MOBILE VIEW  | 

PICROTOXIN

Classification   |    Detailed evidence-based information

Therapeutic Toxic Class

    A) Picrotoxin is a glucoside alkaloid natural product, formerly used as an antidote for barbiturate poisoning or as a CNS stimulant.
    B) The mechanism of action involves competitive binding of GABA receptors in the brain and alpha-adrenergic receptors in the coronary blood vessels and possibly other organs.
    C) It is a covalent compound containing one mole each of picrotoxinin and picrotin.

Specific Substances

    1) Cocculin
    2) Cocculus
    3) Cocculus, Solid (Fishberry)
    4) Coques du Levant (French)
    5) Fish Berry
    6) Indian Berry
    7) Oriental Berry
    8) PICROTIN, compd. with PICROTOXININ (1:1)
    9) Picrotoxine
    10) PICROTOXININ, compd. with PICROTIN (1:1)
    11) CAS 124-87-8
    1.2.1) MOLECULAR FORMULA
    1) C15-H18-O7.C15-H16-O6
    2) C30H34O13

Available Forms Sources

    A) FORMS
    1) Picrotoxin is a covalent compound containing one mole each of picrotoxinin and picrotin (Budavari, 1996). Picrotoxinin is the active agent; picrotin has 1/100th of the toxicity (Porter, 1967).
    B) SOURCES
    1) It is obtained from the fruit of Anamirta paniculata or Cocculus indicus (fishberries) (Lewis, 1996).
    C) USES
    1) Picrotoxin, a glucoside alkaloid natural product, has been used as an antidote for barbiturate poisoning or as a CNS stimulant (Lewis, 1996), but it is considered obsolete because of nonselective effects (EPA, 1985).

Life Support

    A) This overview assumes that basic life support measures have been instituted.

Clinical Effects

    0.2.1) SUMMARY OF EXPOSURE
    A) Picrotoxin is a type of central nervous system stimulant called an analeptic. There is little quantitative information on the effects of picrotoxin in humans except in its former role as an antidote to severe barbiturate poisoning.
    B) It may stimulate respiration, elevate blood pressure, increase or decrease temperature, induce cardiac dysrhythmias, and cause gastrointestinal distress.
    C) It has the potential to cause seizures and fatal respiratory paralysis in humans. Lethal doses have produced clonic/tonic seizures in animals.
    D) Adrenergic signs such as dilated and unresponsive pupils, salivation, and gastrointestinal hyperactivity have been seen in humans.
    0.2.3) VITAL SIGNS
    A) Slowing of pulse followed by increase pulse rate has been reported. Hyperthermia has been reported in one case and hypothermia has developed in animals. Hypertension and tachypnea have been reported.
    0.2.4) HEENT
    A) Dilation of pupils and loss of vision may occur.
    0.2.5) CARDIOVASCULAR
    A) Tachycardia, dysrhythmias, and hypertension may occur.
    0.2.6) RESPIRATORY
    A) Hyperpnea, tachypnea, and pulmonary edema may occur.
    0.2.7) NEUROLOGIC
    A) CNS stimulation including excitement, somnolence, anorexia, hyperpyrexia, sweating, muscle rigidity, hyperactivity, delirium, hallucinations, seizures, coma, and respiratory failure may be seen.
    B) All parts of the CNS are affected.
    C) Clonic/tonic seizures have been seen in animals given lethal doses.
    D) Behavioral changes have been seen in animals.
    0.2.8) GASTROINTESTINAL
    A) Nausea, vomiting, diarrhea, and salivation are common.
    0.2.9) HEPATIC
    A) Liver toxicity may occur.
    0.2.14) DERMATOLOGIC
    A) Irritation may occur from mechanical action of the dry material.
    0.2.17) METABOLISM
    A) Brain levels of alanine, ammonia, and lactic acid were increased in rats.
    0.2.20) REPRODUCTIVE
    A) At the time of this review, no data were available to assess the teratogenic potential of this agent.
    B) At the time of this review, no data were available to assess the potential effects of exposure to this agent during pregnancy or lactation.
    0.2.21) CARCINOGENICITY
    A) At the time of this review, no data were available to assess the carcinogenic or mutagenic potential of this agent.
    0.2.22) OTHER
    A) MICE - Ethanol increased the sensitivity to picrotoxin in mice.
    B) Epileptics may be more sensitive to picrotoxin.
    C) Possible antagonists include increased oxygen tension, tetrazoles, benzodiazepines, barbiturates, propanediol carbamates, cholecystokinin octapeptides, and certain steroids.

Laboratory Monitoring

    A) Plasma levels are not clinically useful.
    B) Monitor arterial blood gases, blood glucose levels, and renal function in exposed persons.
    C) Continuous ECG monitoring is recommended.

Treatment Overview

    0.4.2) ORAL/PARENTERAL EXPOSURE
    A) ACTIVATED CHARCOAL: Administer charcoal as a slurry (240 mL water/30 g charcoal). Usual dose: 25 to 100 g in adults/adolescents, 25 to 50 g in children (1 to 12 years), and 1 g/kg in infants less than 1 year old.
    B) HYPERTENSION: Monitor vital signs regularly. For mild/moderate asymptomatic hypertension (no end organ damage), pharmacologic treatment is generally not necessary. Sedation with benzodiazepines may be helpful in agitated patients with hypertension and tachycardia. For severe hypertension sodium nitroprusside is preferred. Labetalol, nitroglycerin, and phentolamine are alternatives. See main treatment section for doses.
    C) SEIZURES: Administer a benzodiazepine; DIAZEPAM (ADULT: 5 to 10 mg IV initially; repeat every 5 to 20 minutes as needed. CHILD: 0.1 to 0.5 mg/kg IV over 2 to 5 minutes; up to a maximum of 10 mg/dose. May repeat dose every 5 to 10 minutes as needed) or LORAZEPAM (ADULT: 2 to 4 mg IV initially; repeat every 5 to 10 minutes as needed, if seizures persist. CHILD: 0.05 to 0.1 mg/kg IV over 2 to 5 minutes, up to a maximum of 4 mg/dose; may repeat in 5 to 15 minutes as needed, if seizures continue).
    1) Consider phenobarbital or propofol if seizures recur after diazepam 30 mg (adults) or 10 mg (children greater than 5 years).
    2) Monitor for hypotension, dysrhythmias, respiratory depression, and need for endotracheal intubation. Evaluate for hypoglycemia, electrolyte disturbances, and hypoxia.
    D) REFRACTORY SEIZURES: Consider continuous infusion of midazolam, propofol, and/or pentobarbital. Hyperthermia, lactic acidosis and muscle destruction may necessitate use of neuromuscular blocking agents with continuous EEG monitoring.
    E) HYPOTENSION: Infuse 10 to 20 mL/kg isotonic fluid. If hypotension persists, administer dopamine (5 to 20 mcg/kg/min) or norepinephrine (ADULT: begin infusion at 0.5 to 1 mcg/min; CHILD: begin infusion at 0.1 mcg/kg/min); titrate to desired response.
    F) DIURESIS - Not effective
    G) MONITOR VITAL SIGNS frequently.
    0.4.3) INHALATION EXPOSURE
    A) Effects by the inhalation route have not been documented in humans or animals.
    B) INHALATION: Move patient to fresh air. Monitor for respiratory distress. If cough or difficulty breathing develops, evaluate for respiratory tract irritation, bronchitis, or pneumonitis. Administer oxygen and assist ventilation as required. Treat bronchospasm with an inhaled beta2-adrenergic agonist. Consider systemic corticosteroids in patients with significant bronchospasm.
    C) If respiratory tract irritation or respiratory depression is evident, monitor arterial blood gases, chest x-ray, and pulmonary function tests.
    D) If bronchospasm and wheezing occur, consider treatment with inhaled sympathomimetic agents.
    E) Carefully observe patients with inhalation exposure for the development of any systemic signs or symptoms and administer symptomatic treatment as necessary.
    0.4.4) EYE EXPOSURE
    A) Systemic effects of picrotoxin by the ocular route have not been documented in humans or animals.
    B) DECONTAMINATION: Remove contact lenses and irrigate exposed eyes with copious amounts of room temperature 0.9% saline or water for at least 15 minutes. If irritation, pain, swelling, lacrimation, or photophobia persist after 15 minutes of irrigation, the patient should be seen in a healthcare facility.
    C) Patients symptomatic following exposure should be observed in a controlled setting until all signs and symptoms have fully resolved.
    0.4.5) DERMAL EXPOSURE
    A) OVERVIEW
    1) Systemic effects of picrotoxin by the dermal route have not been documented in humans or animals.
    2) DECONTAMINATION: Remove contaminated clothing and jewelry and place them in plastic bags. Wash exposed areas with soap and water for 10 to 15 minutes with gentle sponging to avoid skin breakdown. A physician may need to examine the area if irritation or pain persists (Burgess et al, 1999).
    3) Some chemicals can produce systemic poisoning by absorption through intact skin. Carefully observe patients with dermal exposure for the development of any systemic signs or symptoms and administer symptomatic treatment as necessary.

Range Of Toxicity

    A) As little as 20 mg may cause severe poisoning; 357 mcg/kg (25 mg for a 70-kg person) has been fatal by ingestion.
    B) There is a narrow margin of safety following oral exposure. Systemic effects from inhalation, ocular or dermal exposures have not been documented.

Summary Of Exposure

    A) Picrotoxin is a type of central nervous system stimulant called an analeptic. There is little quantitative information on the effects of picrotoxin in humans except in its former role as an antidote to severe barbiturate poisoning.
    B) It may stimulate respiration, elevate blood pressure, increase or decrease temperature, induce cardiac dysrhythmias, and cause gastrointestinal distress.
    C) It has the potential to cause seizures and fatal respiratory paralysis in humans. Lethal doses have produced clonic/tonic seizures in animals.
    D) Adrenergic signs such as dilated and unresponsive pupils, salivation, and gastrointestinal hyperactivity have been seen in humans.

Vital Signs

    3.3.1) SUMMARY
    A) Slowing of pulse followed by increase pulse rate has been reported. Hyperthermia has been reported in one case and hypothermia has developed in animals. Hypertension and tachypnea have been reported.
    3.3.2) RESPIRATIONS
    A) TACHYPNEA has occurred (EPA, 1985; Billow, 1944).
    B) STIMULATION including increased minute volume may occur due to direct stimulation of the respiratory center.
    3.3.3) TEMPERATURE
    A) HYPERTHERMIA occurred in a patient given picrotoxin as an antidote to barbiturate poisoning (Billow, 1944).
    B) HYPOTHERMIA - Was consistently produced after IP administration to rats, with a maximal mean decrease of 3.2 degrees after one hour; 47% of the effect recovered within 2 hours with full recovery by 4 hours (Drummer & Wooley, 1991).
    3.3.4) BLOOD PRESSURE
    A) HYPERTENSION may occur (EPA, 1985).
    1) The elevation in blood pressure is due to direct excitation of the sympathetic nervous system in the brain (DiMicco et al, 1977a).
    3.3.5) PULSE
    A) CHANGES IN PULSE RATE - Initial slowing of pulse after institution of picrotoxin antidote treatment, followed by increase of pulse rate after several hours of intermittent picrotoxin treatment have been reported in one case (Billow, 1944).

