6.5.1) PREVENTION OF ABSORPTION/PREHOSPITAL
A) PREHOSPITAL: GI decontamination should generally be avoided because of the risk of CNS depression or seizures and subsequent aspiration.
6.5.2) PREVENTION OF ABSORPTION
A) SUMMARY: Consider decontamination if a patient presents shortly after an oral ingestion overdose and is not manifesting symptoms of toxicity. Activated charcoal is generally not recommended in patients that are manifesting signs of toxicity as they are at risk of coma or seizures and aspiration. If the airway is protected with orotracheal intubation, charcoal may be given. Gastric lavage is also not generally recommended as patients will generally do well with appropriate treatment. B) ACTIVATED CHARCOAL 1) Activated charcoal effectively adsorbs propoxyphene in vitro; 5 grams of charcoal can adsorb 99% of a 320 mg (approximately equal to 10 tablets) dose and 70% of a 960 mg (approximately equal to 30 tablets) dose (Corby & Decker, 1968). At a charcoal to drug ratio of 10:1, 99% of propoxyphene is adsorbed to charcoal (Chernish, 1972). 2) Activated charcoal prevents the absorption of propoxyphene in vivo; 4 grams of charcoal reduced the absorption of a 130 mg dose of drug by 50% (Chernish, 1972) and 50 grams of charcoal reduced the absorption of an identical dose of propoxyphene by 97% to 99% (Karkkainen & Neuvonen, 1985). 3) The above data suggest that even when a large overdose of propoxyphene is ingested, a 50 gram dose of activated charcoal can adsorb 90% of the drug ingested (Karkkainen & Neuvonen, 1985). 4) CHARCOAL ADMINISTRATION a) Consider administration of activated charcoal after a potentially toxic ingestion (Chyka et al, 2005). Administer charcoal as an aqueous slurry; most effective when administered within one hour of ingestion.
5) CHARCOAL DOSE a) Use a minimum of 240 milliliters of water per 30 grams charcoal (FDA, 1985). Optimum dose not established; usual dose is 25 to 100 grams in adults and adolescents; 25 to 50 grams in children aged 1 to 12 years (or 0.5 to 1 gram/kilogram body weight) ; and 0.5 to 1 gram/kilogram in infants up to 1 year old (Chyka et al, 2005). 1) Routine use of a cathartic with activated charcoal is NOT recommended as there is no evidence that cathartics reduce drug absorption and cathartics are known to cause adverse effects such as nausea, vomiting, abdominal cramps, electrolyte imbalances and occasionally hypotension (None Listed, 2004).
b) ADVERSE EFFECTS/CONTRAINDICATIONS 1) Complications: emesis, aspiration (Chyka et al, 2005). Aspiration may be complicated by acute respiratory failure, ARDS, bronchiolitis obliterans or chronic lung disease (Golej et al, 2001; Graff et al, 2002; Pollack et al, 1981; Harris & Filandrinos, 1993; Elliot et al, 1989; Rau et al, 1988; Golej et al, 2001; Graff et al, 2002). Refer to the ACTIVATED CHARCOAL/TREATMENT management for further information. 2) Contraindications: unprotected airway (increases risk/severity of aspiration) , nonfunctioning gastrointestinal tract, uncontrolled vomiting, and ingestion of most hydrocarbons (Chyka et al, 2005).
C) MULTIPLE DOSE ACTIVATED CHARCOAL 1) A study in human volunteers demonstrated enhanced elimination with multiple doses of activated charcoal (Karkkainen & Neuvonen, 1985); however it has never been shown to affect patient outcome and routine use is NOT recommended. a) When given in repeated doses (50 grams followed by 12.5 grams every 6 hours for 48 hours) starting 6 hours after the ingestion of 130 mg propoxyphene HCl (Karkkainen & Neuvonen, 1985): 1) Activated charcoal significantly shortened the terminal half-life of propoxyphene from a mean of 31.1 hours to 21.2 hours. 2) The same was true of norpropoxyphene; the mean half-life dropping from 34.4 hours to 19.8 hours.
2) Multiple dose activated charcoal may be considered in patients with life threatening intoxication. a) MULTIPLE DOSE ACTIVATED CHARCOAL 1) ADULT DOSE: Optimal dose not established. After an initial dose of 50 to 100 grams of activated charcoal, subsequent doses may be administered every 1, 2 or 4 hours at a dose equivalent to 12.5 grams/hour (Vale et al, 1999), do not exceed: 0.5 g/kg charcoal every 2 hours (Ghannoum & Gosselin, 2013; Mauro et al, 1994). There is some evidence that smaller more frequent doses are more effective at enhancing drug elimination than larger less frequent doses (Park et al, 1983; Ilkhanipour et al, 1992). PEDIATRIC DOSE: Optimal dose not established. After an initial dose of 25 to 50 grams in children aged 1 to 12 years (or 0.5 to 1 gram/kilogram body weight) (Chyka & Seger, 1997), subsequent doses may be administered every 1, 2 or 4 hours (Vale et al, 1999) in a dose equivalent to 6.25 grams/hour in children 1 to 12 years old. 2) Activated charcoal should be continued until the patient's clinical and laboratory parameters, including drug concentrations if available, are improving (Vale et al, 1999). The patient should be frequently assessed for the ability to protect the airway and evidence of decreased peristalsis or intestinal obstruction. 3) Use of cathartics has not been shown to increase drug elimination and may increase the likelihood of vomiting. Routine coadministration of a cathartic is NOT recommended (Vale et al, 1999). 4) AGENTS AMENABLE TO MDAC THERAPY: The following properties of a drug that are likely to allow MDAC therapy to be effective include: small volume of distribution, low protein binding, prolonged half-life, low intrinsic clearance, and a nonionized state at physiologic pH (Chyka, 1995; Ghannoum & Gosselin, 2013). 5) Vomiting is a common adverse effect; antiemetics may be necessary. 6) CONTRAINDICATIONS: Absolute contraindications include an unprotected airway, intestinal obstruction, a gastrointestinal tract that is not intact and agents that may increase the risk of aspiration (eg, hydrocarbons). Relative contraindications include decreased peristalsis (eg, decreased bowel sounds, abdominal distention, ileus, severe constipation) (Vale et al, 1999; Mauro et al, 1994). 7) COMPLICATIONS: Include constipation, intestinal bleeding, bowel obstruction, appendicitis, charcoal bezoars, and aspiration which may be complicated by acute respiratory failure, adult respiratory distress syndrome or bronchiolitis obliterans (Ghannoum & Gosselin, 2013; Ray et al, 1988; Atkinson et al, 1992; Gomez et al, 1994; Mizutani et al, 1991; Pollack et al, 1981; Harris & Filandrinos, 1993; Elliot et al, 1989; Mina et al, 2002; Harsch, 1986; Rau et al, 1988; Golej et al, 2001; Graff et al, 2002).
