MOBILE VIEW  | 

PHOSPHORIC ACID

Classification   |    Detailed evidence-based information

Therapeutic Toxic Class

    A) Phosphoric acid is a strong acid that is less hazardous than nitric acid or sulfuric acid but appears to be equally corrosive on ingestion.
    B) Phosphoric acid has a variety of industrial uses; however, when used as an agent for metal cleaning, phosphoric acid may react with impurities in the metal and release PHOSPHINE GAS.

Specific Substances

    1) Phosphoric acid
    2) Acide phosphorique (French)
    3) Acido fosforico (Italian)
    4) Fosforzuuroplossingen (Dutch)
    5) Orthophosphoric acid
    6) Phosphorsaeureloesungen (German)
    7) Molecular Formula: H3-O4-P
    8) STCC 4930248 (liquid or solution)
    9) NIOSH/RTECS TB 6300000
    10) CAS 7664-38-2
    11) References: RTECS, 1987
    12) ORTHO-PHOSPHORAMIDE
    1.2.1) MOLECULAR FORMULA
    1) H3-O4-P
    2) H3-P-O4

Available Forms Sources

    A) FORMS
    1) Phosphoric acid is unstable, orthorhombic crystals, or clear, syrupy liquid; easily supercooled into a glass; it is a mineral acid (Budavari, 1996) and is commonly produced as an 85%, 17M solution (Gosselin et al, 1984). At 20 degrees C, the 50% and 75% strengths are mobile liquids, the 85% is of a syrupy consistency, and the 100% acid is in the form of crystals (Lewis, 1997).
    2) Phosphoric acid contains 3.09% hydrogen, 65.31% oxygen, and 31.61% phosphorus (Budavari, 1996), and is a common air pollutant (Lewis, 2000).
    3) Phosphoric acid frequently crystallizes on prolonged cooling, and may form a hemihydrate with a melting point of 29.32 degrees C (Budavari, 1996).
    4) Phosphoric acid becomes anhydrous when heated to 150 degrees C, gradually changes to pyrophosphoric acid at about 200 degrees C, and then becomes metaphosphoric acid if heated to above 300 degrees C (Budavari, 1996).
    B) SOURCES
    1) Phosphoric acid is obtained commercially from phosphate rock deposits in Florida, Tennessee, and the Western United States, which are essentially tricalcium phosphate (Budavari, 1996).
    2) Derivation processes include the following (Budavari, 1996; Gosselin et al, 1984; Lewis, 1997):
    a) From phosphate rock by reacting tricalcium phosphate with water and sulfuric acid. Reagent grade phosphoric acid is 85 to 87% H3PO4 (weight/weight).
    b) Action of hydrochloric acid on phosphate rock, with extraction by tributylphosphate.
    c) By heating phosphate rock, coke, and silica in an electric furnace, burning the elemental phosphorus produced, and then hydrating the phosphoric oxide (furnace acid).
    d) When used as an agent for metal cleaning, phosphoric acid may react with impurities in the metal and release phosphine gas (Anon, 1955; Bingham et al, 2001).
    C) USES
    1) In foods, it is used as a flavoring material, an acidulant, and a synergistic antioxidant and sequestrant in carbonated beverages. Phosphoric acid is also utilized in dental ceramics, for water treatment, in engraving processes, for the rustproofing of metals prior to painting, for metal pickling, in the coagulation of rubber latex, and as an analytic reagent in laboratories. It is also utilized in animal feeds, in sugar refining, in the manufacture of gelatin, in fertilizers, soaps and detergents (ie, metals cleaners, toilet bowl cleaners, and polishers), inorganic phosphates, pharmaceuticals, sugar refining, electropolishing, gasoline additive, conversion coatings for metals, catalyst for ethanol manufacture, lakes in cotton dyeing, yeasts, soil stabilizer, waxes and polishes, activated carbon, laboratory reagent, manufacture of superphosphates, and acid catalyst (ITI, 1985; ACGIH, 1986; Caravati, 1987; Budavari, 1996; Hathaway et al, 1996; Lewis, 1997; S Sweetman , 2001).
    2) Dilute phosphoric acid has been used in preparations for the management of nausea and vomiting, and in Great Britain, a technical grade of orthophosphoric acid in water, 1:330, is an approved disinfectant for foot-and-mouth disease (S Sweetman , 2001).
    3) In the past, it has also been used in veterinary medicine for the treatment of lead poisoning in animals (Budavari, 1996).
    4) In 1995, phosphoric acid was the seventh highest-volume chemical produced in the US (Lewis, 1997).

Laboratory Monitoring

    A) Monitor ABGs, phosphate, calcium, and magnesium in ingestions.
    B) Monitor CBC, urinalysis, and liver and kidney function for patients with significant exposure.
    C) Monitor arterial blood gases, chest x-ray, and pulmonary function tests in symptomatic patients.

Treatment Overview

    0.4.2) ORAL/PARENTERAL EXPOSURE
    A) DILUTION: If no respiratory compromise is present, administer milk or water as soon as possible after ingestion. Dilution may only be helpful if performed in the first seconds to minutes after ingestion. The ideal amount is unknown; no more than 8 ounces (240 mL) in adults and 4 ounces (120 mL) in children is recommended to minimize the risk of vomiting.
    B) Patients with suspected GI tract irritation or burns should be kept NPO. Esophagoscopy should be considered to determine the extent of injury. Surgical consultation and intervention could be needed if bleeding or perforation occur.
    C) If coma develops, assure airway patency and adequate respirations and oxygenation.
    D) Correct acidosis with intravenous sodium bicarbonate. Replace calcium losses as necessary.
    E) Hemodialysis might be considered if serious, symptomatic hyperphosphatemia occurs.
    F) SEIZURES: Administer a benzodiazepine; DIAZEPAM (ADULT: 5 to 10 mg IV initially; repeat every 5 to 20 minutes as needed. CHILD: 0.1 to 0.5 mg/kg IV over 2 to 5 minutes; up to a maximum of 10 mg/dose. May repeat dose every 5 to 10 minutes as needed) or LORAZEPAM (ADULT: 2 to 4 mg IV initially; repeat every 5 to 10 minutes as needed, if seizures persist. CHILD: 0.05 to 0.1 mg/kg IV over 2 to 5 minutes, up to a maximum of 4 mg/dose; may repeat in 5 to 15 minutes as needed, if seizures continue).
    1) Consider phenobarbital or propofol if seizures recur after diazepam 30 mg (adults) or 10 mg (children greater than 5 years).
    2) Monitor for hypotension, dysrhythmias, respiratory depression, and need for endotracheal intubation. Evaluate for hypoglycemia, electrolyte disturbances, and hypoxia.
    0.4.3) INHALATION EXPOSURE
    A) INHALATION: Move patient to fresh air. Monitor for respiratory distress. If cough or difficulty breathing develops, evaluate for respiratory tract irritation, bronchitis, or pneumonitis. Administer oxygen and assist ventilation as required. Treat bronchospasm with an inhaled beta2-adrenergic agonist. Consider systemic corticosteroids in patients with significant bronchospasm.
    B) ACUTE LUNG INJURY: Maintain ventilation and oxygenation and evaluate with frequent arterial blood gases and/or pulse oximetry monitoring. Early use of PEEP and mechanical ventilation may be needed.
    0.4.4) EYE EXPOSURE
    A) DECONTAMINATION: Remove contact lenses and irrigate exposed eyes with copious amounts of room temperature 0.9% saline or water for at least 15 minutes. If irritation, pain, swelling, lacrimation, or photophobia persist after 15 minutes of irrigation, the patient should be seen in a healthcare facility.
    0.4.5) DERMAL EXPOSURE
    A) OVERVIEW
    1) DECONTAMINATION: Remove contaminated clothing and jewelry and place them in plastic bags. Wash exposed areas with soap and water for 10 to 15 minutes with gentle sponging to avoid skin breakdown. A physician may need to examine the area if irritation or pain persists (Burgess et al, 1999).