Heent

    3.4.1) SUMMARY
    A) Dilation of pupils and loss of vision may occur.
    3.4.3) EYES
    A) Adrenergic signs such as dilated and unresponsive pupils have been reported in humans (Grant & Schuman, 1993).
    1) CASE REPORT - A woman who ate fish killed by picrotoxin experience headache, chills, salivation, dilated and unreactive pupils with loss of vision; the patient recovered (Grant & Schuman, 1993).
    B) ANIMAL STUDIES - CHROMODACRYORRHEA ("Bloody Tears" secreted from the Harderian glands) occurred in rats during tonic extensor seizure induced by picrotoxin (Hathaway et al, 1965).
    3.4.6) THROAT
    A) SALIVATION may occur (EPA, 1985).

Cardiovascular

    3.5.1) SUMMARY
    A) Tachycardia, dysrhythmias, and hypertension may occur.
    3.5.2) CLINICAL EFFECTS
    A) HYPERTENSIVE EPISODE
    1) HYPERTENSION occurred in a patient given picrotoxin as antidote to barbiturate poisoning (Billow, 1944).
    B) HYPOTENSIVE EPISODE
    1) HYPOTENSION may occur as a result of general respiratory depression following seizures.
    3.5.3) ANIMAL EFFECTS
    A) ANIMAL STUDIES
    1) TACHYCARDIA VENTRICULAR
    a) CATS - VENTRICULAR TACHYARRHYTHMIAS occurred in acute poisoning in cats (DiMicco et al, 1977b).
    2) CORONARY ARTERY DISORDER
    a) CATS - CORONARY CONSTRICTION, increased vascular resistance and ST segment elevation were seen in cats given 2 mg/kg IV (Segal et al, 1981).
    1) Cardiovascular effects in cats were counteracted by nitroglycerin (Varma & Melville, 1962).
    2) Pretreatment with phentolamine prevented picrotoxin-induced cardiac dysrhythmias in cats, but propranolol and practolol did not (DiMicco et al, 1977b).
    3) Picrotoxin appeared to induce coronary constriction by direct action on the alpha-adrenergic receptors in the coronary arteries (Segal et al, 1981).

Respiratory

    3.6.1) SUMMARY
    A) Hyperpnea, tachypnea, and pulmonary edema may occur.
    3.6.2) CLINICAL EFFECTS
    A) DISORDER OF RESPIRATORY SYSTEM
    1) STIMULATION - Picrotoxin may stimulate the respiratory center in the brain (Budavari, 1996; Billow, 1944).
    B) IRRITATION SYMPTOM
    1) IRRITATION may occur from inhalation.
    C) ACUTE LUNG INJURY
    1) Respiratory tract irritation, if severe, can progress to pulmonary edema which may be delayed in onset up to 24 to 72 hours after exposure in some cases.

Neurologic

    3.7.1) SUMMARY
    A) CNS stimulation including excitement, somnolence, anorexia, hyperpyrexia, sweating, muscle rigidity, hyperactivity, delirium, hallucinations, seizures, coma, and respiratory failure may be seen.
    B) All parts of the CNS are affected.
    C) Clonic/tonic seizures have been seen in animals given lethal doses.
    D) Behavioral changes have been seen in animals.
    3.7.2) CLINICAL EFFECTS
    A) CENTRAL NERVOUS SYSTEM FINDING
    1) In general, analeptics can cause anorexia, hyperpyrexia, sweating, flushing, muscle rigidity, spasticity, delirium, hallucinations, seizures, coma, and respiratory failure.
    B) CENTRAL STIMULANT ADVERSE REACTION
    1) Picrotoxin caused excitement and somnolence when 357 mcg/kg was ingested by a human (RTECS , 2000).
    2) It affects all parts of the central nervous system (EPA, 1985).
    C) CENTRAL NERVOUS SYSTEM DEFICIT
    1) Central nervous system depression following seizures may be fatal.
    D) MYOCLONUS
    1) HYPERACTIVITY and myoclonic movements of skeletal muscles have occurred in patients receiving picrotoxin as an antidote to barbiturate poisoning (Billow, 1944).
    E) PARALYSIS
    1) PARALYSIS may occur at high doses (Billow, 1944).
    F) HEADACHE
    1) HEADACHE may occur (Grant & Schuman, 1993).
    3.7.3) ANIMAL EFFECTS
    A) ANIMAL STUDIES
    1) SEIZURES
    a) Picrotoxin produced seizures in MICE and RABBITS when given at 5 mcg/kg intracerebrally or 1016 mcg/kg IV, respectively (RTECS , 2000).
    b) RATS given a lethal dose of 19 mg/kg IP exhibited continuous and increasingly violent clonic seizures, followed by tonic extensor seizure and flaccid paralysis, with a second round of increasingly less severe clonic seizures (Hathaway et al, 1965).
    c) DOGS given approximately 8.5 mL of a 0.5% solution showed tonic/clonic seizures and shock with a latency of 3 to 30 minutes before seizures and 10 to 60 minutes before collapse or death (Hahn and Oberdorf, 1962).
    1) Similar effects were also seen in MICE and RATS (Hahn and Oberdorg, 1962).
    2) PERSONALITY DISORDER
    a) RATS - Behavioral changes, including contralateral turning, upward sniffing, increased grooming and ipsilateral barrel rolling, were seen in rats given 50 to 250 mcg by intracranial injection (Zainos et al, 1984).
    3) DYSKINESIA
    a) BABOONS - Hemiballismus (gross involuntary movements on one side) was produced by injection of 12 mcg of picrotoxin into the globus/subthalamic nucleus of the brain in baboons (Crossman et al, 1980).

Gastrointestinal

    3.8.1) SUMMARY
    A) Nausea, vomiting, diarrhea, and salivation are common.
    3.8.2) CLINICAL EFFECTS
    A) VOMITING
    1) FREQUENT VOMITING may be seen in picrotoxin poisoning or as a side effect of barbiturate antidote therapy (EPA, 1985; Billow, 1944).
    B) NAUSEA
    1) NAUSEA occurred in a patient receiving picrotoxin antidote therapy (Billow, 1944).
    C) DIARRHEA
    1) DIARRHEA occurred in a patient receiving picrotoxin antidote therapy (Billow, 1944).
    D) DRUG-INDUCED GASTROINTESTINAL DISTURBANCE
    1) Gastrointestinal hyperactivity may be a consequence of the anti-adrenergic effect of picrotoxin.
    E) EXCESSIVE SALIVATION
    1) Salivation is common (EPA, 1985).

Hepatic

    3.9.1) SUMMARY
    A) Liver toxicity may occur.
    3.9.2) CLINICAL EFFECTS
    A) LIVER DAMAGE
    1) Liver toxicity may occur but has not been documented in humans.

Dermatologic

    3.14.1) SUMMARY
    A) Irritation may occur from mechanical action of the dry material.
    3.14.2) CLINICAL EFFECTS
    A) DERMATITIS
    1) IRRITATION may occur from direct contact with the skin by mechanical action because this agent is a relatively insoluble dry material.

Reproductive

    3.20.1) SUMMARY
    A) At the time of this review, no data were available to assess the teratogenic potential of this agent.
    B) At the time of this review, no data were available to assess the potential effects of exposure to this agent during pregnancy or lactation.
    3.20.2) TERATOGENICITY
    A) LACK OF INFORMATION
    1) At the time of this review, no data were available to assess the teratogenic potential of this agent.
    3.20.3) EFFECTS IN PREGNANCY
    A) LACK OF INFORMATION
    1) At the time of this review, no data were available to assess the potential effects of exposure to this agent during pregnancy or lactation.
    3.20.4) EFFECTS DURING BREAST-FEEDING
    A) LACK OF INFORMATION
    1) At the time of this review, no data were available to assess the potential effects of exposure to this agent during pregnancy or lactation.

Carcinogenicity

    3.21.1) IARC CATEGORY
    A) IARC Carcinogenicity Ratings for CAS124-87-8 (International Agency for Research on Cancer (IARC), 2016; International Agency for Research on Cancer, 2015; IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, 2010; IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, 2010a; IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, 2008; IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, 2007; IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, 2006; IARC, 2004):
    1) Not Listed
    3.21.2) SUMMARY/HUMAN
    A) At the time of this review, no data were available to assess the carcinogenic or mutagenic potential of this agent.
    3.21.3) HUMAN STUDIES
    A) LACK OF INFORMATION
    1) At the time of this review, no data were available to assess the carcinogenic or mutagenic potential of this agent.

Monitoring Parameters Levels

    4.1.1) SUMMARY
    A) Plasma levels are not clinically useful.
    B) Monitor arterial blood gases, blood glucose levels, and renal function in exposed persons.
    C) Continuous ECG monitoring is recommended.
    4.1.2) SERUM/BLOOD
    A) ACID/BASE
    1) Monitor arterial blood gases.
    B) BLOOD/SERUM CHEMISTRY
    1) Monitor blood glucose levels and renal function tests.
    4.1.4) OTHER
    A) OTHER
    1) PULMONARY FUNCTION TESTS
    a) If respiratory tract irritation is present, it may be useful to monitor pulmonary function tests.
    2) MONITORING
    a) Monitor body temperature.
    3) ECG
    a) Continuous ECG monitoring is recommended in all overdose cases.

Radiographic Studies

    A) CHEST RADIOGRAPH
    1) If respiratory tract irritation is present, monitor chest x-ray.

Methods

    A) OTHER
    1) Not available in clinical setting--blood gases and glucose may assist management.

Dermal Exposure

    6.9.1) DECONTAMINATION
    A) DECONTAMINATION: Remove contaminated clothing and jewelry and place them in plastic bags. Wash exposed areas with soap and water for 10 to 15 minutes with gentle sponging to avoid skin breakdown. A physician may need to examine the area if irritation or pain persists (Burgess et al, 1999).

Enhanced Elimination

    A) HEMODIALYSIS
    1) No studies have addressed the utilization of extracorporeal elimination techniques in poisoning with this agent.

Life Support

    A) Support respiratory and cardiovascular function.

Monitoring

    A) Plasma levels are not clinically useful.
    B) Monitor arterial blood gases, blood glucose levels, and renal function in exposed persons.
    C) Continuous ECG monitoring is recommended.