6.5.3) TREATMENT
A) MONITORING OF PATIENT 1) Monitor vital signs and mental status. 2) As combination products are common, measure serum salicylate and acetaminophen concentrations. Propoxyphene can delay gastric motility and thus delay peak acetaminophen or aspirin concentrations. However, the clinical significance of this is unclear. 3) Propoxyphene plasma concentrations are not clinically useful or readily available. Screening urine toxicology immunoassays for opioids will likely not detect propoxyphene. No other specific lab work is needed in most patients but may be helpful in ruling out other causes of altered mental status if the diagnosis of opioid toxicity is uncertain. 4) Obtain an ECG and institute continuous cardiac monitoring in patients with moderate to severe toxicity with propoxyphene. 5) Consider head CT and lumbar puncture to rule out intracranial mass, bleeding or infection.
B) NALOXONE 1) NALOXONE/SUMMARY a) Naloxone, a pure opioid antagonist, reverses coma and respiratory depression from all opioids. It has no agonist effects and can safely be employed in a mixed or unknown overdose where it can be diagnostic and therapeutic without risk to the patient. b) Indicated in patients with mental status and respiratory depression possibly related to opioid overdose (Hoffman et al, 1991). c) DOSE: The initial dose of naloxone should be low (0.04 to 0.4 mg) with a repeat dosing as needed or dose escalation to 2 mg as indicated due to the risk of opioid withdrawal in an opioid-tolerant individual; if delay in obtaining venous access, may administer subcutaneously, intramuscularly, intranasally, via nebulizer (in a patient with spontaneous respirations) or via an endotracheal tube (Vanden Hoek,TL,et al). d) Recurrence of opioid toxicity has been reported to occur in approximately 1 out of 3 adult ED opioid overdose cases after a response to naloxone. Recurrences are more likely with long-acting opioids (Watson et al, 1998)
2) NALOXONE DOSE/ADULT a) INITIAL BOLUS DOSE: Because naloxone can produce opioid withdrawal in an opioid-dependent individual leading to severe agitation and hypertension, the initial dose of naloxone should be low (0.04 to 0.4 mg) with a repeat dosing as needed or dose escalation to 2 mg as indicated (Vanden Hoek,TL,et al). 1) This dose can also be given intramuscularly or subcutaneously in the absence of intravenous access (Howland & Nelson, 2011; Prod Info naloxone HCl IV, IM, subcutaneous injection solution, 2008; Maio et al, 1987; Wanger et al, 1998).
b) Larger doses may be needed to reverse opioid effects. Generally, if no response is observed after 8 to 10 milligrams has been administered, the diagnosis of opioid-induced respiratory depression should be questioned (Howland & Nelson, 2011; Prod Info naloxone HCl IV, IM, subcutaneous injection solution, 2008). Very large doses of naloxone (10 milligrams or more) may be required to reverse the effects of a buprenorphine overdose (Gal, 1989; Jasinski et al, 1978). 1) Single doses of up to 24 milligrams have been given without adverse effect (Evans et al, 1973).
c) REPEAT DOSE: The effective naloxone dose may have to be repeated every 20 to 90 minutes due to the much longer duration of action of the opioid agonist used(Howland & Nelson, 2011). 1) OPIOID DEPENDENT PATIENTS: The goal of naloxone therapy is to reverse respiratory depression without precipitating significant withdrawal. Starting doses of naloxone 0.04 mg IV, or 0.001 mg/kg, have been suggested as appropriate for opioid-dependent patients without severe respiratory depression (Howland & Nelson, 2011). If necessary the dose may be repeated or increased gradually until the desired response is achieved (adequate respirations, ability to protect airway, responds to stimulation but no evidence of withdrawal) (Howland & Nelson, 2011). In the presence of opioid dependence, withdrawal symptoms typically appear within minutes of naloxone administration and subside in about 2 hours. The severity and duration of the withdrawal syndrome are dependant upon the naloxone dose and the degree and type of dependence.(Prod Info naloxone HCl IV, IM, subcutaneous injection solution, 2008) 2) PRECAUTION should be taken in the presence of a mixed overdose of a sympathomimetic with an opioid. Administration of naloxone may provoke serious sympathomimetic toxicity by removing the protective opioid-mediated CNS depressant effects. Arrhythmogenic effects of naloxone may also be potentiated in the presence of severe hyperkalemia (McCann et al, 2002).