Range Of Toxicity

    A) As little as 8 mL may be fatal if ingested, but ingestion of 90 to 120 mL of a 20% hydrogen phosphate product was survived.

Life Support

    A) This overview assumes that basic life support measures have been instituted.

Clinical Effects

    0.2.1) SUMMARY OF EXPOSURE
    A) Phosphoric acid at high concentrations is corrosive to all tissues with which it comes in contact. It can cause severe skin burns at concentrations of 75% or greater. Inhalation of the vapor or mist can cause eye, nose, throat, and respiratory irritation or coughing. When ingested, it can produce nausea, vomiting, abdominal pain, bloody diarrhea, acidosis, shock, and irritation or burns of the oropharyngeal mucosa, esophagus, and stomach.
    B) When used as an agent for metal cleaning, phosphoric acid may react with impurities in the metal and release phosphine gas.
    0.2.4) HEENT
    A) Eyes, nose, and throat irritation may occur.
    0.2.5) CARDIOVASCULAR
    A) Hypotension and shock may develop.
    0.2.6) RESPIRATORY
    A) Respiratory tract irritation and coughing may develop. Aspiration pneumonitis has occurred.
    0.2.7) NEUROLOGIC
    A) Coma and seizures have occurred.
    0.2.8) GASTROINTESTINAL
    A) Irritation or burns of the oropharynx, esophagus, or GI tract may occur following ingestion. Nausea, vomiting, abdominal pain, hematemesis, bloody diarrhea, and perforation with severe burns may be noted.
    0.2.11) ACID-BASE
    A) Elevated anion gap metabolic acidosis may occur.
    0.2.12) FLUID-ELECTROLYTE
    A) Hyperphosphatemia, hypocalcemia, and possibly hypomagnesemia may occur.
    0.2.14) DERMATOLOGIC
    A) Dermal irritation or burns may develop.
    0.2.20) REPRODUCTIVE
    A) At the time of this review, no reproductive studies were found for phosphoric acid in humans or experimental animals.
    0.2.21) CARCINOGENICITY
    A) At the time of this review, no data were available to assess the carcinogenic potential of this agent.

Summary Of Exposure

    A) Phosphoric acid at high concentrations is corrosive to all tissues with which it comes in contact. It can cause severe skin burns at concentrations of 75% or greater. Inhalation of the vapor or mist can cause eye, nose, throat, and respiratory irritation or coughing. When ingested, it can produce nausea, vomiting, abdominal pain, bloody diarrhea, acidosis, shock, and irritation or burns of the oropharyngeal mucosa, esophagus, and stomach.
    B) When used as an agent for metal cleaning, phosphoric acid may react with impurities in the metal and release phosphine gas.

Vital Signs

    3.3.3) TEMPERATURE
    A) Mild hypothermia was noted in one ingestion case (Caravati, 1987).
    3.3.4) BLOOD PRESSURE
    A) Hypotension may occur following ingestion (Caravati, 1987).

Heent

    3.4.1) SUMMARY
    A) Eyes, nose, and throat irritation may occur.
    3.4.3) EYES
    A) Eye irritation may occur with either direct contact or vapor exposure (Plunkett, 1976; Wason et al, 1984; ITI, 1985; Grant & Schuman, 1993; Hathaway et al, 1996).
    3.4.5) NOSE
    A) Irritation of the mucosa of the nose and throat may be seen with inhalation exposure (Budavari, 1996; Hathaway et al, 1996; Bingham et al, 2001)
    3.4.6) THROAT
    A) Irritation of the mucosa of the nose and throat may be seen with inhalation exposure (Budavari, 1996; Hathaway et al, 1996; Bingham et al, 2001).
    B) A burning sensation in the throat with erythema and patchy areas of pallor in the oropharynx was noted following ingestion (Caravati, 1987). Hoarseness may also develop (Caravati, 1987).

Cardiovascular

    3.5.1) SUMMARY
    A) Hypotension and shock may develop.
    3.5.2) CLINICAL EFFECTS
    A) HYPOTENSIVE EPISODE
    1) Patients ingesting phosphoric acid may develop acidosis and shock (Plunkett, 1976; CHRIS , 1985; ITI, 1985). Hypotension may occur (Caravati, 1987; Gosselin et al, 1984).

Respiratory

    3.6.1) SUMMARY
    A) Respiratory tract irritation and coughing may develop. Aspiration pneumonitis has occurred.
    3.6.2) CLINICAL EFFECTS
    A) IRRITATION SYMPTOM
    1) Respiratory tract irritation may be noted after inhalation exposure (ACGIH, 1986; RTECS , 1987; Hathaway et al, 1996). Exposure to irritating oxides of phosphorus evolved during thermal decomposition of phosphoric acid (Plunkett, 1976; Clayton & Clayton, 1982; CHRIS , 1985; Hathaway et al, 1996) could result in severe chemical pneumonitis or pulmonary edema.
    B) COUGH
    1) Inhalation exposure may result in coughing (Hathaway et al, 1996).
    C) PNEUMONITIS
    1) Aspiration pneumonitis with pulmonary infiltrates on chest x-ray may develop following ingestion (Caravati, 1987).
    D) RESPIRATORY FAILURE
    1) Patients exposed to fumes and vapors of phosphorus trichloride, phosphoric acid, hydrochloric acid, and oxides of phosphorus developed abnormalities on pulmonary function testing (Wason et al, 1984).
    a) Significant decreases were noted in vital capacity, maximal breathing capacity, forced expiratory volume in 1 minute (FEV1), and maximal expiratory flow rate at 25 percent of vital capacity in the patients closest to the accident site.
    b) On repeated pulmonary function testing one month later, some patients had improved.

Neurologic

    3.7.1) SUMMARY
    A) Coma and seizures have occurred.
    3.7.2) CLINICAL EFFECTS
    A) SEIZURE
    1) Coma and seizures may occur as pre-morbid events in serious poisonings (CHRIS , 1985).