Oral Exposure

    6.5.1) PREVENTION OF ABSORPTION/PREHOSPITAL
    A) ACTIVATED CHARCOAL
    1) PREHOSPITAL ACTIVATED CHARCOAL ADMINISTRATION
    a) Consider prehospital administration of activated charcoal as an aqueous slurry in patients with a potentially toxic ingestion who are awake and able to protect their airway. Activated charcoal is most effective when administered within one hour of ingestion. Administration in the prehospital setting has the potential to significantly decrease the time from toxin ingestion to activated charcoal administration, although it has not been shown to affect outcome (Alaspaa et al, 2005; Thakore & Murphy, 2002; Spiller & Rogers, 2002).
    1) In patients who are at risk for the abrupt onset of seizures or mental status depression, activated charcoal should not be administered in the prehospital setting, due to the risk of aspiration in the event of spontaneous emesis.
    2) The addition of flavoring agents (cola drinks, chocolate milk, cherry syrup) to activated charcoal improves the palatability for children and may facilitate successful administration (Guenther Skokan et al, 2001; Dagnone et al, 2002).
    2) CHARCOAL DOSE
    a) Use a minimum of 240 milliliters of water per 30 grams charcoal (FDA, 1985). Optimum dose not established; usual dose is 25 to 100 grams in adults and adolescents; 25 to 50 grams in children aged 1 to 12 years (or 0.5 to 1 gram/kilogram body weight) ; and 0.5 to 1 gram/kilogram in infants up to 1 year old (Chyka et al, 2005).
    1) Routine use of a cathartic with activated charcoal is NOT recommended as there is no evidence that cathartics reduce drug absorption and cathartics are known to cause adverse effects such as nausea, vomiting, abdominal cramps, electrolyte imbalances and occasionally hypotension (None Listed, 2004).
    b) ADVERSE EFFECTS/CONTRAINDICATIONS
    1) Complications: emesis, aspiration (Chyka et al, 2005). Aspiration may be complicated by acute respiratory failure, ARDS, bronchiolitis obliterans or chronic lung disease (Golej et al, 2001; Graff et al, 2002; Pollack et al, 1981; Harris & Filandrinos, 1993; Elliot et al, 1989; Rau et al, 1988; Golej et al, 2001; Graff et al, 2002). Refer to the ACTIVATED CHARCOAL/TREATMENT management for further information.
    2) Contraindications: unprotected airway (increases risk/severity of aspiration) , nonfunctioning gastrointestinal tract, uncontrolled vomiting, and ingestion of most hydrocarbons (Chyka et al, 2005).
    6.5.2) PREVENTION OF ABSORPTION
    A) ACTIVATED CHARCOAL
    1) CHARCOAL ADMINISTRATION
    a) Consider administration of activated charcoal after a potentially toxic ingestion (Chyka et al, 2005). Administer charcoal as an aqueous slurry; most effective when administered within one hour of ingestion.
    2) CHARCOAL DOSE
    a) Use a minimum of 240 milliliters of water per 30 grams charcoal (FDA, 1985). Optimum dose not established; usual dose is 25 to 100 grams in adults and adolescents; 25 to 50 grams in children aged 1 to 12 years (or 0.5 to 1 gram/kilogram body weight) ; and 0.5 to 1 gram/kilogram in infants up to 1 year old (Chyka et al, 2005).
    1) Routine use of a cathartic with activated charcoal is NOT recommended as there is no evidence that cathartics reduce drug absorption and cathartics are known to cause adverse effects such as nausea, vomiting, abdominal cramps, electrolyte imbalances and occasionally hypotension (None Listed, 2004).
    b) ADVERSE EFFECTS/CONTRAINDICATIONS
    1) Complications: emesis, aspiration (Chyka et al, 2005). Aspiration may be complicated by acute respiratory failure, ARDS, bronchiolitis obliterans or chronic lung disease (Golej et al, 2001; Graff et al, 2002; Pollack et al, 1981; Harris & Filandrinos, 1993; Elliot et al, 1989; Rau et al, 1988; Golej et al, 2001; Graff et al, 2002). Refer to the ACTIVATED CHARCOAL/TREATMENT management for further information.
    2) Contraindications: unprotected airway (increases risk/severity of aspiration) , nonfunctioning gastrointestinal tract, uncontrolled vomiting, and ingestion of most hydrocarbons (Chyka et al, 2005).
    6.5.3) TREATMENT
    A) HYPERTENSIVE EPISODE
    1) Monitor vital signs regularly. For mild/moderate hypertension without evidence of end organ damage, pharmacologic intervention is generally not necessary. Sedative agents such as benzodiazepines may be helpful in treating hypertension and tachycardia in agitated patients, especially if a sympathomimetic agent is involved in the poisoning.
    2) For hypertensive emergencies (severe hypertension with evidence of end organ injury (CNS, cardiac, renal), or emergent need to lower mean arterial pressure 20% to 25% within one hour), sodium nitroprusside is preferred. Nitroglycerin and phentolamine are possible alternatives.
    B) MALIGNANT HYPERTENSION
    1) SODIUM NITROPRUSSIDE/INDICATIONS
    a) Useful for emergent treatment of severe hypertension secondary to poisonings. Sodium nitroprusside has a rapid onset of action, a short duration of action and a half-life of about 2 minutes (Prod Info NITROPRESS(R) injection for IV infusion, 2007) that can allow accurate titration of blood pressure, as the hypertensive effects of drug overdoses are often short lived.
    2) SODIUM NITROPRUSSIDE/DOSE
    a) ADULT: Begin intravenous infusion at 0.1 microgram/kilogram/minute and titrate to desired effect; up to 10 micrograms/kilogram/minute may be required (American Heart Association, 2005). Frequent hemodynamic monitoring and administration by an infusion pump that ensures a precise flow rate is mandatory (Prod Info NITROPRESS(R) injection for IV infusion, 2007). PEDIATRIC: Initial: 0.5 to 1 microgram/kilogram/minute; titrate to effect up to 8 micrograms/kilogram/minute (Kleinman et al, 2010).
    3) SODIUM NITROPRUSSIDE/SOLUTION PREPARATION
    a) The reconstituted 50 mg solution must be further diluted in 250 to 1000 mL D5W to desired concentration (recommended 50 to 200 mcg/mL) (Prod Info NITROPRESS(R) injection, 2004). Prepare fresh every 24 hours; wrap in aluminum foil. Discard discolored solution (Prod Info NITROPRESS(R) injection for IV infusion, 2007).
    4) SODIUM NITROPRUSSIDE/MAJOR ADVERSE REACTIONS
    a) Severe hypotension; headaches, nausea, vomiting, abdominal cramps; thiocyanate or cyanide toxicity (generally from prolonged, high dose infusion); methemoglobinemia; lactic acidosis; chest pain or dysrhythmias (high doses) (Prod Info NITROPRESS(R) injection for IV infusion, 2007). The addition of 1 gram of sodium thiosulfate to each 100 milligrams of sodium nitroprusside for infusion may help to prevent cyanide toxicity in patients receiving prolonged or high dose infusions (Prod Info NITROPRESS(R) injection for IV infusion, 2007).
    5) SODIUM NITROPRUSSIDE/MONITORING PARAMETERS
    a) Monitor blood pressure every 30 to 60 seconds at onset of infusion; once stabilized, monitor every 5 minutes. Continuous blood pressure monitoring with an intra-arterial catheter is advised (Prod Info NITROPRESS(R) injection for IV infusion, 2007).
    6) NITROGLYCERIN/INDICATIONS
    a) May be used to control hypertension, and is particularly useful in patients with acute coronary syndromes or acute pulmonary edema (Rhoney & Peacock, 2009).
    7) NITROGLYCERIN/ADULT DOSE
    a) Begin infusion at 10 to 20 mcg/min and increase by 5 or 10 mcg/min every 5 to 10 minutes until the desired hemodynamic response is achieved (American Heart Association, 2005). Maximum rate 200 mcg/min (Rhoney & Peacock, 2009).
    8) NITROGLYCERIN/PEDIATRIC DOSE
    a) Usual Dose: 29 days or Older: 1 to 5 mcg/kg/min continuous IV infusion. Maximum 60 mcg/kg/min (Laitinen et al, 1997; Nam et al, 1989; Rasch & Lancaster, 1987; Ilbawi et al, 1985; Friedman & George, 1985).
    C) SEIZURE
    1) SUMMARY
    a) Attempt initial control with a benzodiazepine (eg, diazepam, lorazepam). If seizures persist or recur, administer phenobarbital or propofol.
    b) Monitor for respiratory depression, hypotension, and dysrhythmias. Endotracheal intubation should be performed in patients with persistent seizures.
    c) Evaluate for hypoxia, electrolyte disturbances, and hypoglycemia (or, if immediate bedside glucose testing is not available, treat with intravenous dextrose).
    2) DIAZEPAM
    a) ADULT DOSE: Initially 5 to 10 mg IV, OR 0.15 mg/kg IV up to 10 mg per dose up to a rate of 5 mg/minute; may be repeated every 5 to 20 minutes as needed (Brophy et al, 2012; Prod Info diazepam IM, IV injection, 2008; Manno, 2003).
    b) PEDIATRIC DOSE: 0.1 to 0.5 mg/kg IV over 2 to 5 minutes; up to a maximum of 10 mg/dose. May repeat dose every 5 to 10 minutes as needed (Loddenkemper & Goodkin, 2011; Hegenbarth & American Academy of Pediatrics Committee on Drugs, 2008).
    c) Monitor for hypotension, respiratory depression, and the need for endotracheal intubation. Consider a second agent if seizures persist or recur after repeated doses of diazepam .
    3) NO INTRAVENOUS ACCESS
    a) DIAZEPAM may be given rectally or intramuscularly (Manno, 2003). RECTAL DOSE: CHILD: Greater than 12 years: 0.2 mg/kg; 6 to 11 years: 0.3 mg/kg; 2 to 5 years: 0.5 mg/kg (Brophy et al, 2012).
    b) MIDAZOLAM has been used intramuscularly and intranasally, particularly in children when intravenous access has not been established. ADULT DOSE: 0.2 mg/kg IM, up to a maximum dose of 10 mg (Brophy et al, 2012). PEDIATRIC DOSE: INTRAMUSCULAR: 0.2 mg/kg IM, up to a maximum dose of 7 mg (Chamberlain et al, 1997) OR 10 mg IM (weight greater than 40 kg); 5 mg IM (weight 13 to 40 kg); INTRANASAL: 0.2 to 0.5 mg/kg up to a maximum of 10 mg/dose (Loddenkemper & Goodkin, 2011; Brophy et al, 2012). BUCCAL midazolam, 10 mg, has been used in adolescents and older children (5-years-old or more) to control seizures when intravenous access was not established (Scott et al, 1999).
    4) LORAZEPAM
    a) MAXIMUM RATE: The rate of intravenous administration of lorazepam should not exceed 2 mg/min (Brophy et al, 2012; Prod Info lorazepam IM, IV injection, 2008).
    b) ADULT DOSE: 2 to 4 mg IV initially; repeat every 5 to 10 minutes as needed, if seizures persist (Manno, 2003; Brophy et al, 2012).
    c) PEDIATRIC DOSE: 0.05 to 0.1 mg/kg IV over 2 to 5 minutes, up to a maximum of 4 mg/dose; may repeat in 5 to 15 minutes as needed, if seizures continue (Brophy et al, 2012; Loddenkemper & Goodkin, 2011; Hegenbarth & American Academy of Pediatrics Committee on Drugs, 2008; Sreenath et al, 2009; Chin et al, 2008).
    5) PHENOBARBITAL
    a) ADULT LOADING DOSE: 20 mg/kg IV at an infusion rate of 50 to 100 mg/minute IV. An additional 5 to 10 mg/kg dose may be given 10 minutes after loading infusion if seizures persist or recur (Brophy et al, 2012).
    b) Patients receiving high doses will require endotracheal intubation and may require vasopressor support (Brophy et al, 2012).
    c) PEDIATRIC LOADING DOSE: 20 mg/kg may be given as single or divided application (2 mg/kg/minute in children weighing less than 40 kg up to 100 mg/min in children weighing greater than 40 kg). A plasma concentration of about 20 mg/L will be achieved by this dose (Loddenkemper & Goodkin, 2011).
    d) REPEAT PEDIATRIC DOSE: Repeat doses of 5 to 20 mg/kg may be given every 15 to 20 minutes if seizures persist, with cardiorespiratory monitoring (Loddenkemper & Goodkin, 2011).
    e) MONITOR: For hypotension, respiratory depression, and the need for endotracheal intubation (Loddenkemper & Goodkin, 2011; Manno, 2003).
    f) SERUM CONCENTRATION MONITORING: Monitor serum concentrations over the next 12 to 24 hours. Therapeutic serum concentrations of phenobarbital range from 10 to 40 mcg/mL, although the optimal plasma concentration for some individuals may vary outside this range (Hvidberg & Dam, 1976; Choonara & Rane, 1990; AMA Department of Drugs, 1992).
    6) OTHER AGENTS
    a) If seizures persist after phenobarbital, propofol or pentobarbital infusion, or neuromuscular paralysis with general anesthesia (isoflurane) and continuous EEG monitoring should be considered (Manno, 2003). Other anticonvulsants can be considered (eg, valproate sodium, levetiracetam, lacosamide, topiramate) if seizures persist or recur; however, there is very little data regarding their use in toxin induced seizures, controlled trials are not available to define the optimal dosage ranges for these agents in status epilepticus (Brophy et al, 2012):
    1) VALPROATE SODIUM: ADULT DOSE: An initial dose of 20 to 40 mg/kg IV, at a rate of 3 to 6 mg/kg/minute; may give an additional dose of 20 mg/kg 10 minutes after loading infusion. PEDIATRIC DOSE: 1.5 to 3 mg/kg/minute (Brophy et al, 2012).
    2) LEVETIRACETAM: ADULT DOSE: 1000 to 3000 mg IV, at a rate of 2 to 5 mg/kg/min IV. PEDIATRIC DOSE: 20 to 60 mg/kg IV (Brophy et al, 2012; Loddenkemper & Goodkin, 2011).
    3) LACOSAMIDE: ADULT DOSE: 200 to 400 mg IV; 200 mg IV over 15 minutes (Brophy et al, 2012). PEDIATRIC DOSE: In one study, median starting doses of 1.3 mg/kg/day and maintenance doses of 4.7 mg/kg/day were used in children 8 years and older (Loddenkemper & Goodkin, 2011).
    4) TOPIRAMATE: ADULT DOSE: 200 to 400 mg nasogastric/orally OR 300 to 1600 mg/day orally divided in 2 to 4 times daily (Brophy et al, 2012).
    7) PHENYTOIN/FOSPHENYTOIN
    a) Benzodiazepines and/or barbiturates are preferred to phenytoin or fosphenytoin in the treatment of drug or withdrawal induced seizures (Wallace, 2005).
    b) PHENYTOIN
    1) PHENYTOIN INTRAVENOUS PUSH VERSUS INTRAVENOUS INFUSION
    a) Administer phenytoin undiluted, by very slow intravenous push or dilute 50 mg/mL solution in 50 to 100 mL of 0.9% saline.
    b) ADULT DOSE: A loading dose of 20 mg/kg IV; may administer an additional 5 to 10 mg/kg dose 10 minutes after loading dose. Rate of administration should not exceed 50 mg/minute (Brophy et al, 2012).
    c) PEDIATRIC DOSE: A loading dose of 20 mg/kg, at a rate not exceeding 1 to 3 mg/kg/min or 50 mg/min, whichever is slower (Loddenkemper & Goodkin, 2011; Prod Info Dilantin(R) intravenous injection, intramuscular injection, 2013).
    d) CAUTIONS: Administer phenytoin while monitoring ECG. Stop or slow infusion if dysrhythmias or hypotension occur. Be careful not to extravasate. Follow each injection with injection of sterile saline through the same needle (Prod Info Dilantin(R) intravenous injection, intramuscular injection, 2013).
    e) SERUM CONCENTRATION MONITORING: Monitor serum concentrations over next 12 to 24 hours for maintenance of therapeutic concentrations. Therapeutic concentrations of 10 to 20 mcg/mL have been reported (Prod Info Dilantin(R) intravenous injection, intramuscular injection, 2013).
    c) FOSPHENYTOIN
    1) ADULT DOSE: A loading dose of 20 mg phenytoin equivalent/kg IV, at a rate not exceeding 150 mg phenytoin equivalent/minute; may give additional dose of 5 mg/kg 10 minutes after the loading infusion (Brophy et al, 2012).
    2) CHILD DOSE: 20 mg phenytoin equivalent/kg IV, at a rate of 3 mg phenytoin equivalent/kg/minute, up to a maximum of 150 mg phenytoin equivalent/minute (Loddenkemper & Goodkin, 2011).
    3) CAUTIONS: Perform continuous monitoring of ECG, respiratory function, and blood pressure throughout the period where maximal serum phenytoin concentrations occur (about 10 to 20 minutes after the end of fosphenytoin infusion) (Prod Info CEREBYX(R) intravenous injection, 2014).
    4) SERUM CONCENTRATION MONITORING: Monitor serum phenytoin concentrations over the next 12 to 24 hours; therapeutic levels 10 to 20 mcg/mL. Do not obtain serum phenytoin concentrations until at least 2 hours after infusion is complete to allow for conversion of fosphenytoin to phenytoin (Prod Info CEREBYX(R) intravenous injection, 2014).
    8) RECURRING SEIZURES
    a) If seizures are not controlled by the above measures, patients will require endotracheal intubation, mechanical ventilation, continuous EEG monitoring, a continuous infusion of an anticonvulsant, and may require neuromuscular paralysis and vasopressor support. Consider continuous infusions of the following agents:
    1) MIDAZOLAM: ADULT DOSE: An initial dose of 0.2 mg/kg slow bolus, at an infusion rate of 2 mg/minute; maintenance doses of 0.05 to 2 mg/kg/hour continuous infusion dosing, titrated to EEG (Brophy et al, 2012). PEDIATRIC DOSE: 0.1 to 0.3 mg/kg followed by a continuous infusion starting at 1 mcg/kg/minute, titrated upwards every 5 minutes as needed (Loddenkemper & Goodkin, 2011).
    2) PROPOFOL: ADULT DOSE: Start at 20 mcg/kg/min with 1 to 2 mg/kg loading dose; maintenance doses of 30 to 200 mcg/kg/minute continuous infusion dosing, titrated to EEG; caution with high doses greater than 80 mcg/kg/minute in adults for extended periods of time (ie, longer than 48 hours) (Brophy et al, 2012); PEDIATRIC DOSE: IV loading dose of up to 2 mg/kg; maintenance doses of 2 to 5 mg/kg/hour may be used in older adolescents; avoid doses of 5 mg/kg/hour over prolonged periods because of propofol infusion syndrome (Loddenkemper & Goodkin, 2011); caution with high doses greater than 65 mcg/kg/min in children for extended periods of time; contraindicated in small children (Brophy et al, 2012).
    3) PENTOBARBITAL: ADULT DOSE: A loading dose of 5 to 15 mg/kg at an infusion rate of 50 mg/minute or lower; may administer additional 5 to 10 mg/kg. Maintenance dose of 0.5 to 5 mg/kg/hour continuous infusion dosing, titrated to EEG (Brophy et al, 2012). PEDIATRIC DOSE: A loading dose of 3 to 15 mg/kg followed by a maintenance dose of 1 to 5 mg/kg/hour (Loddenkemper & Goodkin, 2011).
    4) THIOPENTAL: ADULT DOSE: 2 to 7 mg/kg, at an infusion rate of 50 mg/minute or lower. Maintenance dose of 0.5 to 5 mg/kg/hour continuous infusing dosing, titrated to EEG (Brophy et al, 2012)
    b) Endotracheal intubation, mechanical ventilation, and vasopressors will be required (Brophy et al, 2012) and consultation with a neurologist is strongly advised.
    c) Neuromuscular paralysis (eg, rocuronium bromide, a short-acting nondepolarizing agent) may be required to avoid hyperthermia, severe acidosis, and rhabdomyolysis. If rhabdomyolysis is possible, avoid succinylcholine chloride, because of the risk of hyperkalemic-induced cardiac dysrhythmias. Continuous EEG monitoring is mandatory if neuromuscular paralysis is used (Manno, 2003).
    D) HYPOTENSIVE EPISODE
    1) SUMMARY
    a) Infuse 10 to 20 milliliters/kilogram of isotonic fluid and keep the patient supine. If hypotension persists, administer dopamine or norepinephrine. Consider central venous pressure monitoring to guide further fluid therapy.
    2) DOPAMINE
    a) DOSE: Begin at 5 micrograms per kilogram per minute progressing in 5 micrograms per kilogram per minute increments as needed (Prod Info dopamine hcl, 5% dextrose IV injection, 2004). If hypotension persists, dopamine may need to be discontinued and a more potent vasoconstrictor (eg, norepinephrine) should be considered (Prod Info dopamine hcl, 5% dextrose IV injection, 2004).
    b) CAUTION: If ventricular dysrhythmias occur, decrease rate of administration (Prod Info dopamine hcl, 5% dextrose IV injection, 2004). Extravasation may cause local tissue necrosis, administration through a central venous catheter is preferred (Prod Info dopamine hcl, 5% dextrose IV injection, 2004).
    3) NOREPINEPHRINE
    a) PREPARATION: 4 milligrams (1 amp) added to 1000 milliliters of diluent provides a concentration of 4 micrograms/milliliter of norepinephrine base. Norepinephrine bitartrate should be mixed in dextrose solutions (dextrose 5% in water, dextrose 5% in saline) since dextrose-containing solutions protect against excessive oxidation and subsequent potency loss. Administration in saline alone is not recommended (Prod Info norepinephrine bitartrate injection, 2005).
    b) DOSE
    1) ADULT: Dose range: 0.1 to 0.5 microgram/kilogram/minute (eg, 70 kg adult 7 to 35 mcg/min); titrate to maintain adequate blood pressure (Peberdy et al, 2010).
    2) CHILD: Dose range: 0.1 to 2 micrograms/kilogram/minute; titrate to maintain adequate blood pressure (Kleinman et al, 2010).
    3) CAUTION: Extravasation may cause local tissue ischemia, administration by central venous catheter is advised (Peberdy et al, 2010).