d) NALOXONE DOSE/CHILDREN 1) LESS THAN 5 YEARS OF AGE OR LESS THAN 20 KG: 0.1 mg/kg IV/intraosseous/IM/subcutaneously maximum dose 2 mg; may repeat dose every 2 to 5 minutes until symptoms improve (Kleinman et al, 2010; Hegenbarth & American Academy of Pediatrics Committee on Drugs, 2008) 2) 5 YEARS OF AGE OR OLDER OR GREATER THAN 20 KG: 2 mg IV/intraosseous/IM/subcutaneouslymay repeat dose every 2 to 5 minutes until symptoms improve (Kleinman et al, 2010; Hegenbarth & American Academy of Pediatrics Committee on Drugs, 2008; Krauss & Green, 2006). Although naloxone may be given via the endotracheal tube for pediatric resuscitation, optimal doses are unknown. Some experts have recommended using 2 to 3 times the IV dose (Kleinman et al, 2010) 3) AVOIDANCE OF OPIOID WITHDRAWAL: In cases of known or suspected chronic opioid therapy, a lower dose of 0.01 mg/kg may be considered and titrated to effect to avoid withdrawal: INITIAL DOSE: 0.01 mg/kg body weight given IV. If this does not result in clinical improvement, an additional dose of 0.1 mg/kg body weight may be given. It may be given by the IM or subQ route if the IV route is not available (Prod Info naloxone HCl IV, IM, subcutaneous injection solution, 2008)
e) NALOXONE DOSE/NEONATE 1) The American Academy of Pediatrics recommends a neonatal dose of 0.1 mg/kg IV or intratracheally from birth until age 5 years or 20 kilograms of body weight (AAP, 1989; Kleinman et al, 2010). 2) Smaller doses (10 to 30 mcg/kg IV) have been successful in the setting of exposure via maternal administration of narcotics or administration to neonates in therapeutic doses for anesthesia (Wiener et al, 1977; Welles et al, 1984; Fischer & Cook, 1974; Brice et al, 1979). 3) POTENTIAL OF WITHDRAWAL: The risk of precipitating withdrawal in an addicted neonate should be considered. Withdrawal seizures have been provoked in infants from opioid-abusing mothers when the infants were given naloxone at birth to stimulate breathing (Gibbs et al, 1989). 4) In cases of inadvertent administration of an opioid overdose to a neonate, larger doses may be required. In one case of oral morphine intoxication, 0.16 milligram/kilogram/hour was required for 5 days (Tenenbein, 1984).
f) NALOXONE/ALTERNATE ROUTES 1) If intravenous access cannot be rapidly established, naloxone can be administered via subcutaneous or intramuscular injection, intranasally, or via inhaled nebulization in patients with spontaneous respirations. 2) INTRAMUSCULAR/SUBCUTANEOUS ROUTES: If an intravenous line cannot be secured due to hypoperfusion or lack of adequate veins then naloxone can be administered by other routes. 3) The intramuscular or subcutaneous routes are effective if hypoperfusion is not present (Prod Info naloxone HCl IV, IM, subcutaneous injection solution, 2008). The delay required to establish an IV, offsets the slower rate of subcutaneous absorption (Wanger et al, 1998). 4) Naloxone Evzio(TM) is a hand-held autoinjector intended for the emergency treatment of known or suspected opioid overdose. The autoinjector is equipped with an electronic voice instruction system to assist caregivers with administration. It is available as 0.4 mg/0.4 mL solution for injection in a pre-filled auto-injector (Prod Info EVZIO(TM) injection solution, 2014). 5) INTRANASAL ROUTE: Intranasal naloxone has been shown to be effective in opioid overdose; bioavailability appears similar to the intravenous route (Kelly & Koutsogiannis, 2002). Based on several case series of patients with suspected opiate overdose, the average response time of 3.4 minutes was observed using a formulation of 1 mg/mL/nostril by a mucosal atomization device (Kerr et al, 2009; Kelly & Koutsogiannis, 2002). However, a young adult who intentionally masticated two 25 mcg fentanyl patches and developed agonal respirations (6 breaths per minute), decreased mental status and mitotic pupils did not respond to intranasal naloxone (1 mg in each nostril) administered by paramedics. After 11 minutes, paramedics placed an IV and administered 1 mg of IV naloxone; respirations normalized and mental status improved. Upon admission, 2 additional doses of naloxone 0.4 mg IV were needed. The patient was monitored overnight and discharged the following day without sequelae. Its suggested that intranasal administration can lead to unpredictable absorption (Zuckerman et al, 2014). a) Narcan(R) nasal spray is supplied as a single 4 mg dose of naloxone hydrochloride in a 0.1 mL intranasal spray (Prod Info NARCAN(R) nasal spray, 2015). b) FDA DOSING: Initial dose: 1 spray (4 mg) intranasally into 1 nostril. Subsequent doses: Use a new Narcan(R) nasal spray and administer into alternating nostrils. May repeat dose every 2 to 3 minutes. Requirement for repeat dosing is dependent on the amount, type, and route of administration of the opioid being antagonized. Higher or repeat doses may be required for partial agonists or mixed agonist/antagonists (Prod Info NARCAN(R) nasal spray, 2015). c) AMERICAN HEART ASSOCIATION GUIDELINE DOSING: Usual dose: 2 mg intranasally as soon as possible; may repeat after 4 minutes (Lavonas et al, 2015). Higher doses may be required with atypical opioids (VandenHoek et al, 2010). d) ABSORPTION: Based on limited data, the absorption rate of intranasal administration is comparable to intravenous administration. The peak plasma concentration of intranasal administration is estimated to be 3 minutes which is similar to the intravenous route (Kerr et al, 2009). In rare cases, nasal absorption may be inhibited by injury, prior use of intranasal drugs, or excessive secretions (Kerr et al, 2009).