Gastrointestinal

    3.8.1) SUMMARY
    A) Irritation or burns of the oropharynx, esophagus, or GI tract may occur following ingestion. Nausea, vomiting, abdominal pain, hematemesis, bloody diarrhea, and perforation with severe burns may be noted.
    3.8.2) CLINICAL EFFECTS
    A) NAUSEA AND VOMITING
    1) Nausea, vomiting, and abdominal pain may be seen following ingestion (Plunkett, 1976; Caravati, 1987; CHRIS , 1985; ITI, 1985).
    2) Nausea and vomiting may also occur following inhalation exposure (Wason et al, 1984).
    B) HEMATEMESIS
    1) Hematest positive emesis may occur in ingestions (Caravati, 1987).
    C) DIARRHEA
    1) Watery diarrhea with occult blood may be noted following ingestion (Caravati, 1987).
    2) Bloody diarrhea may develop following ingestion (Plunkett, 1976; CHRIS , 1985; ITI, 1985).
    D) GASTROINTESTINAL HEMORRHAGE
    1) CASE REPORT - One patient developed recurrent gastrointestinal tract bleeding requiring laparotomy for control on four occasions after ingesting phosphoric acid (Gosselin et al, 1984). This patient died 19 days after ingestion, and at autopsy was found to have necrosis of the pancreas, stomach, duodenum, and jejunum (Gosselin et al, 1984).
    E) DRUG-INDUCED GASTROINTESTINAL DISTURBANCE
    1) Known complications of acid ingestion such as esophageal irritation or burns, gastric irritation or burns, esophageal stricture formation, bleeding, or perforation, and pyloric stenosis may be predicted to occur in some cases following phosphoric acid ingestion (Caravati, 1987; Gosselin et al, 1984).

Hepatic

    3.9.2) CLINICAL EFFECTS
    A) LIVER ENZYMES ABNORMAL
    1) CASE SERIES - Six of 17 patients exposed to fumes and vapors of phosphorus trichloride, phosphoric acid, hydrochloric acid, and oxides of phosphorus developed transient, asymptomatic elevations of LDH (Wason et al, 1984).
    B) LIVER DAMAGE
    1) Unspecified liver abnormalities were noted in one group of workers exposed to phosphoric acid during its production from phosphoric anhydride (Bartalini & Vaggi, 1958).

Acid-Base

    3.11.1) SUMMARY
    A) Elevated anion gap metabolic acidosis may occur.
    3.11.2) CLINICAL EFFECTS
    A) ACIDOSIS
    1) Patients ingesting phosphoric acid may develop elevated anion gap metabolic acidosis and shock (Plunkett, 1976; CHRIS , 1985; Caravati, 1987).
    2) CASE REPORT - In one reported case, the metabolic acidosis persisted after initially elevated serum acetone and lactate levels returned to normal (Caravati, 1987).
    3) Acidosis may be due to severe tissue burns and shock, as well as absorption of acid.

Hematologic

    3.13.2) CLINICAL EFFECTS
    A) HEMATOLOGY FINDING
    1) CASE SERIES - Unspecified blood and bone marrow abnormalities were reported in one group of workers exposed to phosphoric acid during its production from phosphoric anhydride (Bartalini & Vaggi, 1958).

Dermatologic

    3.14.1) SUMMARY
    A) Dermal irritation or burns may develop.
    3.14.2) CLINICAL EFFECTS
    A) CHEMICAL BURN
    1) Dermal irritation or burns may occur (Bartalini & Vaggi, 1958; Plunkett, 1976; RTECS , 1987; Budavari, 1996). Exposure of moist skin to phosphoric acid dust is particularly irritating (Hathaway et al, 1996).

Reproductive

    3.20.1) SUMMARY
    A) At the time of this review, no reproductive studies were found for phosphoric acid in humans or experimental animals.
    3.20.2) TERATOGENICITY
    A) HUMANS
    1) FETAL DISTRESS
    a) Fetal acidemia (fetal blood pH less than 7.0) has been linked with low Apgar scores, neonatal death, and seizures (Goldaber et al, 1991). This might occur if a pregnant woman was exposed to a very large amount of a strong acid. There is no evidence that overexposure to phosphoric acid has caused fetal acidemia.
    3.20.3) EFFECTS IN PREGNANCY
    A) LACK OF INFORMATION
    1) At the time of this review, no data were available to assess the potential effects of exposure to this agent during pregnancy or lactation.

Carcinogenicity

    3.21.1) IARC CATEGORY
    A) IARC Carcinogenicity Ratings for CAS7664-38-2 (International Agency for Research on Cancer (IARC), 2016; International Agency for Research on Cancer, 2015; IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, 2010; IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, 2010a; IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, 2008; IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, 2007; IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, 2006; IARC, 2004):
    1) Not Listed
    3.21.2) SUMMARY/HUMAN
    A) At the time of this review, no data were available to assess the carcinogenic potential of this agent.

Monitoring Parameters Levels

    4.1.1) SUMMARY
    A) Monitor ABGs, phosphate, calcium, and magnesium in ingestions.
    B) Monitor CBC, urinalysis, and liver and kidney function for patients with significant exposure.
    C) Monitor arterial blood gases, chest x-ray, and pulmonary function tests in symptomatic patients.
    4.1.2) SERUM/BLOOD
    A) BLOOD/SERUM CHEMISTRY
    1) A number of chemicals produce abnormalities of the hematopoietic system, liver, and kidneys. Monitoring complete blood count and liver and kidney function tests is suggested for patients with significant exposure.
    2) Monitor serum lactate, calcium, magnesium, and phosphate levels in ingestions.
    B) ACID/BASE
    1) Monitor arterial blood gases in ingestions.
    4.1.3) URINE
    A) URINALYSIS
    1) A number of chemicals produce abnormalities of the hematopoietic system, liver, and kidneys. Monitoring urinalysis is suggested for patients with significant exposure.
    4.1.4) OTHER
    A) OTHER
    1) PULMONARY FUNCTION TESTS
    a) If respiratory tract irritation is present, it may be useful to monitor pulmonary function tests.
    2) MONITORING
    a) If respiratory tract irritation is present, monitor arterial blood gases and chest x-ray.

Radiographic Studies

    A) CHEST RADIOGRAPH
    1) If respiratory tract irritation is present, monitor chest x-ray.

Life Support

    A) Support respiratory and cardiovascular function.

Patient Disposition

    6.3.1) DISPOSITION/ORAL EXPOSURE
    6.3.1.5) OBSERVATION CRITERIA/ORAL
    A) Patients symptomatic following exposure should be observed in a controlled setting until all signs and symptoms have fully resolved.

Monitoring

    A) Monitor ABGs, phosphate, calcium, and magnesium in ingestions.
    B) Monitor CBC, urinalysis, and liver and kidney function for patients with significant exposure.
    C) Monitor arterial blood gases, chest x-ray, and pulmonary function tests in symptomatic patients.

