et al, 1987; Kirshenbaum et al, 1989; Smith et al, 1991). There are no controlled clinical trials evaluating the efficacy of whole bowel irrigation in overdose.
b) CONTRAINDICATIONS: This procedure should not be used in patients who are currently or are at risk for rapidly becoming obtunded, comatose, or seizing until the airway is secured by endotracheal intubation. Whole bowel irrigation should not be used in patients with bowel obstruction, bowel perforation, megacolon, ileus, uncontrolled vomiting, significant gastrointestinal bleeding, hemodynamic instability or inability to protect the airway (Tenenbein et al, 1987). c) ADMINISTRATION: Polyethylene glycol balanced electrolyte solution (e.g. Colyte(R), Golytely(R)) is taken orally or by nasogastric tube. The patient should be seated and/or the head of the bed elevated to at least a 45 degree angle (Tenenbein et al, 1987). Optimum dose not established. ADULT: 2 liters initially followed by 1.5 to 2 liters per hour. CHILDREN 6 to 12 years: 1000 milliliters/hour. CHILDREN 9 months to 6 years: 500 milliliters/hour. Continue until rectal effluent is clear and there is no radiographic evidence of toxin in the gastrointestinal tract. d) ADVERSE EFFECTS: Include nausea, vomiting, abdominal cramping, and bloating. Fluid and electrolyte status should be monitored, although severe fluid and electrolyte abnormalities have not been reported, minor electrolyte abnormalities may develop. Prolonged periods of irrigation may produce a mild metabolic acidosis. Patients with compromised airway protection are at risk for aspiration. E) ENDOSCOPY 1) Endoscopy was used to remove a bezoar of quinidine and activated charcoal in a toddler with severe toxicity and persistently elevated serum quinidine concentrations despite gastric lavage, activated charcoal and whole bowel irrigation (Tecklenburg et al, 1997). Quinidine concentrations began to decline after endoscopy.
6.5.3) TREATMENT
A) MONITORING OF PATIENT 1) Monitor vital signs and mental status. Institute continuous cardiac monitoring and obtain serial ECGs. ECG interval monitoring is by far the most important indicator of toxicity and should be followed very closely. 2) Monitor serum electrolytes, glucose and renal function. In patients with significant toxicity or receiving sodium bicarbonate therapy, monitor arterial blood gases. 3) Serum concentrations may be available (therapeutic range: 1 to 4 mcg/mL). Consider checking acetaminophen or aspirin concentrations if there is any uncertainty of the drug ingested.
B) TORSADES DE POINTES 1) Torsades de pointes is the major dysrhythmia associated with quinidine toxicity. 2) SUMMARY a) Withdraw the causative agent. Hemodynamically unstable patients require electrical cardioversion. Emergent treatment with magnesium, isoproterenol, or atrial overdrive pacing is indicated. Detect and correct underlying electrolyte abnormalities (hypomagnesemia, hypokalemia, hypocalcemia) (Smith & Gallagher, 1980; Keren et al, 1981) AHA, 2000).
3) MAGNESIUM SULFATE a) ADULT DOSE: No clearly established guidelines exist. Administer 1 to 2 grams (8 to 16 mEq) mixed in 50 to 100 milliliters D5W intravenously over 5 minutes, followed if needed by a second 2 gram bolus and an infusion of 0.5 to 1 gram (4 to 8 mEq) per hour in patients not responding to the initial bolus or with recurrence of dysrhythmias (AHA, 2000; Perticone et al, 1997). Rate of infusion may be increased if dysrhythmias recur. b) PEDIATRIC DOSE: 25 to 50 milligrams/kilogram diluted to 10 milligrams/milliliter for intravenous infusion over 5 to 15 minutes. c) PRECAUTIONS: Use with caution in patients with renal insufficiency. d) MAJOR ADVERSE EFFECTS: High doses may cause respiratory depression, weakness, neuromuscular blockade, and hypotension. e) MONITORING PARAMETERS: Heart rate and rhythm, blood pressure, respiratory rate, motor strength, deep tendon reflexes, serum magnesium, phosphorus, and calcium.