6) NEBULIZED ROUTE: DOSE: A suggested dose is 2 mg naloxone with 3 mL of normal saline for suspected opioid overdose in patients with some spontaneous respirations (Weber et al, 2012). 7) ENDOTRACHEAL ROUTE: Endotracheal administration of naloxone can be effective(Tandberg & Abercrombie, 1982), optimum dose unknown but 2 to 3 times the intravenous dose had been recommended by some (Kleinman et al, 2010). g) NALOXONE/CONTINUOUS INFUSION METHOD 1) A continuous infusion of naloxone may be employed in circumstances of opioid overdose with long acting opioids (Howland & Nelson, 2011; Redfern, 1983). 2) The patient is given an initial dose of IV naloxone to achieve reversal of opioid effects and is then started on a continuous infusion to maintain this state of antagonism. 3) DOSE: Utilize two-thirds of the initial naloxone bolus on an hourly basis (Howland & Nelson, 2011; Mofenson & Caraccio, 1987). For an adult, prepare the dose by multiplying the effective bolus dose by 6.6, and add that amount to 1000 mL and administer at an IV infusion rate of 100 mL/hour (Howland & Nelson, 2011). 4) Dose and duration of action of naloxone therapy varies based on several factors; continuous monitoring should be used to prevent withdrawal induction (Howland & Nelson, 2011). 5) Observe patients for evidence of CNS or respiratory depression for at least 2 hours after discontinuing the infusion (Howland & Nelson, 2011).
h) NALOXONE/PREGNANCY 1) In general, the smallest dose of naloxone required to reverse life threatening opioid effects should be used in pregnant women. Naloxone detoxification of opioid addicts during pregnancy may result in fetal distress, meconium staining and fetal death (Zuspan et al, 1975). When naloxone is used during pregnancy, opioid abstinence may be provoked in utero (Umans & Szeto, 1985).
C) SEIZURE 1) NALOXONE has been shown to antagonize the convulsive effects of propoxyphene in animals (Chapman & Walaszek, 1962; Fuit et al, 1966). a) Its efficacy in terminating seizures in cases of human poisoning is inconclusive. Since the use of naloxone avoids the potential additive respiratory depressant effects of anticonvulsants, naloxone use is a reasonable first choice (Lovejoy et al, 1974). b) DOSE 1) INITIAL DOSE: ADULTS AND CHILD: An initial dose of 0.4 mg to 2 mg may be administered intravenously. Initial dose may be repeated every 2 to 3 minutes to obtain desired degree of respiratory function. 2) LARGER DOSES: There is evidence that larger than usual doses of naloxone may be required to reverse propoxyphene toxicity (Moore et al, 1980). 3) NO EFFECT: If no response is observed after 10 mg has been administered, the diagnosis of opioid-induced toxicity should be questioned.
c) Relatively high doses of naloxone may be necessary to reverse the CNS toxicity of propoxyphene (Neil & Terenins, 1981, Moore et al, 1980). 2) SUMMARY a) Attempt initial control with a benzodiazepine (eg, diazepam, lorazepam). If seizures persist or recur, administer phenobarbital or propofol. b) Monitor for respiratory depression, hypotension, and dysrhythmias. Endotracheal intubation should be performed in patients with persistent seizures. c) Evaluate for hypoxia, electrolyte disturbances, and hypoglycemia (or, if immediate bedside glucose testing is not available, treat with intravenous dextrose).
3) DIAZEPAM a) ADULT DOSE: Initially 5 to 10 mg IV, OR 0.15 mg/kg IV up to 10 mg per dose up to a rate of 5 mg/minute; may be repeated every 5 to 20 minutes as needed (Brophy et al, 2012; Prod Info diazepam IM, IV injection, 2008; Manno, 2003). b) PEDIATRIC DOSE: 0.1 to 0.5 mg/kg IV over 2 to 5 minutes; up to a maximum of 10 mg/dose. May repeat dose every 5 to 10 minutes as needed (Loddenkemper & Goodkin, 2011; Hegenbarth & American Academy of Pediatrics Committee on Drugs, 2008). c) Monitor for hypotension, respiratory depression, and the need for endotracheal intubation. Consider a second agent if seizures persist or recur after repeated doses of diazepam .
4) NO INTRAVENOUS ACCESS a) DIAZEPAM may be given rectally or intramuscularly (Manno, 2003). RECTAL DOSE: CHILD: Greater than 12 years: 0.2 mg/kg; 6 to 11 years: 0.3 mg/kg; 2 to 5 years: 0.5 mg/kg (Brophy et al, 2012). b) MIDAZOLAM has been used intramuscularly and intranasally, particularly in children when intravenous access has not been established. ADULT DOSE: 0.2 mg/kg IM, up to a maximum dose of 10 mg (Brophy et al, 2012). PEDIATRIC DOSE: INTRAMUSCULAR: 0.2 mg/kg IM, up to a maximum dose of 7 mg (Chamberlain et al, 1997) OR 10 mg IM (weight greater than 40 kg); 5 mg IM (weight 13 to 40 kg); INTRANASAL: 0.2 to 0.5 mg/kg up to a maximum of 10 mg/dose (Loddenkemper & Goodkin, 2011; Brophy et al, 2012). BUCCAL midazolam, 10 mg, has been used in adolescents and older children (5-years-old or more) to control seizures when intravenous access was not established (Scott et al, 1999).