Oral Exposure

    6.5.1) PREVENTION OF ABSORPTION/PREHOSPITAL
    A) EMESIS/NOT RECOMMENDED
    1) DO NOT induce emesis.
    B) DILUTION
    1) DILUTION: If no respiratory compromise is present, administer milk or water as soon as possible after ingestion. Dilution may only be helpful if performed in the first seconds to minutes after ingestion. The ideal amount is unknown; no more than 8 ounces (240 mL) in adults and 4 ounces (120 mL) in children is recommended to minimize the risk of vomiting (Caravati, 2004).
    C) ACTIVATED CHARCOAL/NOT RECOMMENDED
    1) Activated charcoal is not effective in reducing mucosal injury, may induce emesis and may obscure endoscopy findings. It is NOT recommended.
    6.5.2) PREVENTION OF ABSORPTION
    A) EMESIS/NOT RECOMMENDED
    1) DO NOT induce emesis.
    B) NASOGASTRIC TUBE
    1) INDICATIONS: Consider insertion of a small, flexible nasogastric tube to aspirate gastric contents after large, recent ingestion of caustics. The risk of worsening mucosal injury (including perforation) must be weighed against the potential benefit.
    2) PRECAUTIONS:
    a) SEIZURE CONTROL: Is mandatory prior to gastric emptying.
    b) AIRWAY PROTECTION: Alert patients - place in Trendelenburg and left lateral decubitus position, with suction available. Obtunded or unconscious patients - cuffed endotracheal intubation. COMPLICATIONS:
    1) Complications of gastric aspiration may include: aspiration pneumonia, hypoxia, hypercapnia, mechanical injury to the throat, esophagus, or stomach (Vale, 1997). Combative patients may be at greater risk for complications.
    6.5.3) TREATMENT
    A) DILUTION
    1) DILUTION: If no respiratory compromise is present, administer milk or water as soon as possible after ingestion. Dilution may only be helpful if performed in the first seconds to minutes after ingestion. The ideal amount is unknown; no more than 8 ounces (240 mL) in adults and 4 ounces (120 mL) in children is recommended to minimize the risk of vomiting (Caravati, 2004).
    B) AIRWAY MANAGEMENT
    1) If central nervous system depression occurs, ensure airway patency and adequate respirations and oxygenation. Airway management including endotracheal intubation and ventilatory assistance could be required.
    C) SEIZURE
    1) SUMMARY
    a) Attempt initial control with a benzodiazepine (eg, diazepam, lorazepam). If seizures persist or recur, administer phenobarbital or propofol.
    b) Monitor for respiratory depression, hypotension, and dysrhythmias. Endotracheal intubation should be performed in patients with persistent seizures.
    c) Evaluate for hypoxia, electrolyte disturbances, and hypoglycemia (or, if immediate bedside glucose testing is not available, treat with intravenous dextrose).
    2) DIAZEPAM
    a) ADULT DOSE: Initially 5 to 10 mg IV, OR 0.15 mg/kg IV up to 10 mg per dose up to a rate of 5 mg/minute; may be repeated every 5 to 20 minutes as needed (Brophy et al, 2012; Prod Info diazepam IM, IV injection, 2008; Manno, 2003).
    b) PEDIATRIC DOSE: 0.1 to 0.5 mg/kg IV over 2 to 5 minutes; up to a maximum of 10 mg/dose. May repeat dose every 5 to 10 minutes as needed (Loddenkemper & Goodkin, 2011; Hegenbarth & American Academy of Pediatrics Committee on Drugs, 2008).
    c) Monitor for hypotension, respiratory depression, and the need for endotracheal intubation. Consider a second agent if seizures persist or recur after repeated doses of diazepam .
    3) NO INTRAVENOUS ACCESS
    a) DIAZEPAM may be given rectally or intramuscularly (Manno, 2003). RECTAL DOSE: CHILD: Greater than 12 years: 0.2 mg/kg; 6 to 11 years: 0.3 mg/kg; 2 to 5 years: 0.5 mg/kg (Brophy et al, 2012).
    b) MIDAZOLAM has been used intramuscularly and intranasally, particularly in children when intravenous access has not been established. ADULT DOSE: 0.2 mg/kg IM, up to a maximum dose of 10 mg (Brophy et al, 2012). PEDIATRIC DOSE: INTRAMUSCULAR: 0.2 mg/kg IM, up to a maximum dose of 7 mg (Chamberlain et al, 1997) OR 10 mg IM (weight greater than 40 kg); 5 mg IM (weight 13 to 40 kg); INTRANASAL: 0.2 to 0.5 mg/kg up to a maximum of 10 mg/dose (Loddenkemper & Goodkin, 2011; Brophy et al, 2012). BUCCAL midazolam, 10 mg, has been used in adolescents and older children (5-years-old or more) to control seizures when intravenous access was not established (Scott et al, 1999).
    4) LORAZEPAM
    a) MAXIMUM RATE: The rate of intravenous administration of lorazepam should not exceed 2 mg/min (Brophy et al, 2012; Prod Info lorazepam IM, IV injection, 2008).
    b) ADULT DOSE: 2 to 4 mg IV initially; repeat every 5 to 10 minutes as needed, if seizures persist (Manno, 2003; Brophy et al, 2012).
    c) PEDIATRIC DOSE: 0.05 to 0.1 mg/kg IV over 2 to 5 minutes, up to a maximum of 4 mg/dose; may repeat in 5 to 15 minutes as needed, if seizures continue (Brophy et al, 2012; Loddenkemper & Goodkin, 2011; Hegenbarth & American Academy of Pediatrics Committee on Drugs, 2008; Sreenath et al, 2010; Chin et al, 2008).
    5) PHENOBARBITAL
    a) ADULT LOADING DOSE: 20 mg/kg IV at an infusion rate of 50 to 100 mg/minute IV. An additional 5 to 10 mg/kg dose may be given 10 minutes after loading infusion if seizures persist or recur (Brophy et al, 2012).
    b) Patients receiving high doses will require endotracheal intubation and may require vasopressor support (Brophy et al, 2012).
    c) PEDIATRIC LOADING DOSE: 20 mg/kg may be given as single or divided application (2 mg/kg/minute in children weighing less than 40 kg up to 100 mg/min in children weighing greater than 40 kg). A plasma concentration of about 20 mg/L will be achieved by this dose (Loddenkemper & Goodkin, 2011).
    d) REPEAT PEDIATRIC DOSE: Repeat doses of 5 to 20 mg/kg may be given every 15 to 20 minutes if seizures persist, with cardiorespiratory monitoring (Loddenkemper & Goodkin, 2011).
    e) MONITOR: For hypotension, respiratory depression, and the need for endotracheal intubation (Loddenkemper & Goodkin, 2011; Manno, 2003).
    f) SERUM CONCENTRATION MONITORING: Monitor serum concentrations over the next 12 to 24 hours. Therapeutic serum concentrations of phenobarbital range from 10 to 40 mcg/mL, although the optimal plasma concentration for some individuals may vary outside this range (Hvidberg & Dam, 1976; Choonara & Rane, 1990; AMA Department of Drugs, 1992).