4) ISOPROTERENOL a) DOSE: 2 to 10 micrograms/minute (children: 0.1 to 1 microgram/kilogram/minute) by continuous monitored intravenous infusion; titrate to heart rate and rhythm response. A 2-microgram/milliliter solution may be prepared by mixing 1 milligram isoproterenol hydrochloride in 500 milliliters of dextrose 5 percent in water. b) AVAILABLE FORMS: Isuprel(R) (parenteral solution) 1:100,000; 1:50,000; 1:5000 c) PRECAUTIONS: Correct hypovolemia before using; do not administer simultaneously with epinephrine; contraindicated in patients with acute cardiac ischemia; may precipitate fatal ventricular fibrillation if the rhythm is not torsades de pointes. d) Use caution in patients with coronary insufficiency, diabetes, hyperthyroidism, or sensitivity to sympathomimetics; contraindicated in patients with pre-existing dysrhythmias. e) MAJOR ADVERSE EFFECTS: Cardiac dysrhythmias, dizziness, nervousness, tremor. f) MONITORING PARAMETERS: Heart rate and rhythm, blood pressure, central venous pressure
5) OVERDRIVE PACING a) Institute overdrive pacing at a rate of 130 to 150 beats per minute, and decrease as tolerated.
6) PHENYTOIN a) ADULT DOSE: 15 milligrams/kilogram intravenous infusion at a rate not exceeding 50 milligrams/minute. b) PEDIATRIC DOSE: 15 to 20 milligrams/kilogram by intravenous infusion at a rate not exceeding 1 to 3 milligrams/kilogram/minute to a maximum of 50 milligrams/minute. c) PRECAUTIONS: Too rapid infusion may induce hypotension and dysrhythmias. Extravasation may cause significant tissue injury. d) MAJOR ADVERSE EFFECTS: Hypotension and dysrhythmias may develop with too rapid infusion. Mild central nervous system depression, nystagmus, and ataxia are common. e) MONITORING PARAMETERS: Heart rate and rhythm, blood pressure
7) OTHER DRUGS a) Lidocaine, mexiletine, verapamil, bretylium, propranolol, and labetalol have also been used to treat torsades de pointes, but results have been inconsistent.
8) AVOID a) Avoid class Ia antidysrhythmics (quinidine, disopyramide, procainamide, aprindine) and most class III antiarrhythmics (N- acetylprocainamide, sotalol) since they may further prolong the QT interval and have been associated with torsades de pointes.
9) The use of bretylium in quinidine overdose has not been reported; however, it is reasonable to expect that the alpha-blocking properties of bretylium may be additive to those of quinidine, resulting in problematic hypotension. Thus, the use of bretylium should be AVOIDED (Prod Info Quinaglute(R), 1999). 10) Prevention of recurrent torsades may require sustained overdrive pacing or the cautious administration of isoproterenol (30-150 ng/kg/min) (Prod Info Quinaglute(R), 1999). C) VENTRICULAR ARRHYTHMIA 1) ALKALINIZATION a) SODIUM BICARBONATE: Alkalinization of the plasma may reverse or provide protection from quinidine induced QRS widening or dysrhythmias toxicity (Wasserman et al, 1958). 1) Beneficial effects have been attributed to acid-base shifts causing hypokalemia, increased binding of quinidine to serum proteins, or to increased serum sodium concentration.
b) DOSE: Administer 1 to 2 mEq/kg IV sodium bicarbonate as needed to achieve a pH of 7.45 to 7.55 (Kim & Benowitz, 1990). Monitor arterial blood gases and ECG. c) SODIUM LACTATE: Which is rapidly metabolized to bicarbonate, has been used (Bellet et al, 1958; Bailey, 1960; Wasserman et al, 1958). 2) PHENYTOIN OR LIDOCAINE may be used to control other dysrhythmias. Theoretically, phenytoin is preferred as it increases AV conduction velocity. 3) DRUG INTERACTION a) Amiodarone has been shown to elevate quinidine levels and should be avoided (Saal et al, 1984). b) DO NOT use procainamide or disopyramide as their effects may be additive.