5) LORAZEPAM a) MAXIMUM RATE: The rate of intravenous administration of lorazepam should not exceed 2 mg/min (Brophy et al, 2012; Prod Info lorazepam IM, IV injection, 2008). b) ADULT DOSE: 2 to 4 mg IV initially; repeat every 5 to 10 minutes as needed, if seizures persist (Manno, 2003; Brophy et al, 2012). c) PEDIATRIC DOSE: 0.05 to 0.1 mg/kg IV over 2 to 5 minutes, up to a maximum of 4 mg/dose; may repeat in 5 to 15 minutes as needed, if seizures continue (Brophy et al, 2012; Loddenkemper & Goodkin, 2011; Hegenbarth & American Academy of Pediatrics Committee on Drugs, 2008; Sreenath et al, 2009; Chin et al, 2008).
6) PHENOBARBITAL a) ADULT LOADING DOSE: 20 mg/kg IV at an infusion rate of 50 to 100 mg/minute IV. An additional 5 to 10 mg/kg dose may be given 10 minutes after loading infusion if seizures persist or recur (Brophy et al, 2012). b) Patients receiving high doses will require endotracheal intubation and may require vasopressor support (Brophy et al, 2012). c) PEDIATRIC LOADING DOSE: 20 mg/kg may be given as single or divided application (2 mg/kg/minute in children weighing less than 40 kg up to 100 mg/min in children weighing greater than 40 kg). A plasma concentration of about 20 mg/L will be achieved by this dose (Loddenkemper & Goodkin, 2011). d) REPEAT PEDIATRIC DOSE: Repeat doses of 5 to 20 mg/kg may be given every 15 to 20 minutes if seizures persist, with cardiorespiratory monitoring (Loddenkemper & Goodkin, 2011). e) MONITOR: For hypotension, respiratory depression, and the need for endotracheal intubation (Loddenkemper & Goodkin, 2011; Manno, 2003). f) SERUM CONCENTRATION MONITORING: Monitor serum concentrations over the next 12 to 24 hours. Therapeutic serum concentrations of phenobarbital range from 10 to 40 mcg/mL, although the optimal plasma concentration for some individuals may vary outside this range (Hvidberg & Dam, 1976; Choonara & Rane, 1990; AMA Department of Drugs, 1992).
7) OTHER AGENTS a) If seizures persist after phenobarbital, propofol or pentobarbital infusion, or neuromuscular paralysis with general anesthesia (isoflurane) and continuous EEG monitoring should be considered (Manno, 2003). Other anticonvulsants can be considered (eg, valproate sodium, levetiracetam, lacosamide, topiramate) if seizures persist or recur; however, there is very little data regarding their use in toxin induced seizures, controlled trials are not available to define the optimal dosage ranges for these agents in status epilepticus (Brophy et al, 2012): 1) VALPROATE SODIUM: ADULT DOSE: An initial dose of 20 to 40 mg/kg IV, at a rate of 3 to 6 mg/kg/minute; may give an additional dose of 20 mg/kg 10 minutes after loading infusion. PEDIATRIC DOSE: 1.5 to 3 mg/kg/minute (Brophy et al, 2012). 2) LEVETIRACETAM: ADULT DOSE: 1000 to 3000 mg IV, at a rate of 2 to 5 mg/kg/min IV. PEDIATRIC DOSE: 20 to 60 mg/kg IV (Brophy et al, 2012; Loddenkemper & Goodkin, 2011). 3) LACOSAMIDE: ADULT DOSE: 200 to 400 mg IV; 200 mg IV over 15 minutes (Brophy et al, 2012). PEDIATRIC DOSE: In one study, median starting doses of 1.3 mg/kg/day and maintenance doses of 4.7 mg/kg/day were used in children 8 years and older (Loddenkemper & Goodkin, 2011). 4) TOPIRAMATE: ADULT DOSE: 200 to 400 mg nasogastric/orally OR 300 to 1600 mg/day orally divided in 2 to 4 times daily (Brophy et al, 2012).
D) HYPOTENSIVE EPISODE 1) HYPOTENSION secondary to opioid effects (i.e., due to hypoxia and respiratory acidosis resulting from coma with respiratory depression) may respond to naloxone (Hantson et al, 1995). See doses above. 2) Hypotension due to direct cardiovascular effects of propoxyphene is unlikely to respond to naloxone (Starkley & Lawson, 1978; Krantz et al, 1989; (Barraclough & Lowe, 1982; Strom et al, 1985b). a) Active circulatory support is often necessary. Evaluation of cardiac function by Doppler ultrasound may be helpful (Lang-Jensen et al, 1988). b) Hemodynamic monitoring by central venous or pulmonary artery catheterization may be necessary (Strom, 1989). 1) If the systolic blood pressure is less than 100 mmHg and the central venous pressure is less than 10 mmHg, administer isotonic saline, (initial dose 10 to 20 milliliters/kilogram). 2) If the systolic blood pressure is less than 90 mmHg and the central venous pressure is greater than 10 mmHg, begin dopamine or dobutamine.