Inhalation Exposure

    6.7.1) DECONTAMINATION
    A) INHALATION: Move patient to fresh air. Monitor for respiratory distress. If cough or difficulty breathing develops, evaluate for respiratory tract irritation, bronchitis, or pneumonitis. Administer oxygen and assist ventilation as required. Treat bronchospasm with an inhaled beta2-adrenergic agonist. Consider systemic corticosteroids in patients with significant bronchospasm.
    6.7.2) TREATMENT
    A) OBSERVATION REGIMES
    1) Carefully observe patients with inhalation exposure for the development of any systemic signs or symptoms and administer symptomatic treatment as necessary.
    B) IRRITATION SYMPTOM
    1) If respiratory tract irritation or respiratory depression is evident, monitor arterial blood gases, chest x-ray, and pulmonary function tests.
    C) BRONCHOSPASM
    1) If bronchospasm and wheezing occur, consider treatment with inhaled sympathomimetic agents.
    D) Treatment should include recommendations listed in the ORAL EXPOSURE section when appropriate.

Eye Exposure

    6.8.1) DECONTAMINATION
    A) DECONTAMINATION: Remove contact lenses and irrigate exposed eyes with copious amounts of room temperature 0.9% saline or water for at least 15 minutes. If irritation, pain, swelling, lacrimation, or photophobia persist after 15 minutes of irrigation, the patient should be seen in a healthcare facility.
    6.8.2) TREATMENT
    A) SUPPORT
    1) Patients symptomatic following exposure should be observed in a controlled setting until all signs and symptoms have fully resolved.
    B) Treatment should include recommendations listed in the ORAL EXPOSURE section when appropriate.