4) LIDOCAINE a) LIDOCAINE/INDICATIONS 1) Ventricular tachycardia or ventricular fibrillation (Prod Info Lidocaine HCl intravenous injection solution, 2006; Neumar et al, 2010; Vanden Hoek et al, 2010).
b) LIDOCAINE/DOSE 1) ADULT: 1 to 1.5 milligrams/kilogram via intravenous push. For refractory VT/VF an additional bolus of 0.5 to 0.75 milligram/kilogram can be given at 5 to 10 minute intervals to a maximum dose of 3 milligrams/kilogram (Neumar et al, 2010). Only bolus therapy is recommended during cardiac arrest. a) Once circulation has been restored begin a maintenance infusion of 1 to 4 milligrams per minute. If dysrhythmias recur during infusion repeat 0.5 milligram/kilogram bolus and increase the infusion rate incrementally (maximal infusion rate is 4 milligrams/minute) (Neumar et al, 2010).
2) CHILD: 1 milligram/kilogram initial bolus IV/IO; followed by a continuous infusion of 20 to 50 micrograms/kilogram/minute (de Caen et al, 2015). c) LIDOCAINE/MAJOR ADVERSE REACTIONS 1) Paresthesias; muscle twitching; confusion; slurred speech; seizures; respiratory depression or arrest; bradycardia; coma. May cause significant AV block or worsen pre-existing block. Prophylactic pacemaker may be required in the face of bifascicular, second degree, or third degree heart block (Prod Info Lidocaine HCl intravenous injection solution, 2006; Neumar et al, 2010).
d) LIDOCAINE/MONITORING PARAMETERS 1) Monitor ECG continuously; plasma concentrations as indicated (Prod Info Lidocaine HCl intravenous injection solution, 2006).
D) FAT EMULSION 1) Intravenous lipid emulsion (ILE) has been effective in reversing severe cardiovascular toxicity from local anesthetic overdose in animal studies and human case reports. Several animal studies and human case reports have also evaluated the use of ILE for patients following exposure to other drugs. Although the results of these studies are mixed, there is increasing evidence that it can rapidly reverse cardiovascular toxicity and improve mental function for a wide variety of lipid soluble drugs. It may be reasonable to consider ILE in patients with severe symptoms who are failing standard resuscitative measures (Lavonas et al, 2015). 2) The American College of Medical Toxicology has issued the following guidelines for lipid resuscitation therapy (LRT) in the management of overdose in cases involving a highly lipid soluble xenobiotic where the patient is hemodynamically unstable, unresponsive to standard resuscitation measures (ie, fluid replacement, inotropes and pressors). The decision to use LRT is based on the judgement of the treating physician. When possible, it is recommended these therapies be administered with the consultation of a medical toxicologist (American College of Medical Toxicology, 2016; American College of Medical Toxicology, 2011): a) Initial intravenous bolus of 1.5 mL/kg 20% lipid emulsion (eg, Intralipid) over 2 to 3 minutes. Asystolic patients or patients with pulseless electrical activity may have a repeat dose, if there is no response to the initial bolus. b) Follow with an intravenous infusion of 0.25 mL/kg/min of 20% lipid emulsion (eg, Intralipid). Evaluate the patient's response after 3 minutes at this infusion rate. The infusion rate may be decreased to 0.025 mL/kg/min (ie, 1/10 the initial rate) in patients with a significant response. This recommendation has been proposed because of possible adverse effects from very high cumulative rates of lipid infusion. Monitor blood pressure, heart rate, and other hemodynamic parameters every 15 minutes during the infusion. c) If there is an initial response to the bolus followed by the re-emergence of hemodynamic instability during the lowest-dose infusion, the infusion rate may be increased back to 0.25 mL/kg/min or, in severe cases, the bolus could be repeated. A maximum dose of 10 mL/kg has been recommended by some sources. d) Where possible, LRT should be terminated after 1 hour or less, if the patient's clinical status permits. In cases where the patient's stability is dependent on continued lipid infusion, longer treatment may be appropriate.