3) DOPAMINE a) DOPAMINE 1) DOSE: Begin at 5 micrograms per kilogram per minute progressing in 5 micrograms per kilogram per minute increments as needed (Prod Info dopamine hcl, 5% dextrose IV injection, 2004). If hypotension persists, dopamine may need to be discontinued and a more potent vasoconstrictor (eg, norepinephrine) should be considered (Prod Info dopamine hcl, 5% dextrose IV injection, 2004). 2) CAUTION: If ventricular dysrhythmias occur, decrease rate of administration (Prod Info dopamine hcl, 5% dextrose IV injection, 2004). Extravasation may cause local tissue necrosis, administration through a central venous catheter is preferred (Prod Info dopamine hcl, 5% dextrose IV injection, 2004).
b) A dose dependent rise in systolic blood pressure and urine output and a fall in central venous pressure were noted in 12 patients with cardiovascular failure given dopamine infusions of 2 to 17 micrograms/kilogram/minute (Krantz et al, 1986). c) The beneficial hemodynamic effects of fluid or dopamine resuscitation may enhance the elimination of propoxyphene, an effect not produced by naloxone (Strom, 1989; Pederson et al, 1991). 4) Isoproterenol (a non-selective beta agonist), prenalterol (a selective beta-1 agonist), and cardiac pacing are not as effective as dopamine in the treatment of cardiovascular failure (Haggmark et al, 1987; Strom et al, 1985b; Strom et al, 1985c). 5) Cardiac pacing may be of value if combined with inotropic stimulation (i.e., dopamine) in cases of severe poisoning (Strom, 1989). 6) Although not previously reported in this setting, the use of mechanical cardiovascular support systems such as intra-aortic balloon pump counterpulsation and cardiopulmonary bypass pumping, should be considered in patients with hemodynamic instability unresponsive to other measures. E) WIDE QRS COMPLEX 1) Naloxone is unlikely to reverse propoxyphene induced dysrhythmias (Holland & Steinberg, 1979; Barraclough & Lowe, 1982; Strom et al, 1985b; Whitcomb et al, 1989). 2) It is helpful to correct hypoxia and acid-base abnormalities. 3) Dysrhythmias and conduction abnormalities often resolve with time and without specific treatment (Starkley & Lawson, 1978; (Barraclough & Lowe, 1982; Heaney, 1983; Elonen & Neuvonen, 1984). 4) Although dysrhythmias and cardiac conduction abnormalities are likely to respond to conventional agents, treatment may not be necessary unless circulatory failure is also present. a) In one series, 6 patients who developed asystole were resuscitated and discharged without sequelae (Sloth-Madsen et al, 1984).
5) SODIUM BICARBONATE a) Propoxyphene-induced QRS widening and dysrhythmias may respond to intravenous bicarbonate therapy. Administer 1 to 2 milliequivalents/kilogram bolus as needed to achieve a pH of 7.45 to 7.55. b) CASE REPORT: A 54-year-old woman sustained a cardiac arrest with a wide complex tachycardia after ingesting 100 propoxyphene (65 mg) tablets (Stork et al, 1995). Acetaminophen, codeine, naproxen and fluoxetine may also have been ingested. 1) She was treated with intubation, CPR, atropine, epinephrine, naloxone, diazepam, dopamine and norepinephrine and blood pressure improved to 40 mm Hg but the dysrhythmia continued. She converted to normal sinus rhythm with narrow QRS complexes after receiving 200 mEq sodium bicarbonate and blood pressure rose to 94/56.
6) BRADYCARDIA a) Evaluate for hypoxia. Administer oxygen and naloxone and manage airway as clinically indicated. b) ATROPINE/DOSE 1) ADULT BRADYCARDIA: BOLUS: Give 0.5 milligram IV, repeat every 3 to 5 minutes, if bradycardia persists. Maximum: 3 milligrams (0.04 milligram/kilogram) intravenously is a fully vagolytic dose in most adults. Doses less than 0.5 milligram may cause paradoxical bradycardia in adults (Neumar et al, 2010). 2) PEDIATRIC DOSE: As premedication for emergency intubation in specific situations (eg, giving succinylchoine to facilitate intubation), give 0.02 milligram/kilogram intravenously or intraosseously (0.04 to 0.06 mg/kg via endotracheal tube followed by several positive pressure breaths) repeat once, if needed (de Caen et al, 2015; Kleinman et al, 2010). MAXIMUM SINGLE DOSE: Children: 0.5 milligram; adolescent: 1 mg. a) There is no minimum dose (de Caen et al, 2015). b) MAXIMUM TOTAL DOSE: Children: 1 milligram; adolescents: 2 milligrams (Kleinman et al, 2010).
c) ISOPROTERENOL INDICATIONS 1) Used for temporary control of hemodynamically significant bradycardia in a patient with a pulse; generally other modalities (atropine, dopamine, epinephrine, dobutamine, pacing) should be used first because of the tendency to develop ischemia and dysrhythmias with isoproterenol (Neumar et al, 2010). 2) ADULT DOSE: Infuse 2 micrograms per minute, gradually titrating to 10 micrograms per minute as needed to desired response (Neumar et al, 2010). 3) CAUTION: Decrease infusion rate or discontinue infusion if ventricular dysrhythmias develop(Prod Info Isuprel(TM) intravenous injection, intramuscular injection, subcutaneous injection, intracardiac injection, 2013). 4) PEDIATRIC DOSE: Not well studied. Initial infusion of 0.1 mcg/kg/min titrated as needed, usual range is 0.1 mcg/kg/min to 1 mcg/kg/min (Prod Info Isuprel(TM) intravenous injection, intramuscular injection, subcutaneous injection, intracardiac injection, 2013).