    6) OTHER AGENTS
    a) If seizures persist after phenobarbital, propofol or pentobarbital infusion, or neuromuscular paralysis with general anesthesia (isoflurane) and continuous EEG monitoring should be considered (Manno, 2003). Other anticonvulsants can be considered (eg, valproate sodium, levetiracetam, lacosamide, topiramate) if seizures persist or recur; however, there is very little data regarding their use in toxin induced seizures, controlled trials are not available to define the optimal dosage ranges for these agents in status epilepticus (Brophy et al, 2012):
    1) VALPROATE SODIUM: ADULT DOSE: An initial dose of 20 to 40 mg/kg IV, at a rate of 3 to 6 mg/kg/minute; may give an additional dose of 20 mg/kg 10 minutes after loading infusion. PEDIATRIC DOSE: 1.5 to 3 mg/kg/minute (Brophy et al, 2012).
    2) LEVETIRACETAM: ADULT DOSE: 1000 to 3000 mg IV, at a rate of 2 to 5 mg/kg/min IV. PEDIATRIC DOSE: 20 to 60 mg/kg IV (Brophy et al, 2012; Loddenkemper & Goodkin, 2011).
    3) LACOSAMIDE: ADULT DOSE: 200 to 400 mg IV; 200 mg IV over 15 minutes (Brophy et al, 2012). PEDIATRIC DOSE: In one study, median starting doses of 1.3 mg/kg/day and maintenance doses of 4.7 mg/kg/day were used in children 8 years and older (Loddenkemper & Goodkin, 2011).
    4) TOPIRAMATE: ADULT DOSE: 200 to 400 mg nasogastric/orally OR 300 to 1600 mg/day orally divided in 2 to 4 times daily (Brophy et al, 2012).
    D) ACIDOSIS
    1) METABOLIC ACIDOSIS: Treat severe metabolic acidosis (pH less than 7.1) with sodium bicarbonate, 1 to 2 mEq/kg is a reasonable starting dose(Kraut & Madias, 2010). Monitor serum electrolytes and arterial or venous blood gases to guide further therapy.
    E) HYPOCALCEMIA
    1) Serum calcium levels should be monitored and calcium replacement therapy administered if needed.
    F) HYPERPHOSPHATEMIA
    1) Serum phosphate levels should be monitored in ingestions.
    2) If severe, symptomatic hyperphosphatemia occurs, hemodialysis could be considered to remove excess plasma phosphate.
    G) HYPOMAGNESEMIA
    1) Serum magnesium levels should be monitored and magnesium replacement therapy administered if needed.
    H) HYPOTENSIVE EPISODE
    1) SUMMARY
    a) Infuse 10 to 20 milliliters/kilogram of isotonic fluid and keep the patient supine. If hypotension persists, administer dopamine or norepinephrine. Consider central venous pressure monitoring to guide further fluid therapy.
    2) DOPAMINE
    a) DOSE: Begin at 5 micrograms per kilogram per minute progressing in 5 micrograms per kilogram per minute increments as needed (Prod Info dopamine hcl, 5% dextrose IV injection, 2004). If hypotension persists, dopamine may need to be discontinued and a more potent vasoconstrictor (eg, norepinephrine) should be considered (Prod Info dopamine hcl, 5% dextrose IV injection, 2004).
    b) CAUTION: If ventricular dysrhythmias occur, decrease rate of administration (Prod Info dopamine hcl, 5% dextrose IV injection, 2004). Extravasation may cause local tissue necrosis, administration through a central venous catheter is preferred (Prod Info dopamine hcl, 5% dextrose IV injection, 2004).
    3) NOREPINEPHRINE
    a) PREPARATION: 4 milligrams (1 amp) added to 1000 milliliters of diluent provides a concentration of 4 micrograms/milliliter of norepinephrine base. Norepinephrine bitartrate should be mixed in dextrose solutions (dextrose 5% in water, dextrose 5% in saline) since dextrose-containing solutions protect against excessive oxidation and subsequent potency loss. Administration in saline alone is not recommended (Prod Info norepinephrine bitartrate injection, 2005).
    b) DOSE
    1) ADULT: Dose range: 0.1 to 0.5 microgram/kilogram/minute (eg, 70 kg adult 7 to 35 mcg/min); titrate to maintain adequate blood pressure (Peberdy et al, 2010).
    2) CHILD: Dose range: 0.1 to 2 micrograms/kilogram/minute; titrate to maintain adequate blood pressure (Kleinman et al, 2010).
    3) CAUTION: Extravasation may cause local tissue ischemia, administration by central venous catheter is advised (Peberdy et al, 2010).
    I) IRRITATION SYMPTOM
    1) Observe patients with ingestion carefully for the possible development of esophageal or gastrointestinal tract irritation or burns. If signs or symptoms of esophageal irritation or burns are present, consider endoscopy to determine the extent of injury.
    2) Patients with significant esophageal or gastrointestinal tract irritation or burns should be kept NPO initially.
    3) Treatment with oral sucralfate and antacids seems to have aided recovery in one reported case (Caravati, 1987).
    4) The role of steroid and H2-blocking agent (cimetidine, ranitidine) therapy in the treatment of esophageal or gastric burns is presently controversial. Consultation with a general surgeon or gastroenterologist is recommended.
    5) Surgical intervention can be required if bleeding or perforation occur (Gosselin et al, 1984).
    J) BURN
    1) SUMMARY - Burns of the oropharynx, esophagus, stomach, and duodenum may occur. Complications such as stricture, perforation, gastrointestinal bleeding and gastric outlet obstruction are related to the depth of burn. Early (within 24 hours) endoscopy should be performed to assess the severity of injury and guide future management.
    2) There is little information regarding the use of endoscopy, corticosteroids or surgery in the setting of concentrated phosphoric acid ingestion. The following information is derived from experience with other corrosives.
    K) ENDOSCOPIC PROCEDURE
    1) SUMMARY: Obtain consultation concerning endoscopy as soon as possible and perform endoscopy within the first 24 hours when indicated.
    2) INDICATIONS: Most studies associating the presence or absence of gastrointestinal burns with signs and symptoms after caustic ingestion have involved primarily alkaline ingestions. Because acid ingestion may cause severe gastric injury with fewer associated initial signs and symptoms, endoscopic evaluation is recommended in any patient with a definite history of ingestion of a strong acid, even if asymptomatic.