E) EXTRACORPOREAL MEMBRANE OXYGENATION 1) MECHANICAL CARDIORESPIRATORY SUPPORT: Extracorporeal membrane oxygenation or cardiopulmonary bypass may provide circulatory support that allows metabolism and elimination of quinidine in patients with hemodynamic instability or severe dysrhythmias. 2) CASE REPORT/PEDIATRIC: Extracorporeal membrane oxygenation was used to maintain cardiovascular stability in a 16-month-old boy after ingesting an estimated 22 quinidine sulfate extended release tablets (300 mg each). An initial quinidine plasma concentration was 9.7 mcg/mL (normal range: 2 to 5 mcg/mL). On admission, he was comatose with bradycardia (63 beats/min) and hypotension (BP 58/28 mmHg). Immediate therapy included intubation and mechanical ventilation, epinephrine, dopamine and activated charcoal. A wide complex tachycardia and progressive hypotension and bradycardia were observed; transvenous pacing was added for unstable ventricular tachyarrhythmias. At 43 hours, extracorporeal life support was also added for life-threatening systemic hypotension. Systemic perfusion and mean arterial pressure improved within 4 hours and inotropic support was gradually weaned. Ongoing decontamination efforts included: hemodialysis, charcoal hemoperfusion, plasmapheresis, and continuous arterial-venous hemofiltration with dialysis to lower the plasma concentration. Despite these efforts, plasma concentrations remained elevated and an x-ray of the chest and abdomen was obtained and showed a large mass in the stomach. A pharmacobezoar (consisting of activated charcoal and pill fragments) was removed via endoscopy; plasma blood concentrations then began to drop and cardiovascular function started to improve. ECMO was continued for 12 days and the patient was successfully extubated on day 21. The child was discharged on day 30 with no evidence of neurologic deficits (Tecklenburg et al, 1997).
F) BRADYCARDIA 1) ATROPINE a) ATROPINE/DOSE 1) ADULT BRADYCARDIA: BOLUS: Give 0.5 milligram IV, repeat every 3 to 5 minutes, if bradycardia persists. Maximum: 3 milligrams (0.04 milligram/kilogram) intravenously is a fully vagolytic dose in most adults. Doses less than 0.5 milligram may cause paradoxical bradycardia in adults (Neumar et al, 2010). 2) PEDIATRIC DOSE: As premedication for emergency intubation in specific situations (eg, giving succinylchoine to facilitate intubation), give 0.02 milligram/kilogram intravenously or intraosseously (0.04 to 0.06 mg/kg via endotracheal tube followed by several positive pressure breaths) repeat once, if needed (de Caen et al, 2015; Kleinman et al, 2010). MAXIMUM SINGLE DOSE: Children: 0.5 milligram; adolescent: 1 mg. a) There is no minimum dose (de Caen et al, 2015). b) MAXIMUM TOTAL DOSE: Children: 1 milligram; adolescents: 2 milligrams (Kleinman et al, 2010).