Case Reports

    A) ADVERSE EFFECTS
    1) A 24-year-old female nurse intentionally swallowed 3g of Nembutal (sodium pentobarbital). Five hours after admission and treatment with cosamine and metrazole and gastric lavage, she was treated with repetitive doses of picrotoxin IV: 2 doses of 2 Milliliters of 0.3 per cent (6 mg) at 15-minute interval, followed by 2 doses of 1 Milliliter every 15 minutes, 1 Milliliter half-hourly for 4 hours, and 1 Milliliter every 45 minutes for 8 hours.
    2) Improvement in the patient's comatose state was seen and picrotoxin was withdrawn; this was followed by a period of depression. Picrotoxin was re-instituted at a dosage of 1 Milliliter every 15 minutes for two doses and then every 45 minutes for 11 hours. Picrotoxin was discontinued when the patient showed signs of hyperactivity (Billow, 1944).
    B) ADULT
    1) A woman who ate fish killed by picrotoxin had headache, chills, salivation, dilated and unreactive pupils with loss of vision; the patient recovered (Grant, 1986).

Summary

    A) As little as 20 mg may cause severe poisoning; 357 mcg/kg (25 mg for a 70-kg person) has been fatal by ingestion.
    B) There is a narrow margin of safety following oral exposure. Systemic effects from inhalation, ocular or dermal exposures have not been documented.

Therapeutic Dose

    7.2.1) ADULT
    A) GENERAL
    1) Formerly picrotoxin may have been given as an antidote to severe barbiturate poisoning; 1 milligram was effective antidote for 30 to 40 milligrams of sodium pentobarbital (Billow, 1944).
    2) NOTE, HOWEVER, THAT THE USE OF PICROTOXIN IN CLINICAL PRACTICE IS CURRENTLY
    a) OUT OF FAVOR BECAUSE OF NONSELECTIVE EFFECTS (Myschetzky, 1966; EPA, 1985). ITS USE AS AN ANTIDOTE IS NOT RECOMMENDED.
    3) Picrotoxin has a narrow margin of safety following oral exposure (Billow, 1944).

Minimum Lethal Exposure

    A) ACUTE
    1) LDLo (ORAL) HUMAN - 357 mcg/kg (RTECS , 2000)
    2) LDLo (UNKNOWN) MAN - 1,471 mcg/kg (RTECS , 2000)

Maximum Tolerated Exposure

    A) ACUTE
    1) 20 milligrams may cause severe poisoning (EPA, 1985).
    B) ANIMAL DATA
    1) 0.3 milligram injected subcutaneously produced no clear analeptic response in narcotized rats (Tainter et al, 1939).

Serum Plasma Blood Concentrations

    7.5.2) TOXIC CONCENTRATIONS
    A) TOXIC CONCENTRATION LEVELS
    1) GENERAL
    a) No information was available relating serum or blood concentrations with clinical effects. It is more appropriate to monitor the patient for clinical signs and treat symptomatically.

Workplace Standards

    A) ACGIH TLV Values for CAS124-87-8 (American Conference of Governmental Industrial Hygienists, 2010):
    1) Not Listed

    B) NIOSH REL and IDLH Values for CAS124-87-8 (National Institute for Occupational Safety and Health, 2007):
    1) Not Listed

    C) Carcinogenicity Ratings for CAS124-87-8 :
    1) ACGIH (American Conference of Governmental Industrial Hygienists, 2010): Not Listed
    2) EPA (U.S. Environmental Protection Agency, 2011): Not Listed
    3) IARC (International Agency for Research on Cancer (IARC), 2016; International Agency for Research on Cancer, 2015; IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, 2010; IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, 2010a; IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, 2008; IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, 2007; IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, 2006; IARC, 2004): Not Listed
    4) NIOSH (National Institute for Occupational Safety and Health, 2007): Not Listed
    5) MAK (DFG, 2002): Not Listed
    6) NTP (U.S. Department of Health and Human Services, Public Health Service, National Toxicology Project ): Not Listed

    D) OSHA PEL Values for CAS124-87-8 (U.S. Occupational Safety, and Health Administration (OSHA), 2010):
    1) Not Listed

Toxicity Information

    7.7.1) TOXICITY VALUES
    A) References: RTECS, 2000 Hahn and Oberdorf, 1962; Selye, 1970 Greenblatt & Osterberg, 1961 Hart, 1974
    1) LD50- (INTRAPERITONEAL)MOUSE:
    a) 11 mg/kg
    2) LD50- (ORAL)MOUSE:
    a) 15 mg/kg
    b) Housed singly, 30 mg/kg
    c) Housed in groups, 19 mg/kg
    3) LD50- (SUBCUTANEOUS)MOUSE:
    a) 4100 mcg/kg
    b) 5.3 mg/kg
    4) LD50- (INTRAPERITONEAL)RAT:
    a) 1990 mcg/kg
    5) LD50- (SUBCUTANEOUS)RAT:
    a) 2880 mcg/kg -- Adult male rats were less sensitive than females; castration abolished the difference.

Pharmacologic Mechanism

    A) Picrotoxin is a general CNS stimulant (Myschetzky, 1966).
    1) It stimulates the medullary and cortical centers and respiratory, vasomotor and autonomic centers (Billow, 1944).
    2) It depresses presynaptic inhibition in the spinal cord but not postsynaptic inhibition (Eccles, 1965).
    3) Coronary constriction in cats apparently occurred by activation of alpha-adrenergic receptors directly in the coronary vasculature (Segal et al, 1981).
    4) Elevation in blood pressure and tachycardia were apparently due to effects of picrotoxin on the sympathetic nervous system in the brain (DiMicco et al, 1977a).
    B) Picrotoxin is a GABA (gamma-aminobutyric acid) antagonist (Szabo et al, 1984; Squires et al, 1984).
    1) It binds to a specific site on the benzodiazepine- GABA-chloride ionophore receptor complex (discussed in Squires et al, 1984).
    a) It is a non-competitive inhibitor of GABA on chloride conductance; it doesn't affect resting membrane potential or response to other aminio acid neurotransmitters (Squires et al, 1984).
    b) Picrotoxin may share the same site of binding with certain other compounds--pentamethylenetetrazol and other tetrazoles, benzodiazepines, barbiturates and propanediol carbamates--for blocking the postsynaptic action of GABA (Squires et al, 1984); these substances may antagonize the action of picrotoxin.
    1) Intracerebral Valium (diazepam) antagonized seizures by picrotoxin in mice (Kudar et al, 1983) and retarded onset of tremor and first clonic seizure in rats (Kadar et al, 1984).
    2) Cholecystokinin octapeptides antagonized picrotoxin-induced seizures in rats (Kadar et al, 1984).
    C) Structural requirements for convulsive activity (Jarboe et al, 1968):
    1) C-3-C-5 lactone
    2) Carbonyl cis- to the fused ring
    3) Bridgehead hydroxyl at C-6
    D) Hyperbaric oxygen at 6 ATA air increased the subcutaneous LD50 approximately twofold to about 13 mg/kg in mice; this finding implies that cause of death during maximal extensor seizures may be due to anoxia from paralysis of the respiratory muscles (Hart, 1974).
    1) It is possible that decreased oxygen tension at high altitudes may increase sensitivity to picrotoxin.
    E) Certain steroids (ethylestrenol, SC-11927, spironolactone, norbolethone, exandrolone, prednisolone, progesterone) prevented fatal poisoning by picrotoxin in rats (Selye, 1970).
    F) SEX DIFFERENCES - Adult male rats were less sensitive than females; castration abolished the difference (Selye, 1970).

Toxicologic Mechanism

    A) Picrotoxin is a general CNS stimulant (Myschetzky, 1966).
    1) It stimulates the medullary and cortical centers and respiratory, vasomotor and autonomic centers (Billow, 1944).
    2) It depresses presynaptic inhibition in the spinal cord but not postsynaptic inhibition (Eccles, 1965).
    3) Coronary constriction in cats apparently occurred by activation of alpha-adrenergic receptors directly in the coronary vasculature (Segal et al, 1981).
    4) Elevation in blood pressure and tachycardia were apparently due to effects of picrotoxin on the sympathetic nervous system in the brain (DiMicco et al, 1977a).
    B) Picrotoxin is a gamma-aminobutyric acid (GABA) antagonist (Szabo et al, 1984; Squires et al, 1984).
    1) It binds to a specific site on the benzodiazepine- GABA-chloride ionophore receptor complex (discussed in Squires et al, 1984).
    a) It is a non-competitive inhibitor of GABA on chloride conductance; it doesn't affect resting membrane potential or response to other aminio acid neurotransmitters (Squires et al, 1984).
    b) Picrotoxin may share the same site of binding with certain other compounds--pentamethylenetetrazol and other tetrazoles, benzodiazepines, barbiturates and propanediol carbamates--for blocking the postsynaptic action of GABA (Squires et al, 1984); these substances may antagonize the action of picrotoxin.
    1) Intracerebral Valium (diazepam) antagonized seizures by picrotoxin in mice (Kudar et al, 1983) and retarded onset of tremor and first clonic seizure in rats (Kadar et al, 1984).
    2) Cholecystokinin octapeptides antagonized picrotoxin-induced seizures in rats (Kadar et al, 1984).
    C) Structural requirements for seizure activity (Jarboe et al, 1968):
    1) C-3-C-5 lactone
    2) Carbonyl cis- to the fused ring
    3) Bridgehead hydroxyl at C-6
    D) Hyperbaric oxygen at 6 ATA air increased the subcutaneous LD50 approximately twofold to about 13 mg/kg in mice; this finding implies that cause of death during maximal extensor seizures may be due to anoxia from paralysis of the respiratory muscles (Hart, 1974).
    1) It is possible that decreased oxygen tension at high altitudes may increase sensitivity to picrotoxin.
    E) Certain steroids (ethylestrenol, SC-11927, spironolactone, norbolethone, exandrolone, prednisolone, progesterone) prevented fatal poisoning by picrotoxin in rats (Selye, 1970).
    F) SEX DIFFERENCES - Adult male rats were less sensitive than females; castration abolished the difference (Selye, 1970).

Physical Characteristics

    A) Picrotoxin occurs as an odorless powder or as flexible, shiny crystals or leaflets; it has a very bitter taste (Lewis, 1996; Budavari, 1996).