7) LIDOCAINE a) Ventricular tachydysrhythmias can be successfully treated with lidocaine (Sloth-Madsen et al, 1984; Whitcomb et al, 1989). b) Lidocaine is also effective in reversing propoxyphene induced QRS prolongation (Whitcomb et al, 1989). It appears that lidocaine competes with propoxyphene in blocking the inward sodium current in cardiac conducting cells. Because of differing binding kinetics, a paradoxical decline in block occurs when both agents are present. c) LIDOCAINE/DOSE 1) ADULT: 1 to 1.5 milligrams/kilogram via intravenous push. For refractory VT/VF an additional bolus of 0.5 to 0.75 milligram/kilogram can be given at 5 to 10 minute intervals to a maximum dose of 3 milligrams/kilogram (Neumar et al, 2010). Only bolus therapy is recommended during cardiac arrest. a) Once circulation has been restored begin a maintenance infusion of 1 to 4 milligrams per minute. If dysrhythmias recur during infusion repeat 0.5 milligram/kilogram bolus and increase the infusion rate incrementally (maximal infusion rate is 4 milligrams/minute) (Neumar et al, 2010).
2) CHILD: 1 milligram/kilogram initial bolus IV/IO; followed by a continuous infusion of 20 to 50 micrograms/kilogram/minute (de Caen et al, 2015). d) LIDOCAINE/MAJOR ADVERSE REACTIONS 1) Paresthesias; muscle twitching; confusion; slurred speech; seizures; respiratory depression or arrest; bradycardia; coma. May cause significant AV block or worsen pre-existing block. Prophylactic pacemaker may be required in the face of bifascicular, second degree, or third degree heart block (Prod Info Lidocaine HCl intravenous injection solution, 2006; Neumar et al, 2010).
e) LIDOCAINE/MONITORING PARAMETERS 1) Monitor ECG continuously; plasma concentrations as indicated (Prod Info Lidocaine HCl intravenous injection solution, 2006).
8) NOT RECOMMENDED a) Quinidine, disopyramide, and procainamide are contraindicated as their effects on myocardial conduction are similar to that of other sodium channel blockers including propoxyphene.
F) AT RISK - FINDING 1) The toxicities of concurrently ingested drugs such as compounds of propoxyphene and aspirin or acetaminophen must also be recognized and promptly treated.
G) ACUTE LUNG INJURY 1) The use of morphine should be avoided. 2) Naloxone alone will not reverse this complication. 3) If the blood pressure, heart rate, and heart rhythm are within normal limits, positive pressure ventilation with PEEP is the treatment of choice. 4) In patients who are hypotensive (systolic BP less than 90 mmHg) or who have a central venous pressure greater than 10 mmHg, administer dopamine or dobutamine (Krantz et al, 1986; Strom, 1989). a) SUMMARY 1) Infuse 10 to 20 milliliters/kilogram of isotonic fluid and keep the patient supine. If hypotension persists, administer dopamine or norepinephrine. Consider central venous pressure monitoring to guide further fluid therapy.
b) DOPAMINE 1) DOSE: Begin at 5 micrograms per kilogram per minute progressing in 5 micrograms per kilogram per minute increments as needed (Prod Info dopamine hcl, 5% dextrose IV injection, 2004). If hypotension persists, dopamine may need to be discontinued and a more potent vasoconstrictor (eg, norepinephrine) should be considered (Prod Info dopamine hcl, 5% dextrose IV injection, 2004). 2) CAUTION: If ventricular dysrhythmias occur, decrease rate of administration (Prod Info dopamine hcl, 5% dextrose IV injection, 2004). Extravasation may cause local tissue necrosis, administration through a central venous catheter is preferred (Prod Info dopamine hcl, 5% dextrose IV injection, 2004).
c) Higher than usual doses of dopamine may be necessary (Krantz et al, 1986). H) SEROTONIN SYNDROME 1) Propoxyphene is a weak serotonin re-uptake inhibitor which can theoretically produce serotonin syndrome and has been suggested in the literature to have produced serotonin toxicity (Gillman, 2005). 2) SUMMARY a) Benzodiazepines are the mainstay of therapy. Cyproheptadine, a 5-HT antagonist, is also commonly used. Severe cases have been managed with benzodiazepine sedation and neuromuscular paralysis with non-depolarizing agents(Claassen & Gelissen, 2005).
3) HYPERTHERMIA a) Control agitation and muscle activity. Undress patient and enhance evaporative heat loss by keeping skin damp and using cooling fans. b) MUSCLE ACTIVITY: Benzodiazepines are the drug of choice to control agitation and muscle activity. DIAZEPAM: ADULT: 5 to 10 mg IV every 5 to 10 minutes as needed, monitor for respiratory depression and need for intubation. CHILD: 0.25 mg/kg IV every 5 to 10 minutes; monitor for respiratory depression and need for intubation. c) Non-depolarizing paralytics may be used in severe cases.
4) CYPROHEPTADINE a) Cyproheptadine is a non-specific 5-HT antagonist that has been shown to block development of serotonin syndrome in animals (Sternbach, 1991). Cyproheptadine has been used in the treatment of serotonin syndrome (Mills, 1997; Goldberg & Huk, 1992). There are no controlled human trials substantiating its efficacy. b) ADULT: 12 mg initially followed by 2 mg every 2 hours if symptoms persist, up to a maximum of 32 mg in 24 hours. Maintenance dose 8 mg orally repeated every 6 hours (Boyer & Shannon, 2005). c) CHILD: 0.25 mg/kg/day divided every 6 hours, maximum dose 12 mg/day (Mills, 1997).
5) HYPERTENSION a) Monitor vital signs regularly. For mild/moderate asymptomatic hypertension, pharmacologic intervention is usually not necessary.