2) ISOPROTERENOL a) ISOPROTERENOL INDICATIONS 1) Used for temporary control of hemodynamically significant bradycardia in a patient with a pulse; generally other modalities (atropine, dopamine, epinephrine, dobutamine, pacing) should be used first because of the tendency to develop ischemia and dysrhythmias with isoproterenol (Neumar et al, 2010). 2) ADULT DOSE: Infuse 2 micrograms per minute, gradually titrating to 10 micrograms per minute as needed to desired response (Neumar et al, 2010). 3) CAUTION: Decrease infusion rate or discontinue infusion if ventricular dysrhythmias develop(Prod Info Isuprel(TM) intravenous injection, intramuscular injection, subcutaneous injection, intracardiac injection, 2013). 4) PEDIATRIC DOSE: Not well studied. Initial infusion of 0.1 mcg/kg/min titrated as needed, usual range is 0.1 mcg/kg/min to 1 mcg/kg/min (Prod Info Isuprel(TM) intravenous injection, intramuscular injection, subcutaneous injection, intracardiac injection, 2013).
3) Refractory bradycardia or heart block that compromises blood pressure, requires temporary pacemaker insertion. Markedly prolonged conduction, Mobitz II block, or third degree heart block are indications for prophylactic pacemaker insertion. G) HYPOTENSIVE EPISODE 1) SUMMARY a) Infuse 10 to 20 milliliters/kilogram of isotonic fluid and keep the patient supine. If hypotension persists, administer dopamine or norepinephrine. Consider central venous pressure monitoring to guide further fluid therapy.
2) DOPAMINE a) DOSE: Begin at 5 micrograms per kilogram per minute progressing in 5 micrograms per kilogram per minute increments as needed (Prod Info dopamine hcl, 5% dextrose IV injection, 2004). If hypotension persists, dopamine may need to be discontinued and a more potent vasoconstrictor (eg, norepinephrine) should be considered (Prod Info dopamine hcl, 5% dextrose IV injection, 2004). b) CAUTION: If ventricular dysrhythmias occur, decrease rate of administration (Prod Info dopamine hcl, 5% dextrose IV injection, 2004). Extravasation may cause local tissue necrosis, administration through a central venous catheter is preferred (Prod Info dopamine hcl, 5% dextrose IV injection, 2004).
3) Pure or predominant alpha agonists may be more effective in managing hypotension. These include norepinephrine or metaraminol. a) NOREPINEPHRINE 1) PREPARATION: 4 milligrams (1 amp) added to 1000 milliliters of diluent provides a concentration of 4 micrograms/milliliter of norepinephrine base. Norepinephrine bitartrate should be mixed in dextrose solutions (dextrose 5% in water, dextrose 5% in saline) since dextrose-containing solutions protect against excessive oxidation and subsequent potency loss. Administration in saline alone is not recommended (Prod Info norepinephrine bitartrate injection, 2005). 2) DOSE a) ADULT: Dose range: 0.1 to 0.5 microgram/kilogram/minute (eg, 70 kg adult 7 to 35 mcg/min); titrate to maintain adequate blood pressure (Peberdy et al, 2010). b) CHILD: Dose range: 0.1 to 2 micrograms/kilogram/minute; titrate to maintain adequate blood pressure (Kleinman et al, 2010). c) CAUTION: Extravasation may cause local tissue ischemia, administration by central venous catheter is advised (Peberdy et al, 2010).
4) PHENYLEPHRINE a) MILD OR MODERATE HYPOTENSION 1) INTRAVENOUS: ADULT: Usual dose: 0.2 mg; range: 0.1 mg to 0.5 mg. Maximum initial dose is 0.5 mg. A 0.5 mg IV dose can elevate the blood pressure for approximately 15 min (Prod Info phenylephrine HCl subcutaneous injection, intramuscular injection, intravenous injection, 2011). PEDIATRIC: Usual bolus dose: 5 to 20 mcg/kg IV repeated every 10 to 15 min as needed (Taketomo et al, 1997).
b) CONTINUOUS INFUSION 1) PREPARATION: Add 10 mg (1 mL of a 1% solution) to 500 mL of normal saline or dextrose 5% in water to produce a final concentration of 0.2 mg/mL. 2) ADULT DOSE: To raise blood pressure rapidly; start an initial infusion of 100 to 180 mcg/min until blood pressure stabilizes; then reduce infusion to 40 to 60 mcg/min titrated to desired effect. If necessary, additional doses in increments of 10 mg or more may be added to the infusion solution and the rate of flow titrated to the desired effect (Prod Info phenylephrine HCl subcutaneous injection, intramuscular injection, intravenous injection, 2011). 3) PEDIATRIC DOSE: Intravenous infusion should begin at 0.1 to 0.5 mcg/kg/min; titrate to the desired effect (Taketomo et al, 1997).