Molecular Weight

    A) 578.62 (RTECS , 2000)
    B) 602.57

Range Of Toxicity

    11.3.2) MINIMAL TOXIC DOSE
    A) DOG
    1) LDLo (Subcutaneous) - 1,500 mcg/kg (RTECS, 19888)
    2) LDLo (IM) - 1 mg/kg (RTECS , 1988)
    3) LDLo (IV) - 2.75 to 11.0 mg/kg (Hahn and Oberdorf, 1962)
    B) CAT
    1) LDLo (ORAL) - 1,750 mcg/kg (RTECS , 1988)
    2) LDLo (Subcutaneous) - 2 mg/kg (RTECS , 1988)
    C) RABBIT
    1) LDLo (ORAL) - 2,500 mcg/kg (RTECS , 1988)
    2) LDLo (Subcutaneous) - 1,300 mcg/kg (RTECS , 1988)

General Bibliography

    1) 40 CFR 372.28: Environmental Protection Agency - Toxic Chemical Release Reporting, Community Right-To-Know, Lower thresholds for chemicals of special concern. National Archives and Records Administration (NARA) and the Government Printing Office (GPO). Washington, DC. Final rules current as of Apr 3, 2006.
    2) 40 CFR 372.65: Environmental Protection Agency - Toxic Chemical Release Reporting, Community Right-To-Know, Chemicals and Chemical Categories to which this part applies. National Archives and Records Association (NARA) and the Government Printing Office (GPO), Washington, DC. Final rules current as of Apr 3, 2006.
    3) 49 CFR 172.101 - App. B: Department of Transportation - Table of Hazardous Materials, Appendix B: List of Marine Pollutants. National Archives and Records Administration (NARA) and the Government Printing Office (GPO), Washington, DC. Final rules current as of Aug 29, 2005.
    4) 49 CFR 172.101: Department of Transportation - Table of Hazardous Materials. National Archives and Records Administration (NARA) and the Government Printing Office (GPO), Washington, DC. Final rules current as of Aug 11, 2005.
    5) 62 FR 58840: Notice of the National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances - Proposed AEGL Values, Environmental Protection Agency, NAC/AEGL Committee. National Archives and Records Administration (NARA) and the Government Publishing Office (GPO), Washington, DC, 1997.
    6) 65 FR 14186: Notice of the National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances - Proposed AEGL Values, Environmental Protection Agency, NAC/AEGL Committee. National Archives and Records Administration (NARA) and the Government Publishing Office (GPO), Washington, DC, 2000.
    7) 65 FR 39264: Notice of the National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances - Proposed AEGL Values, Environmental Protection Agency, NAC/AEGL Committee. National Archives and Records Administration (NARA) and the Government Publishing Office (GPO), Washington, DC, 2000.
    8) 65 FR 77866: Notice of the National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances - Proposed AEGL Values, Environmental Protection Agency, NAC/AEGL Committee. National Archives and Records Administration (NARA) and the Government Publishing Office (GPO), Washington, DC, 2000.
    9) 66 FR 21940: Notice of the National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances - Proposed AEGL Values, Environmental Protection Agency, NAC/AEGL Committee. National Archives and Records Administration (NARA) and the Government Publishing Office (GPO), Washington, DC, 2001.
    10) 67 FR 7164: Notice of the National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances - Proposed AEGL Values, Environmental Protection Agency, NAC/AEGL Committee. National Archives and Records Administration (NARA) and the Government Publishing Office (GPO), Washington, DC, 2002.
    11) 68 FR 42710: Notice of the National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances - Proposed AEGL Values, Environmental Protection Agency, NAC/AEGL Committee. National Archives and Records Administration (NARA) and the Government Publishing Office (GPO), Washington, DC, 2003.
    12) 69 FR 54144: Notice of the National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances - Proposed AEGL Values, Environmental Protection Agency, NAC/AEGL Committee. National Archives and Records Administration (NARA) and the Government Publishing Office (GPO), Washington, DC, 2004.
    13) AIHA: 2006 Emergency Response Planning Guidelines and Workplace Environmental Exposure Level Guides Handbook, American Industrial Hygiene Association, Fairfax, VA, 2006.
    14) AMA Department of DrugsAMA Department of Drugs: AMA Evaluations Subscription, American Medical Association, Chicago, IL, 1992.
    15) Alaspaa AO, Kuisma MJ, Hoppu K, et al: Out-of-hospital administration of activated charcoal by emergency medical services. Ann Emerg Med 2005; 45:207-12.
    16) American Conference of Governmental Industrial Hygienists : ACGIH 2010 Threshold Limit Values (TLVs(R)) for Chemical Substances and Physical Agents and Biological Exposure Indices (BEIs(R)), American Conference of Governmental Industrial Hygienists, Cincinnati, OH, 2010.
    17) American Heart Association: 2005 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation 2005; 112(24 Suppl):IV 1-203. Available from URL: http://circ.ahajournals.org/content/vol112/24_suppl/. As accessed 12/14/2005.
    18) Billow BW: Barbiturate intoxication and picrotoxin treatment. J Lab Clin Med 1944; 29:265-269.
    19) Brophy GM, Bell R, Claassen J, et al: Guidelines for the evaluation and management of status epilepticus. Neurocrit Care 2012; 17(1):3-23.
    20) Budavari S: The Merck Index, 12th ed, Merck & Co, Inc, Whitehouse Station, NJ, 1996.
    21) Burgess JL, Kirk M, Borron SW, et al: Emergency department hazardous materials protocol for contaminated patients. Ann Emerg Med 1999; 34(2):205-212.
    22) Chamberlain JM, Altieri MA, & Futterman C: A prospective, randomized study comparing intramuscular midazolam with intravenous diazepam for the treatment of seizures in children. Ped Emerg Care 1997; 13:92-94.
    23) Chin RF , Neville BG , Peckham C , et al: Treatment of community-onset, childhood convulsive status epilepticus: a prospective, population-based study. Lancet Neurol 2008; 7(8):696-703.
    24) Choonara IA & Rane A: Therapeutic drug monitoring of anticonvulsants state of the art. Clin Pharmacokinet 1990; 18:318-328.
    25) Chyka PA, Seger D, Krenzelok EP, et al: Position paper: Single-dose activated charcoal. Clin Toxicol (Phila) 2005; 43(2):61-87.
    26) Crossman AR, Sambrook MA, & Jackson A: Experimental hemiballismus in the baboon produced by injection of a gamma-aminobutyric acid antagonist into the basal ganglia. Neurosci Lett 1980; 20:369-372.
    27) DFG: List of MAK and BAT Values 2002, Report No. 38, Deutsche Forschungsgemeinschaft, Commission for the Investigation of Health Hazards of Chemical Compounds in the Work Area, Wiley-VCH, Weinheim, Federal Republic of Germany, 2002.
    28) Dagnone D, Matsui D, & Rieder MJ: Assessment of the palatability of vehicles for activated charcoal in pediatric volunteers. Pediatr Emerg Care 2002; 18:19-21.
    29) DiMicco JA, Hamilton BL, & Gillis RA: Central nervous system sites involved in the cardiovascular effects of picrotoxin. J Pharmacol Exper Therap 1977a; 203:64.
    30) DiMicco JA, Prestel T, & Pearle DL: Mechanism of cardiovascular changes produced in cats by activation of the central nervous system with picrotoxin. Circ Res 1977b; 41:446.
    31) Duff DM & Dille JM: Distribution and rate of elimination of picrotoxin. J Pharmacol Exper Therap 1939; 67:353-357.
    32) EPA: EPA chemical profile on Picrotoxin, Environmental Protection Agency, Washington, DC, 1985.
    33) EPA: Search results for Toxic Substances Control Act (TSCA) Inventory Chemicals. US Environmental Protection Agency, Substance Registry System, U.S. EPA's Office of Pollution Prevention and Toxics. Washington, DC. 2005. Available from URL: http://www.epa.gov/srs/.
    34) ERG: Emergency Response Guidebook. A Guidebook for First Responders During the Initial Phase of a Dangerous Goods/Hazardous Materials Incident, U.S. Department of Transportation, Research and Special Programs Administration, Washington, DC, 2004.
    35) Eccles JC: Brit Med Bull 1965; 21:19.
    36) Elliot CG, Colby TV, & Kelly TM: Charcoal lung. Bronchiolitis obliterans after aspiration of activated charcoal. Chest 1989; 96:672-674.
    37) FDA: Poison treatment drug product for over-the-counter human use; tentative final monograph. FDA: Fed Register 1985; 50:2244-2262.
    38) Friedman WF & George BL : Treatment of congestive heart failure by altering loading conditions of the heart. J Pediatr 1985; 106(5):697-706.
    39) Gilman AG, Goodman LS, & Rall TW: Goodman and Gilman's The Pharmacological Basis of Therapeutics, 7th ed, Macmillan Publishing Co, New York, NY, 1985, pp 584-585.
    40) Golej J, Boigner H, Burda G, et al: Severe respiratory failure following charcoal application in a toddler. Resuscitation 2001; 49:315-318.
    41) Graff GR, Stark J, & Berkenbosch JW: Chronic lung disease after activated charcoal aspiration. Pediatrics 2002; 109:959-961.
    42) Grant WM & Schuman JS: Toxicology of the Eye, 4th ed, Charles C Thomas, Springfield, IL, 1993.
    43) Guenther Skokan E, Junkins EP, & Corneli HM: Taste test: children rate flavoring agents used with activated charcoal. Arch Pediatr Adolesc Med 2001; 155:683-686.
    44) Harris CR & Filandrinos D: Accidental administration of activated charcoal into the lung: aspiration by proxy. Ann Emerg Med 1993; 22:1470-1473.
    45) Hart JL: Effects of hyperbaric conditions on the responses of animals to central nervous system stimulants and depressants. Arch Int Pharmacodyn 1974; 207:260-269.
    46) Hathaway DE, Mallinson A, & Akintonwa DAA: Effects of dieldrin, picrotoxin and telodrin on the metabolism of ammonia in brain. Biochem J 1965; 94:676-686.
    47) Hegenbarth MA & American Academy of Pediatrics Committee on Drugs: Preparing for pediatric emergencies: drugs to consider. Pediatrics 2008; 121(2):433-443.
    48) Hvidberg EF & Dam M: Clinical pharmacokinetics of anticonvulsants. Clin Pharmacokinet 1976; 1:161.
    49) IARC Working Group on the Evaluation of Carcinogenic Risks to Humans : IARC Monographs on the Evaluation of Carcinogenic Risks to Humans: 1,3-Butadiene, Ethylene Oxide and Vinyl Halides (Vinyl Fluoride, Vinyl Chloride and Vinyl Bromide), 97, International Agency for Research on Cancer, Lyon, France, 2008.
    50) IARC Working Group on the Evaluation of Carcinogenic Risks to Humans : IARC Monographs on the Evaluation of Carcinogenic Risks to Humans: Formaldehyde, 2-Butoxyethanol and 1-tert-Butoxypropan-2-ol, 88, International Agency for Research on Cancer, Lyon, France, 2006.
    51) IARC Working Group on the Evaluation of Carcinogenic Risks to Humans : IARC Monographs on the Evaluation of Carcinogenic Risks to Humans: Household Use of Solid Fuels and High-temperature Frying, 95, International Agency for Research on Cancer, Lyon, France, 2010a.
    52) IARC Working Group on the Evaluation of Carcinogenic Risks to Humans : IARC Monographs on the Evaluation of Carcinogenic Risks to Humans: Smokeless Tobacco and Some Tobacco-specific N-Nitrosamines, 89, International Agency for Research on Cancer, Lyon, France, 2007.
    53) IARC Working Group on the Evaluation of Carcinogenic Risks to Humans : IARC Monographs on the Evaluation of Carcinogenic Risks to Humans: Some Non-heterocyclic Polycyclic Aromatic Hydrocarbons and Some Related Exposures, 92, International Agency for Research on Cancer, Lyon, France, 2010.
    54) IARC: List of all agents, mixtures and exposures evaluated to date - IARC Monographs: Overall Evaluations of Carcinogenicity to Humans, Volumes 1-88, 1972-PRESENT. World Health Organization, International Agency for Research on Cancer. Lyon, FranceAvailable from URL: http://monographs.iarc.fr/monoeval/crthall.html. As accessed Oct 07, 2004.
    55) ICAO: Technical Instructions for the Safe Transport of Dangerous Goods by Air, 2003-2004. International Civil Aviation Organization, Montreal, Quebec, Canada, 2002.
    56) Ilbawi MN, Idriss FS, DeLeon SY, et al: Hemodynamic effects of intravenous nitroglycerin in pediatric patients after heart surgery. Circulation 1985; 72(3 Pt 2):II101-II107.
    57) International Agency for Research on Cancer (IARC): IARC monographs on the evaluation of carcinogenic risks to humans: list of classifications, volumes 1-116. International Agency for Research on Cancer (IARC). Lyon, France. 2016. Available from URL: http://monographs.iarc.fr/ENG/Classification/latest_classif.php. As accessed 2016-08-24.
    58) International Agency for Research on Cancer: IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. World Health Organization. Geneva, Switzerland. 2015. Available from URL: http://monographs.iarc.fr/ENG/Classification/. As accessed 2015-08-06.
    59) Jarboe CH, Porter LA, & Buckler RT: Structural aspects of picrotoxin action. J Med Chem 1968; 11:729-731.
    60) Kadar T, Pesti A, & Penke B: Inhibition of seizures induced by picrotoxin and electroshock by cholecystokinin octapeptides and their fragments in rats after intracerebroventricular administration. Neuropharmacol 1984; 23:955-961.
    61) Kadar T, Pesti A, & Penke B: Structure-activity and dose-effect relationships of the antagonism of picrotoxin-induced seizures by cholecystokinin, cholecystokinin fragments and analogues in mice. Neuropharmacol 1983; 22:1223-1229.
    62) Kleinman ME, Chameides L, Schexnayder SM, et al: 2010 American Heart Association guidelines for cardiopulmonary resuscitation and emergency cardiovascular care. Part 14: pediatric advanced life support. Circulation 2010; 122(18 Suppl.3):S876-S908.
    63) Laitinen P, Happonen JM, Sairanen H, et al: Amrinone versus dopamine-nitroglycerin after reconstructive surgery for complete atrioventricular septal defect. J Cardiothorac Vasc Anesth 1997; 11(7):870-874.
    64) Lewis RJ Sr: Sax's Dangerous Properties of Industrial Materials 9th edition, Van Nostrand Reinhold, New York, NY, 1996.
    65) Loddenkemper T & Goodkin HP: Treatment of Pediatric Status Epilepticus. Curr Treat Options Neurol 2011; Epub:Epub.
    66) Manno EM: New management strategies in the treatment of status epilepticus. Mayo Clin Proc 2003; 78(4):508-518.
    67) Myschetzky A: Shortening of coma duration in narcotic poisoning. Int Anesthesiol Clin 1966; 4:351-358.
    68) NFPA: Fire Protection Guide to Hazardous Materials, 13th ed., National Fire Protection Association, Quincy, MA, 2002.
    69) NRC: Acute Exposure Guideline Levels for Selected Airborne Chemicals - Volume 1, Subcommittee on Acute Exposure Guideline Levels, Committee on Toxicology, Board on Environmental Studies and Toxicology, Commission of Life Sciences, National Research Council. National Academy Press, Washington, DC, 2001.
    70) NRC: Acute Exposure Guideline Levels for Selected Airborne Chemicals - Volume 2, Subcommittee on Acute Exposure Guideline Levels, Committee on Toxicology, Board on Environmental Studies and Toxicology, Commission of Life Sciences, National Research Council. National Academy Press, Washington, DC, 2002.