    3) RISKS: Numerous large case series attest to the relative safety and utility of early endoscopy in the management of caustic ingestion.
    a) REFERENCES: Gaudreault et al, 1983; Symbas et al, 1983; Crain et al, 1984; (Schild, 1985; Moazam et al, 1987; Sugawa & Lucas, 1989; Previtera et al, 1990; Zargar et al, 1991; Vergauwen et al, 1991; Gorman et al, 1992; Nuutinen et al, 1994)
    4) The risk of perforation during endoscopy is minimized by (Zargar et al, 1991):
    a) Advancing across the cricopharynx under direct vision
    b) Gently advancing with minimal air insufflation
    c) Never retroverting or retroflexing the endoscope
    d) Using a pediatric flexible endoscope
    e) Using extreme caution in advancing beyond burn lesion areas
    f) Most authors recommend endoscopy within the first 24 hours of injury, not advancing the endoscope beyond areas of severe esophageal burns, and avoiding endoscopy during the subacute phase of healing when tissue slough increases the risk of perforation (5 to 15 days after ingestion) (Zargar et al, 1991).
    5) GRADING
    a) Several scales for grading caustic injury exist. The likelihood of complications such as strictures, obstruction, bleeding and perforation is related to the severity of the initial burn (Zargar et al, 1991):
    b) Grade 0 - Normal examination
    c) Grade 1 - Edema and hyperemia of the mucosa; strictures unlikely.
    d) Grade 2A - Friability, hemorrhages, erosions, blisters, whitish membranes, exudates and superficial ulcerations; strictures unlikely.
    e) Grade 2B - Grade 2A plus deep discreet or circumferential ulceration; strictures may develop.
    f) Grade 3A - Multiple ulcerations and small scattered areas of necrosis; strictures are common, complications such as perforation, fistula formation, or gastrointestinal bleeding may occur.
    g) Grade 3B - Extensive necrosis through visceral wall; strictures are common, complications such as perforation, fistula formation, or gastrointestinal bleeding are more likely than with 3A.
    6) FOLLOW UP - If burns are found, follow 10 to 20 days later with barium swallow or esophagram.
    L) CORTICOSTEROID
    1) CORROSIVE INGESTION/SUMMARY: The use of corticosteroids for the treatment of caustic ingestion is controversial. Most animal studies have involved alkali-induced injury (Haller & Bachman, 1964; Saedi et al, 1973). Most human studies have been retrospective and generally involve more alkali than acid-induced injury and small numbers of patients with documented second or third degree mucosal injury.
    2) FIRST DEGREE BURNS: These burns generally heal well and rarely result in stricture formation (Zargar et al, 1989; Howell et al, 1992). Corticosteroids are generally not beneficial in these patients (Howell et al, 1992).
    3) SECOND DEGREE BURNS: Some authors recommend corticosteroid treatment to prevent stricture formation in patients with a second degree, deep-partial thickness burn (Howell et al, 1992). However, no well controlled human study has documented efficacy. Corticosteroids are generally not beneficial in patients with a second degree, superficial-partial thickness burn (Caravati, 2004; Howell et al, 1992).
    4) THIRD DEGREE BURNS: Some authors have recommended steroids in this group as well (Howell et al, 1992). A high percentage of patients with third degree burns go on to develop strictures with or without corticosteroid therapy and the risk of infection and perforation may be increased by corticosteroid use. Most authors feel that the risk outweighs any potential benefit and routine use is not recommended (Boukthir et al, 2004; Oakes et al, 1982; Pelclova & Navratil, 2005).
    5) CONTRAINDICATIONS: Include active gastrointestinal bleeding and evidence of gastric or esophageal perforation. Corticosteroids are thought to be ineffective if initiated more than 48 hours after a burn (Howell, 1987).
    6) DOSE: Administer daily oral doses of 0.1 milligram/kilogram of dexamethasone or 1 to 2 milligrams/kilogram of prednisone. Continue therapy for a total of 3 weeks and then taper (Haller et al, 1971; Marshall, 1979). An alternative regimen in children is intravenous prednisolone 2 milligrams/kilogram/day followed by 2.5 milligrams/kilogram/day of oral prednisone for a total of 3 weeks then tapered (Anderson et al, 1990).
    7) ANTIBIOTICS: Animal studies suggest that the addition of antibiotics can prevent the infectious complications associated with corticosteroid use in the setting of caustic burns. Antibiotics are recommended if corticosteroids are used or if perforation or infection is suspected. Agents that cover anaerobes and oral flora such as penicillin, ampicillin, or clindamycin are appropriate (Rosenberg et al, 1953).
    8) STUDIES
    a) ANIMAL
    1) Some animal studies have suggested that corticosteroid therapy may reduce the incidence of stricture formation after severe alkaline corrosive injury (Haller & Bachman, 1964; Saedi et al, 1973a).
    2) Animals treated with steroids and antibiotics appear to do better than animals treated with steroids alone (Haller & Bachman, 1964).
    3) Other studies have shown no evidence of reduced stricture formation in steroid treated animals (Reyes et al, 1974). An increased rate of esophageal perforation related to steroid treatment has been found in animal studies (Knox et al, 1967).
    b) HUMAN
    1) Most human studies have been retrospective and/or uncontrolled and generally involve small numbers of patients with documented second or third degree mucosal injury. No study has proven a reduced incidence of stricture formation from steroid use in human caustic ingestions (Haller et al, 1971; Hawkins et al, 1980; Yarington & Heatly, 1963; Adam & Brick, 1982).
    2) META ANALYSIS
    a) Howell et al (1992), analyzed reports concerning 361 patients with corrosive esophageal injury published in the English language literature since 1956 (10 retrospective and 3 prospective studies). No patients with first degree burns developed strictures. Of 228 patients with second or third degree burns treated with corticosteroids and antibiotics, 54 (24%) developed strictures. Of 25 patients with similar burn severity treated without steroids or antibiotics, 13 (52%) developed strictures (Howell et al, 1992).