6) HYPOTENSION a) Administer 10 to 20 mL/kg 0.9% saline bolus and place patient supine. Further fluid therapy should be guided by central venous pressure or right heart catheterization to avoid volume overload. b) Pressor agents with dopaminergic effects may theoretically worsen serotonin syndrome and should be used with caution. Direct acting agents (norepinephrine, epinephrine, phentolamine) are theoretically preferred. c) NOREPINEPHRINE 1) PREPARATION: Add 4 mL of 0.1% solution to 1000 mL of dextrose 5% in water to produce 4 mcg/mL. 2) INITIAL DOSE a) ADULT: 2 to 3 mL (8 to 12 mcg)/minute. b) ADULT or CHILD: 0.1 to 0.2 mcg/kg/min. Titrate to maintain adequate blood pressure.
3) MAINTENANCE DOSE a) 0.5 to 1 mL (2 to 4 mcg)/minute.
7) SEIZURES a) DIAZEPAM 1) MAXIMUM RATE: Administer diazepam IV over 2 to 3 minutes (maximum rate: 5 mg/min). 2) ADULT DIAZEPAM DOSE: 5 to 10 mg initially, repeat every 5 to 10 minutes as needed. Monitor for hypotension, respiratory depression and the need for endotracheal intubation. Consider a second agent if seizures persist or recur after diazepam 30 milligrams. 3) PEDIATRIC DIAZEPAM DOSE: 0.2 to 0.5 mg/kg, repeat every 5 minutes as needed. Monitor for hypotension, respiratory depression and the need for endotracheal intubation. Consider a second agent if seizures persist or recur after diazepam 10 milligrams in children over 5 years or 5 milligrams in children under 5 years of age. 4) RECTAL USE: If an intravenous line cannot be established, diazepam may be given per rectum (not FDA approved), or lorazepam may be given intramuscularly.
b) LORAZEPAM 1) MAXIMUM RATE: The rate of IV administration of lorazepam should not exceed 2 mg/min (Prod Info Ativan(R), 1991). 2) ADULT LORAZEPAM DOSE: 2 to 4 mg IV. Initial doses may be repeated in 10 to 15 minutes, if seizures persist (Prod Info ATIVAN(R) injection, 2003). 3) PEDIATRIC LORAZEPAM DOSE: 0.1 mg/kg IV push (range: 0.05 to 0.1 mg/kg; maximum dose 4 mg); may repeat dose in 5 to 10 minutes if seizures continue. It has also been given rectally at the same dose in children with no IV access (Sreenath et al, 2009; Chin et al, 2008; Wheless, 2004; Qureshi et al, 2002; De Negri & Baglietto, 2001; Mitchell, 1996; Appleton, 1995; Giang & McBride, 1988).
c) RECURRING SEIZURES 1) If seizures cannot be controlled with diazepam or recur, give phenobarbital or propofol.
d) PHENOBARBITAL 1) SERUM LEVEL MONITORING: Monitor serum levels over next 12 to 24 hours for maintenance of therapeutic levels (15 to 25 mcg/mL). 2) ADULT PHENOBARBITAL LOADING DOSE: 600 to 1200 mg of phenobarbital IV initially (10 to 20 mg/kg) diluted in 60 mL of 0.9% saline given at 25 to 50 mg/minute. 3) ADULT PHENOBARBITAL MAINTENANCE DOSE: Additional doses of 120 to 240 mg may be given every 20 minutes. 4) MAXIMUM SAFE ADULT PHENOBARBITAL DOSE: No maximum safe dose has been established. Patients in status epilepticus have received as much as 100 mg/min until seizure control was achieved or a total dose of 10 mg/kg. 5) PEDIATRIC PHENOBARBITAL LOADING DOSE: 15 to 20 mg/kg of phenobarbital intravenously at a rate of 25 to 50 mg/min. 6) PEDIATRIC PHENOBARBITAL MAINTENANCE DOSE: Repeat doses of 5 to 10 mg/kg may be given every 20 minutes. 7) MAXIMUM SAFE PEDIATRIC PHENOBARBITAL DOSE: No maximum safe dose has been established. Children in status epilepticus have received doses of 30 to 120 mg/kg within 24 hours. Vasopressors and mechanical ventilation were needed in some patients receiving these doses. 8) NEONATAL PHENOBARBITAL LOADING DOSE: 20 to 30 mg/kg IV at a rate of no more than 1 mg/kg/min in patients with no preexisting phenobarbital serum levels. 9) NEONATAL PHENOBARBITAL MAINTENANCE DOSE: Repeat doses of 2.5 mg/kg every 12 hours may be given; adjust dosage to maintain serum levels of 20 to 40 mcg/mL. 10) MAXIMUM SAFE NEONATAL PHENOBARBITAL DOSE: Doses of up to 20 mg/kg/min up to a total of 30 mg/kg have been tolerated in neonates. 11) CAUTION: Adequacy of ventilation must be continuously monitored in children and adults. Intubation may be necessary with increased doses.
8) CHLORPROMAZINE a) Chlorpromazine is a 5-HT2 receptor antagonist that has been used to treat cases of serotonin syndrome (Graham, 1997; Gillman, 1996). Controlled human trial documenting its efficacy are lacking. b) ADULT: 25 to 100 mg intramuscularly repeated in 1 hour if necessary. c) CHILD: 0.5 to 1 mg/kg repeated as needed every 6 to 12 hours not to exceed 2 mg/kg/day.
9) NOT RECOMMENDED a) BROMOCRIPTINE: It has been used in the treatment of neuroleptic malignant syndrome but is NOT RECOMMENDED in the treatment of serotonin syndrome as it has serotonergic effects (Gillman, 1997). In one case the use of bromocriptine was associated with a fatal outcome (Kline et al, 1989).
|