c) ADVERSE EFFECTS 1) Headache, reflex bradycardia, excitability, restlessness and rarely dysrhythmias may develop (Prod Info phenylephrine HCl subcutaneous injection, intramuscular injection, intravenous injection, 2011).
5) DOBUTAMINE a) DOSE: ADULT: Infuse at 5 to 10 micrograms/kilogram/minute IV. PEDIATRIC: Infuse at 2 to 20 micrograms/kilogram/minute IV or intraosseous, titrated to desired effect (Peberdy et al, 2010; Kleinman et al, 2010). b) CAUTION: Decrease infusion rate if ventricular ectopy develops (Prod Info dobutamine HCl 5% dextrose intravenous injection, 2012).
6) The MAST suit may be beneficial (Hoffman, 1983) as a temporary measure for hypotension by increasing systemic vascular resistance. Favorable results using an intraaortic balloon pump for refractory hypotension has also been reported (Shub et al, 1978). H) SEIZURE 1) SUMMARY a) Attempt initial control with a benzodiazepine (eg, diazepam, lorazepam). If seizures persist or recur, administer phenobarbital or propofol. b) Monitor for respiratory depression, hypotension, and dysrhythmias. Endotracheal intubation should be performed in patients with persistent seizures. c) Evaluate for hypoxia, electrolyte disturbances, and hypoglycemia (or, if immediate bedside glucose testing is not available, treat with intravenous dextrose).
2) DIAZEPAM a) ADULT DOSE: Initially 5 to 10 mg IV, OR 0.15 mg/kg IV up to 10 mg per dose up to a rate of 5 mg/minute; may be repeated every 5 to 20 minutes as needed (Brophy et al, 2012; Prod Info diazepam IM, IV injection, 2008; Manno, 2003). b) PEDIATRIC DOSE: 0.1 to 0.5 mg/kg IV over 2 to 5 minutes; up to a maximum of 10 mg/dose. May repeat dose every 5 to 10 minutes as needed (Loddenkemper & Goodkin, 2011; Hegenbarth & American Academy of Pediatrics Committee on Drugs, 2008). c) Monitor for hypotension, respiratory depression, and the need for endotracheal intubation. Consider a second agent if seizures persist or recur after repeated doses of diazepam .
3) NO INTRAVENOUS ACCESS a) DIAZEPAM may be given rectally or intramuscularly (Manno, 2003). RECTAL DOSE: CHILD: Greater than 12 years: 0.2 mg/kg; 6 to 11 years: 0.3 mg/kg; 2 to 5 years: 0.5 mg/kg (Brophy et al, 2012). b) MIDAZOLAM has been used intramuscularly and intranasally, particularly in children when intravenous access has not been established. ADULT DOSE: 0.2 mg/kg IM, up to a maximum dose of 10 mg (Brophy et al, 2012). PEDIATRIC DOSE: INTRAMUSCULAR: 0.2 mg/kg IM, up to a maximum dose of 7 mg (Chamberlain et al, 1997) OR 10 mg IM (weight greater than 40 kg); 5 mg IM (weight 13 to 40 kg); INTRANASAL: 0.2 to 0.5 mg/kg up to a maximum of 10 mg/dose (Loddenkemper & Goodkin, 2011; Brophy et al, 2012). BUCCAL midazolam, 10 mg, has been used in adolescents and older children (5-years-old or more) to control seizures when intravenous access was not established (Scott et al, 1999).