    b) Another meta-analysis of 10 studies found that in patients with second degree esophageal burns from caustics, the overall rate of stricture formation was 14.8% in patients who received corticosteroids compared with 36% in patients who did not receive corticosteroids (LoVecchio et al, 1996).
    c) Another study combined results of 10 papers evaluating therapy for corrosive esophageal injury in humans published between January 1991 and June 2004. There were a total of 572 patients, all patients received corticosteroids in 6 studies, in 2 studies no patients received steroids, and in 2 studies, treatment with and without corticosteroids was compared. Of 109 patients with grade 2 esophageal burns who were treated with corticosteroids, 15 (13.8%) developed strictures, compared with 2 of 32 (6.3%) patients with second degree burns who did not receive steroids (Pelclova & Navratil, 2005).
    3) Smaller studies have questioned the value of steroids (Ferguson et al, 1989; Anderson et al, 1990), thus they should be used with caution.
    4) Ferguson et al (1989) retrospectively compared 10 patients who did not receive antibiotics or steroids with 31 patients who received both antibiotics and steroids in a study of caustic ingestion and found no difference in the incidence of esophageal stricture between the two groups (Ferguson et al, 1989).
    5) A randomized, controlled, prospective clinical trial involving 60 children with lye or acid induced esophageal injury did not find an effect of corticosteroids on the incidence of stricture formation (Anderson et al, 1990).
    a) These 60 children were among 131 patients who were managed and followed-up for ingestion of caustic material from 1971 through 1988; 88% of them were between 1 and 3 years old (Anderson et al, 1990).
    b) All patients underwent rigid esophagoscopy after being randomized to receive either no steroids or a course consisting initially of intravenous prednisolone (2 milligrams/kilogram per day) followed by 2.5 milligrams/kilogram/day of oral prednisone for a total of 3 weeks prior to tapering and discontinuation (Anderson et al, 1990).
    c) Six (19%), 15 (48%), and 10 (32%) of those in the treatment group had first, second and third degree esophageal burns, respectively. In contrast, 13 (45%), 5 (17%), and 11 (38%) of the control group had the same levels of injury (Anderson et al, 1990).
    d) Ten (32%) of those receiving steroids and 11 (38%) of the control group developed strictures. Four (13%) of those receiving steroids and 7 (24%) of the control group required esophageal replacement. All but 1 of the 21 children who developed strictures had severe circumferential burns on initial esophagoscopy (Anderson et al, 1990).
    e) Because of the small numbers of patients in this study, it lacked the power to reliably detect meaningful differences in outcome between the treatment groups (Anderson et al, 1990).
    6) ADVERSE EFFECTS
    a) The use of corticosteroids in the treatment of caustic ingestion in humans has been associated with gastric perforation (Cleveland et al, 1963) and fatal pulmonary embolism (Aceto et al, 1970).
    M) DIETARY FINDING
    1) Depends on degree of damage as assessed by early endoscopy (Dilawari et al, 1984).
    1) mild (grade I): may have oral feedings first day
    2) moderate (grade II): may have liquids after 48 to 72 hours
    3) severe (grade III): jejunostomy tube feedings after 48 to 72 hours
    2) Observe for symptoms of gastric outlet obstruction, at which time parenteral fluids and/or hyperalimentation should be considered. Classically, this occurs at 3 weeks after ingestions.
    N) FOLLOW-UP VISIT
    1) Obtain a follow-up esophagram and upper GI series to evaluate presence or absence of secondary scarring and/or stricture formation about 2 to 4 weeks following ingestion.
    2) One 3-year-old child developed esophageal stricture 2 years after the acid ingestion in a prospective study of 41 patients. This child had a normal barium study at one year after ingestion (Zargar et al, 1989).
    O) SURGICAL PROCEDURE
    1) In severe cases of gastrointestinal necrosis or perforation, emergent surgical consultation should be obtained. The need for gastric resection or laparotomy in the stable patient is controversial (Chodak & Passaro, 1978; Dilawari et al, 1984).
    2) LAPAROTOMY/LAPAROSCOPY - Early laparotomy or laparoscopy should be considered in patients with endoscopic evidence of severe esophageal or gastric burns after acid ingestion to evaluate for the presence of transmural gastric or esophageal necrosis (Estrera et al, 1986; Meredith et al, 1988; Wu & Lai, 1993). Emergent laparotomy should be strongly considered in any patient with hypotension, altered mental status, or acidemia (Hovarth et al, 1991).
    a) STUDY - In a retrospective study of patients with extensive transmural gastroesophageal necrosis after caustic ingestion, all 4 patients treated in the conventional manner (endoscopy, steroids, antibiotics, and repeated evaluation for the occurrence of esophagogastric necrosis and perforation) died, while all 3 patients treated with early laparotomy and immediate esophagogastric resection survived (Estrera et al, 1986).
    b) Wu & Lai (1993) reported the results of emergency surgical resection of the alimentary tract in 28 patients who had extensive corrosive injuries due to the ingestion of acids or other caustics. Operative mortality was most frequently associated with sepsis. Non-fatal bleeding, infections, biliary or bronchial fistulas were other noted complications. Morbidity and mortality were related to the severity of the damage and the extent of surgery required.
    1) Immediate postoperative management included antibiotics, extensive respiratory care, tracheobronchial toilet, maintenance of fluid, electrolyte and acid-base balance, and jejunostomy feeding or total parenteral nutrition.
    P) OBSERVATION REGIMES
    1) Carefully observe patients with ingestion exposure for the development of any systemic signs or symptoms and administer symptomatic treatment as necessary.