    71) NRC: Acute Exposure Guideline Levels for Selected Airborne Chemicals - Volume 3, Subcommittee on Acute Exposure Guideline Levels, Committee on Toxicology, Board on Environmental Studies and Toxicology, Commission of Life Sciences, National Research Council. National Academy Press, Washington, DC, 2003.
    72) NRC: Acute Exposure Guideline Levels for Selected Airborne Chemicals - Volume 4, Subcommittee on Acute Exposure Guideline Levels, Committee on Toxicology, Board on Environmental Studies and Toxicology, Commission of Life Sciences, National Research Council. National Academy Press, Washington, DC, 2004.
    73) Nam YT, Shin T, & Yoshitake J: Induced hypotension for surgical repair of congenital dislocation of the hip in children. J Anesth 1989; 3(1):58-64.
    74) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for 1,2,3-Trimethylbenzene (Proposed). United States Environmental Protection Agency. Washington, DC. 2006k. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d68a&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    75) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for 1,2,4-Trimethylbenzene (Proposed). United States Environmental Protection Agency. Washington, DC. 2006m. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d68a&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    76) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for 1,2-Butylene Oxide (Proposed). United States Environmental Protection Agency. Washington, DC. 2008d. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648083cdbb&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    77) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for 1,2-Dibromoethane (Proposed). United States Environmental Protection Agency. Washington, DC. 2007g. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064802796db&disposition=attachment&contentType=pdf. As accessed 2010-08-18.
    78) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for 1,3,5-Trimethylbenzene (Proposed). United States Environmental Protection Agency. Washington, DC. 2006l. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d68a&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    79) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for 2-Ethylhexyl Chloroformate (Proposed). United States Environmental Protection Agency. Washington, DC. 2007b. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648037904e&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    80) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Acrylonitrile (Proposed). United States Environmental Protection Agency. Washington, DC. 2007c. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648028e6a3&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    81) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Adamsite (Proposed). United States Environmental Protection Agency. Washington, DC. 2007h. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020fd29&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    82) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Agent BZ (3-quinuclidinyl benzilate) (Proposed). United States Environmental Protection Agency. Washington, DC. 2007f. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064803ad507&disposition=attachment&contentType=pdf. As accessed 2010-08-18.
    83) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Allyl Chloride (Proposed). United States Environmental Protection Agency. Washington, DC. 2008. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648039d9ee&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    84) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Aluminum Phosphide (Proposed). United States Environmental Protection Agency. Washington, DC. 2005b. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c5ed&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    85) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Arsenic Trioxide (Proposed). United States Environmental Protection Agency. Washington, DC. 2007m. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480220305&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    86) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Automotive Gasoline Unleaded (Proposed). United States Environmental Protection Agency. Washington, DC. 2009a. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a7cc17&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    87) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Biphenyl (Proposed). United States Environmental Protection Agency. Washington, DC. 2005j. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064801ea1b7&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    88) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Bis-Chloromethyl Ether (BCME) (Proposed). United States Environmental Protection Agency. Washington, DC. 2006n. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648022db11&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    89) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Boron Tribromide (Proposed). United States Environmental Protection Agency. Washington, DC. 2008a. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064803ae1d3&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    90) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Bromine Chloride (Proposed). United States Environmental Protection Agency. Washington, DC. 2007d. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648039732a&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    91) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Bromoacetone (Proposed). United States Environmental Protection Agency. Washington, DC. 2008e. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064809187bf&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    92) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Calcium Phosphide (Proposed). United States Environmental Protection Agency. Washington, DC. 2005d. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c5ed&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    93) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Carbonyl Fluoride (Proposed). United States Environmental Protection Agency. Washington, DC. 2008b. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064803ae328&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    94) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Carbonyl Sulfide (Proposed). United States Environmental Protection Agency. Washington, DC. 2007e. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648037ff26&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    95) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Chlorobenzene (Proposed). United States Environmental Protection Agency. Washington, DC. 2008c. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064803a52bb&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    96) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Cyanogen (Proposed). United States Environmental Protection Agency. Washington, DC. 2008f. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064809187fe&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    97) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Dimethyl Phosphite (Proposed). United States Environmental Protection Agency. Washington, DC. 2009. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a7cbf3&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    98) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Diphenylchloroarsine (Proposed). United States Environmental Protection Agency. Washington, DC. 2007l. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020fd29&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    99) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Ethyl Isocyanate (Proposed). United States Environmental Protection Agency. Washington, DC. 2008h. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648091884e&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    100) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Ethyl Phosphorodichloridate (Proposed). United States Environmental Protection Agency. Washington, DC. 2008i. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480920347&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    101) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Ethylbenzene (Proposed). United States Environmental Protection Agency. Washington, DC. 2008g. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064809203e7&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    102) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Ethyldichloroarsine (Proposed). United States Environmental Protection Agency. Washington, DC. 2007j. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020fd29&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    103) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Germane (Proposed). United States Environmental Protection Agency. Washington, DC. 2008j. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480963906&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    104) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Hexafluoropropylene (Proposed). United States Environmental Protection Agency. Washington, DC. 2006. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064801ea1f5&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    105) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Ketene (Proposed). United States Environmental Protection Agency. Washington, DC. 2007. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020ee7c&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    106) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Magnesium Aluminum Phosphide (Proposed). United States Environmental Protection Agency. Washington, DC. 2005h. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c5ed&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    107) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Magnesium Phosphide (Proposed). United States Environmental Protection Agency. Washington, DC. 2005g. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c5ed&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    108) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Malathion (Proposed). United States Environmental Protection Agency. Washington, DC. 2009k. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064809639df&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    109) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Mercury Vapor (Proposed). United States Environmental Protection Agency. Washington, DC. 2009b. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a8a087&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    110) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Methyl Isothiocyanate (Proposed). United States Environmental Protection Agency. Washington, DC. 2008k. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480963a03&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    111) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Methyl Parathion (Proposed). United States Environmental Protection Agency. Washington, DC. 2008l. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480963a57&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    112) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Methyl tertiary-butyl ether (Proposed). United States Environmental Protection Agency. Washington, DC. 2007a. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064802a4985&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    113) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Methylchlorosilane (Proposed). United States Environmental Protection Agency. Washington, DC. 2005. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c5f4&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    114) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Methyldichloroarsine (Proposed). United States Environmental Protection Agency. Washington, DC. 2007i. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020fd29&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    115) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Methyldichlorosilane (Proposed). United States Environmental Protection Agency. Washington, DC. 2005a. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c646&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    116) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Nitrogen Mustard (HN1 CAS Reg. No. 538-07-8) (Proposed). United States Environmental Protection Agency. Washington, DC. 2006a. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d6cb&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    117) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Nitrogen Mustard (HN2 CAS Reg. No. 51-75-2) (Proposed). United States Environmental Protection Agency. Washington, DC. 2006b. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d6cb&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    118) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Nitrogen Mustard (HN3 CAS Reg. No. 555-77-1) (Proposed). United States Environmental Protection Agency. Washington, DC. 2006c. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d6cb&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    119) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Nitrogen Tetroxide (Proposed). United States Environmental Protection Agency. Washington, DC. 2008n. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648091855b&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    120) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Nitrogen Trifluoride (Proposed). United States Environmental Protection Agency. Washington, DC. 2009l. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480963e0c&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    121) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Parathion (Proposed). United States Environmental Protection Agency. Washington, DC. 2008o. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480963e32&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    122) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Perchloryl Fluoride (Proposed). United States Environmental Protection Agency. Washington, DC. 2009c. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a7e268&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    123) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Perfluoroisobutylene (Proposed). United States Environmental Protection Agency. Washington, DC. 2009d. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a7e26a&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    124) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Phenyl Isocyanate (Proposed). United States Environmental Protection Agency. Washington, DC. 2008p. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648096dd58&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    125) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Phenyl Mercaptan (Proposed). United States Environmental Protection Agency. Washington, DC. 2006d. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020cc0c&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    126) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Phenyldichloroarsine (Proposed). United States Environmental Protection Agency. Washington, DC. 2007k. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020fd29&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    127) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Phorate (Proposed). United States Environmental Protection Agency. Washington, DC. 2008q. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648096dcc8&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    128) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Phosgene (Draft-Revised). United States Environmental Protection Agency. Washington, DC. 2009e. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a8a08a&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    129) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Phosgene Oxime (Proposed). United States Environmental Protection Agency. Washington, DC. 2009f. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a7e26d&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    130) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Potassium Cyanide (Proposed). United States Environmental Protection Agency. Washington, DC. 2009g. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a7cbb9&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    131) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Potassium Phosphide (Proposed). United States Environmental Protection Agency. Washington, DC. 2005c. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c5ed&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    132) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Propargyl Alcohol (Proposed). United States Environmental Protection Agency. Washington, DC. 2006e. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020ec91&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    133) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Selenium Hexafluoride (Proposed). United States Environmental Protection Agency. Washington, DC. 2006f. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020ec55&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    134) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Silane (Proposed). United States Environmental Protection Agency. Washington, DC. 2006g. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d523&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    135) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Sodium Cyanide (Proposed). United States Environmental Protection Agency. Washington, DC. 2009h. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a7cbb9&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    136) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Sodium Phosphide (Proposed). United States Environmental Protection Agency. Washington, DC. 2005i. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c5ed&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    137) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Strontium Phosphide (Proposed). United States Environmental Protection Agency. Washington, DC. 2005f. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c5ed&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    138) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Sulfuryl Chloride (Proposed). United States Environmental Protection Agency. Washington, DC. 2006h. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020ec7a&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    139) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Tear Gas (Proposed). United States Environmental Protection Agency. Washington, DC. 2008s. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648096e551&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    140) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Tellurium Hexafluoride (Proposed). United States Environmental Protection Agency. Washington, DC. 2009i. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a7e2a1&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    141) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Tert-Octyl Mercaptan (Proposed). United States Environmental Protection Agency. Washington, DC. 2008r. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648096e5c7&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    142) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Tetramethoxysilane (Proposed). United States Environmental Protection Agency. Washington, DC. 2006j. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d632&disposition=attachment&contentType=pdf. As accessed 2010-08-17.
    143) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Trimethoxysilane (Proposed). United States Environmental Protection Agency. Washington, DC. 2006i. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d632&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    144) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Trimethyl Phosphite (Proposed). United States Environmental Protection Agency. Washington, DC. 2009j. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a7d608&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    145) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Trimethylacetyl Chloride (Proposed). United States Environmental Protection Agency. Washington, DC. 2008t. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648096e5cc&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    146) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Zinc Phosphide (Proposed). United States Environmental Protection Agency. Washington, DC. 2005e. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c5ed&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    147) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for n-Butyl Isocyanate (Proposed). United States Environmental Protection Agency. Washington, DC. 2008m. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064808f9591&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    148) National Institute for Occupational Safety and Health: NIOSH Pocket Guide to Chemical Hazards, U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, Cincinnati, OH, 2007.
    149) National Research Council : Acute exposure guideline levels for selected airborne chemicals, 5, National Academies Press, Washington, DC, 2007.
    150) National Research Council: Acute exposure guideline levels for selected airborne chemicals, 6, National Academies Press, Washington, DC, 2008.
    151) National Research Council: Acute exposure guideline levels for selected airborne chemicals, 7, National Academies Press, Washington, DC, 2009.
    152) National Research Council: Acute exposure guideline levels for selected airborne chemicals, 8, National Academies Press, Washington, DC, 2010.
    153) None Listed: Position paper: cathartics. J Toxicol Clin Toxicol 2004; 42(3):243-253.
    154) Peberdy MA , Callaway CW , Neumar RW , et al: 2010 American Heart Association guidelines for cardiopulmonary resuscitation and emergency cardiovascular care science. Part 9: post–cardiac arrest care. Circulation 2010; 122(18 Suppl 3):S768-S786.
    155) Pollack MM, Dunbar BS, & Holbrook PR: Aspiration of activated charcoal and gastric contents. Ann Emerg Med 1981; 10:528-529.
    156) Porter LA: Picrotoxinin and related substances. Chem Rev 1967; 67:441-464.
    157) Product Information: CEREBYX(R) intravenous injection, fosphenytoin sodium intravenous injection. Pfizer Labs (per FDA), New York, NY, 2014.
    158) Product Information: Dilantin(R) intravenous injection, intramuscular injection, phenytoin sodium intravenous injection, intramuscular injection. Parke-Davis (per FDA), New York, NY, 2013.
    159) Product Information: NITROPRESS(R) injection for IV infusion, Sodium Nitroprusside injection for IV infusion. Hospira, Inc., Lake Forest, IL, 2007.
    160) Product Information: NITROPRESS(R) injection, sodium nitroprusside injection. Hospira,Inc, Lake Forest, IL, 2004.
    161) Product Information: diazepam IM, IV injection, diazepam IM, IV injection. Hospira, Inc (per Manufacturer), Lake Forest, IL, 2008.
    162) Product Information: dopamine hcl, 5% dextrose IV injection, dopamine hcl, 5% dextrose IV injection. Hospira,Inc, Lake Forest, IL, 2004.
    163) Product Information: lorazepam IM, IV injection, lorazepam IM, IV injection. Akorn, Inc, Lake Forest, IL, 2008.
    164) Product Information: norepinephrine bitartrate injection, norepinephrine bitartrate injection. Sicor Pharmaceuticals,Inc, Irvine, CA, 2005.
    165) RTECS : Registry of Toxic Effects of Chemical Substances. National Institute for Occupational Safety and Health. Cincinnati, OH (Internet Version). Edition expires 1988; provided by Truven Health Analytics Inc., Greenwood Village, CO.
    166) RTECS : Registry of Toxic Effects of Chemical Substances. National Institute for Occupational Safety and Health. Cincinnati, OH (Internet Version). Edition expires 1991; provided by Truven Health Analytics Inc., Greenwood Village, CO.
    167) RTECS : Registry of Toxic Effects of Chemical Substances. National Institute for Occupational Safety and Health. Cincinnati, OH (Internet Version). Edition expires 2000; provided by Truven Health Analytics Inc., Greenwood Village, CO.
    168) Rasch DK & Lancaster L: Successful use of nitroglycerin to treat postoperative pulmonary hypertension. Crit Care Med 1987; 15(6):616-617.
    169) Rau NR, Nagaraj MV, Prakash PS, et al: Fatal pulmonary aspiration of oral activated charcoal. Br Med J 1988; 297:918-919.
    170) Rhoney D & Peacock WF: Intravenous therapy for hypertensive emergencies, part 1. Am J Health Syst Pharm 2009; 66(15):1343-1352.
    171) Sax NI & Lewis RJ: Dangerous Properties of Industrial Materials, 7th ed, Van Nostrand Reinhold Company, New York, NY, 1989, pp 2790.
    172) Scott R, Besag FMC, & Neville BGR: Buccal midazolam and rectal diazepam for treatment of prolonged seizures in childhood and adolescence: a randomized trial. Lancet 1999; 353:623-626.
    173) Segal SA, Pearle DL, & Gillis RA: Coronary spasm produced by picrotoxin in cats. Eur J Pharmacol 1981; 76:447-451.
    174) Selye H: Resistance to picrotoxin poisoning induced by catatoxic steroids. Agents and Actions 1970; 1:133-135.
    175) Spiller HA & Rogers GC: Evaluation of administration of activated charcoal in the home. Pediatrics 2002; 108:E100.
    176) Squires RF, Saederup E, & Crawley JN: Convulsant potencies of tetrazoles are highly correlated with actions on GABA/benzodiazepine/picrotoxin receptor complexes in brain. Life Sci 1984; 35:1439-1444.
    177) Sreenath TG, Gupta P, Sharma KK, et al: Lorazepam versus diazepam-phenytoin combination in the treatment of convulsive status epilepticus in children: A randomized controlled trial. Eur J Paediatr Neurol 2009; Epub:Epub.
    178) Szabo G, Kovacs GL, & Telegdy G: Increased sensitivity to picrotoxin as an index of physical dependence on alcohol in the mouse. Drug Alcohol Dep 1984; 14:187-195.
    179) Tainter ML, Whitsell LJ, & Dille JM: The analeptic potency of sympathomimetic amines. J Pharmacol Exp Therap 1939; 67:56-70.
    180) Thakore S & Murphy N: The potential role of prehospital administration of activated charcoal. Emerg Med J 2002; 19:63-65.
    181) U.S. Department of Energy, Office of Emergency Management: Protective Action Criteria (PAC) with AEGLs, ERPGs, & TEELs: Rev. 26 for chemicals of concern. U.S. Department of Energy, Office of Emergency Management. Washington, DC. 2010. Available from URL: http://www.hss.doe.gov/HealthSafety/WSHP/Chem_Safety/teel.html. As accessed 2011-06-27.
    182) U.S. Department of Health and Human Services, Public Health Service, National Toxicology Project : 11th Report on Carcinogens. U.S. Department of Health and Human Services, Public Health Service, National Toxicology Program. Washington, DC. 2005. Available from URL: http://ntp.niehs.nih.gov/INDEXA5E1.HTM?objectid=32BA9724-F1F6-975E-7FCE50709CB4C932. As accessed 2011-06-27.
    183) U.S. Environmental Protection Agency: Discarded commercial chemical products, off-specification species, container residues, and spill residues thereof. Environmental Protection Agency's (EPA) Resource Conservation and Recovery Act (RCRA); List of hazardous substances and reportable quantities 2010b; 40CFR(261.33, e-f):77-.
    184) U.S. Environmental Protection Agency: Integrated Risk Information System (IRIS). U.S. Environmental Protection Agency. Washington, DC. 2011. Available from URL: http://cfpub.epa.gov/ncea/iris/index.cfm?fuseaction=iris.showSubstanceList&list_type=date. As accessed 2011-06-21.
    185) U.S. Environmental Protection Agency: List of Radionuclides. U.S. Environmental Protection Agency. Washington, DC. 2010a. Available from URL: http://www.gpo.gov/fdsys/pkg/CFR-2010-title40-vol27/pdf/CFR-2010-title40-vol27-sec302-4.pdf. As accessed 2011-06-17.
    186) U.S. Environmental Protection Agency: List of hazardous substances and reportable quantities. U.S. Environmental Protection Agency. Washington, DC. 2010. Available from URL: http://www.gpo.gov/fdsys/pkg/CFR-2010-title40-vol27/pdf/CFR-2010-title40-vol27-sec302-4.pdf. As accessed 2011-06-17.
    187) U.S. Environmental Protection Agency: The list of extremely hazardous substances and their threshold planning quantities (CAS Number Order). U.S. Environmental Protection Agency. Washington, DC. 2010c. Available from URL: http://www.gpo.gov/fdsys/pkg/CFR-2010-title40-vol27/pdf/CFR-2010-title40-vol27-part355.pdf. As accessed 2011-06-17.
    188) U.S. Occupational Safety and Health Administration: Part 1910 - Occupational safety and health standards (continued) Occupational Safety, and Health Administration's (OSHA) list of highly hazardous chemicals, toxics and reactives. Subpart Z - toxic and hazardous substances. CFR 2010 2010; Vol6(SEC1910):7-.
    189) U.S. Occupational Safety, and Health Administration (OSHA): Process safety management of highly hazardous chemicals. 29 CFR 2010 2010; 29(1910.119):348-.
    190) United States Environmental Protection Agency Office of Pollution Prevention and Toxics: Acute Exposure Guideline Levels (AEGLs) for Vinyl Acetate (Proposed). United States Environmental Protection Agency. Washington, DC. 2006. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d6af&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    191) Varma DR & Melville KI: Experimental evaluation of drugs on coronary insufficiency induced by hypoxemia and picrotoxin. Am J Cardiol 1962; 9:471.
    192) Wallace KL: Toxin-Induced Seizures. In: Brent J, Wallace KL, Burkhart KK, et al, eds. Critical Care Toxicology, Elsevier Mosby, Philadelphia, PA, 2005.
    193) Zainos A, DeAnda R, & Chavez L: Turning behavior, barrel rolling, and sensory neglect induced by picrotoxin in the thalamus. Exp Neurol 1984; 83:534-547.