4) LORAZEPAM a) MAXIMUM RATE: The rate of intravenous administration of lorazepam should not exceed 2 mg/min (Brophy et al, 2012; Prod Info lorazepam IM, IV injection, 2008). b) ADULT DOSE: 2 to 4 mg IV initially; repeat every 5 to 10 minutes as needed, if seizures persist (Manno, 2003; Brophy et al, 2012). c) PEDIATRIC DOSE: 0.05 to 0.1 mg/kg IV over 2 to 5 minutes, up to a maximum of 4 mg/dose; may repeat in 5 to 15 minutes as needed, if seizures continue (Brophy et al, 2012; Loddenkemper & Goodkin, 2011; Hegenbarth & American Academy of Pediatrics Committee on Drugs, 2008; Sreenath et al, 2009; Chin et al, 2008).
5) PHENOBARBITAL a) ADULT LOADING DOSE: 20 mg/kg IV at an infusion rate of 50 to 100 mg/minute IV. An additional 5 to 10 mg/kg dose may be given 10 minutes after loading infusion if seizures persist or recur (Brophy et al, 2012). b) Patients receiving high doses will require endotracheal intubation and may require vasopressor support (Brophy et al, 2012). c) PEDIATRIC LOADING DOSE: 20 mg/kg may be given as single or divided application (2 mg/kg/minute in children weighing less than 40 kg up to 100 mg/min in children weighing greater than 40 kg). A plasma concentration of about 20 mg/L will be achieved by this dose (Loddenkemper & Goodkin, 2011). d) REPEAT PEDIATRIC DOSE: Repeat doses of 5 to 20 mg/kg may be given every 15 to 20 minutes if seizures persist, with cardiorespiratory monitoring (Loddenkemper & Goodkin, 2011). e) MONITOR: For hypotension, respiratory depression, and the need for endotracheal intubation (Loddenkemper & Goodkin, 2011; Manno, 2003). f) SERUM CONCENTRATION MONITORING: Monitor serum concentrations over the next 12 to 24 hours. Therapeutic serum concentrations of phenobarbital range from 10 to 40 mcg/mL, although the optimal plasma concentration for some individuals may vary outside this range (Hvidberg & Dam, 1976; Choonara & Rane, 1990; AMA Department of Drugs, 1992).
6) OTHER AGENTS a) If seizures persist after phenobarbital, propofol or pentobarbital infusion, or neuromuscular paralysis with general anesthesia (isoflurane) and continuous EEG monitoring should be considered (Manno, 2003). Other anticonvulsants can be considered (eg, valproate sodium, levetiracetam, lacosamide, topiramate) if seizures persist or recur; however, there is very little data regarding their use in toxin induced seizures, controlled trials are not available to define the optimal dosage ranges for these agents in status epilepticus (Brophy et al, 2012): 1) VALPROATE SODIUM: ADULT DOSE: An initial dose of 20 to 40 mg/kg IV, at a rate of 3 to 6 mg/kg/minute; may give an additional dose of 20 mg/kg 10 minutes after loading infusion. PEDIATRIC DOSE: 1.5 to 3 mg/kg/minute (Brophy et al, 2012). 2) LEVETIRACETAM: ADULT DOSE: 1000 to 3000 mg IV, at a rate of 2 to 5 mg/kg/min IV. PEDIATRIC DOSE: 20 to 60 mg/kg IV (Brophy et al, 2012; Loddenkemper & Goodkin, 2011). 3) LACOSAMIDE: ADULT DOSE: 200 to 400 mg IV; 200 mg IV over 15 minutes (Brophy et al, 2012). PEDIATRIC DOSE: In one study, median starting doses of 1.3 mg/kg/day and maintenance doses of 4.7 mg/kg/day were used in children 8 years and older (Loddenkemper & Goodkin, 2011). 4) TOPIRAMATE: ADULT DOSE: 200 to 400 mg nasogastric/orally OR 300 to 1600 mg/day orally divided in 2 to 4 times daily (Brophy et al, 2012).
|