Inhalation Exposure

    6.7.1) DECONTAMINATION
    A) Move patient from the toxic environment to fresh air. Monitor for respiratory distress. If cough or difficulty in breathing develops, evaluate for hypoxia, respiratory tract irritation, bronchitis, or pneumonitis.
    B) OBSERVATION: Carefully observe patients with inhalation exposure for the development of any systemic signs or symptoms and administer symptomatic treatment as necessary.
    C) INITIAL TREATMENT: Administer 100% humidified supplemental oxygen, perform endotracheal intubation and provide assisted ventilation as required. Administer inhaled beta-2 adrenergic agonists, if bronchospasm develops. Consider systemic corticosteroids in patients with significant bronchospasm (National Heart,Lung,and Blood Institute, 2007). Exposed skin and eyes should be flushed with copious amounts of water.
    6.7.2) TREATMENT
    A) IRRITATION SYMPTOM
    1) Respiratory tract irritation, if severe, can progress to noncardiogenic pulmonary edema which may be delayed in onset up to 24 to 72 hours after exposure in some cases.
    2) There are no controlled studies indicating that early administration of corticosteroids can prevent the development of noncardiogenic pulmonary edema in patients with inhalation exposure to respiratory irritant substances, and long-term use may cause adverse effects (Boysen & Modell, 1989).
    a) However, based on anecdotal experience, some clinicians do recommend early administration of corticosteroids (such as methylprednisolone 1 gram intravenously as a single dose) in an attempt to prevent the later development of pulmonary edema.
    1) Anecdotal experience with dimethyl sulfate inhalation showed possible benefit of methylprednisolone in the TREATMENT of noncardiogenic pulmonary edema (Ip et al, 1989).
    3) Anecdotal experience also indicated that systemic corticosteroids may have possible efficacy in the TREATMENT of drug-induced noncardiogenic pulmonary edema (Zitnik & Cooper, 1990; Stentoft, 1990; Chudnofsky & Otten, 1989) or noncardiogenic pulmonary edema developing after cardiopulmonary bypass (Maggart & Stewart, 1987).
    4) It is not clear from the published literature that administration of systemic corticosteroids early following inhalation exposure to respiratory irritant substances can PREVENT the development of noncardiogenic pulmonary edema. The decision to administer or withhold corticosteroids in this setting must currently be made on clinical grounds.
    B) ACUTE LUNG INJURY
    1) ONSET: Onset of acute lung injury after toxic exposure may be delayed up to 24 to 72 hours after exposure in some cases.
    2) NON-PHARMACOLOGIC TREATMENT: The treatment of acute lung injury is primarily supportive (Cataletto, 2012). Maintain adequate ventilation and oxygenation with frequent monitoring of arterial blood gases and/or pulse oximetry. If a high FIO2 is required to maintain adequate oxygenation, mechanical ventilation and positive-end-expiratory pressure (PEEP) may be required; ventilation with small tidal volumes (6 mL/kg) is preferred if ARDS develops (Haas, 2011; Stolbach & Hoffman, 2011).
    a) To minimize barotrauma and other complications, use the lowest amount of PEEP possible while maintaining adequate oxygenation. Use of smaller tidal volumes (6 mL/kg) and lower plateau pressures (30 cm water or less) has been associated with decreased mortality and more rapid weaning from mechanical ventilation in patients with ARDS (Brower et al, 2000). More treatment information may be obtained from ARDS Clinical Network website, NIH NHLBI ARDS Clinical Network Mechanical Ventilation Protocol Summary, http://www.ardsnet.org/node/77791 (NHLBI ARDS Network, 2008)
    3) FLUIDS: Crystalloid solutions must be administered judiciously. Pulmonary artery monitoring may help. In general the pulmonary artery wedge pressure should be kept relatively low while still maintaining adequate cardiac output, blood pressure and urine output (Stolbach & Hoffman, 2011).
    4) ANTIBIOTICS: Indicated only when there is evidence of infection (Artigas et al, 1998).
    5) EXPERIMENTAL THERAPY: Partial liquid ventilation has shown promise in preliminary studies (Kollef & Schuster, 1995).
    6) CALFACTANT: In a multicenter, randomized, blinded trial, endotracheal instillation of 2 doses of 80 mL/m(2) calfactant (35 mg/mL of phospholipid suspension in saline) in infants, children, and adolescents with acute lung injury resulted in acute improvement in oxygenation and lower mortality; however, no significant decrease in the course of respiratory failure measured by duration of ventilator therapy, intensive care unit, or hospital stay was noted. Adverse effects (transient hypoxia and hypotension) were more frequent in calfactant patients, but these effects were mild and did not require withdrawal from the study (Wilson et al, 2005).
    7) However, in a multicenter, randomized, controlled, and masked trial, endotracheal instillation of up to 3 doses of calfactant (30 mg) in adults only with acute lung injury/ARDS due to direct lung injury was not associated with improved oxygenation and longer term benefits compared to the placebo group. It was also associated with significant increases in hypoxia and hypotension (Willson et al, 2015).
    C) BRONCHOSPASM
    1) If bronchospasm and wheezing occur, consider treatment with inhaled sympathomimetic agents.
    D) OBSERVATION REGIMES
    1) Carefully observe patients with inhalation exposure for the development of any systemic signs or symptoms and administer symptomatic treatment as necessary.
    E) Treatment should include recommendations listed in the ORAL EXPOSURE section when appropriate.

Eye Exposure

    6.8.1) DECONTAMINATION
    A) EYE IRRIGATION, ROUTINE: Remove contact lenses and irrigate exposed eyes with copious amounts of room temperature 0.9% saline or water for at least 15 minutes. If irritation, pain, swelling, lacrimation, or photophobia persist after 15 minutes of irrigation, an ophthalmologic examination should be performed (Peate, 2007; Naradzay & Barish, 2006).
    6.8.2) TREATMENT
    A) INJURY OF GLOBE OF EYE
    1) EVALUATION
    a) ASSESSMENT CAUSTIC EYE BURNS: It may take 48 to 72 hours after the burn to assess correctly the degree of ocular damage (Brodovsky et al, 2000).
    b) The 1965 Roper-Hall classification uses the size of the corneal epithelial defect, the degree of corneal opacification and extent of limbal ischemia to evaluate the extent of the chemical ocular injury (Brodovsky et al, 2000; Singh et al, 2013):
    1) GRADE 1 (prognosis good): Corneal epithelial damage; no limbal ischemia.
    2) GRADE 2 (prognosis good): Cornea hazy; iris details visible, ischemia less than one-third of limbus.
    3) GRADE 3 (prognosis guarded): Total loss of corneal epithelium; stromal haze obscures iris details; ischemia of one-third to one-half of limbus.
    4) GRADE 4 (prognosis poor): Cornea opaque; iris and pupil obscured, ischemia affects more than one-half of limbus.
    c) A newer classification (Dua) is based on clock hour limbal involvement as well as a percentage of bulbar conjunctival involvement (Singh et al, 2013):
    1) GRADE 1 (prognosis very good): 0 clock hour of limbal involvement and 0% conjunctival involvement.
    2) GRADE 2 (prognosis good): Less than 3 clock hour of limbal involvement and less than 30% conjunctival involvement.
    3) GRADE 3 (prognosis good): Greater than 3 and up to 6 clock hour of limbal involvement and greater than 30% to 50% conjunctival involvement.
    4) GRADE 4 (prognosis good to guarded): Greater than 6 and up to 9 clock hour of limbal involvement and greater than 50% to 75% conjunctival involvement.
    5) GRADE 5 (prognosis guarded to poor): Greater than 9 and less than 12 clock hour of limbal involvement and greater than 75% and less than 100% conjunctival involvement.
    6) GRADE 6 (very poor): Total limbus (12 clock hour) involved and 100% conjunctival involvement.
    2) MEDICAL FACILITY IRRIGATION
    a) Begin irrigation immediately with copious amounts of water or sterile 0.9% saline, which ever is more rapidly available. Lactated Ringer's solution may also be effective. Once irrigation has begun, instill a drop of local anesthetic (eg, 0.5% proparacaine) for comfort; switching from water to slightly warmed sterile saline may also improve patient comfort (Singh et al, 2013; Spector & Fernandez, 2008; Ernst et al, 1998; Grant & Schuman, 1993a). In one study, isotonic saline, lactated Ringer's solution, normal saline with bicarbonate, and balanced saline plus (BSS Plus) were compared and no difference in normalization of pH were found; however, BSS Plus was better tolerated and more comfortable (Fish & Davidson, 2010).
    1) Continue irrigation for at least an hour or until the superior and inferior cul-de-sacs have returned to neutrality (check pH every 30 minutes), pH of 7.0 to 8.0, and remain so for 30 minutes after irrigation is discontinued (Spector & Fernandez, 2008; Brodovsky et al, 2000a). After severe alkaline burns, the pH of the conjunctival sac may only return to a pH of 8 or 8.5 even after extensive irrigation (Grant & Schuman, 1993a). Irrigating volumes up to 20 L or more have been used to neutralize the pH (Singh et al, 2013; Fish & Davidson, 2010). Immediate and prolonged irrigation is associated with improved visual acuity, shorter hospital stay and fewer surgical interventions (Kuckelkorn et al, 1995; Saari et al, 1984).
    2) Search the conjunctival sac for solid particles and remove them while continuing irrigation (Grant & Schuman, 1993a).
    3) For significant alkaline or concentrated acid burns with evidence of eye injury irrigation should be continued for at least 2 to 3 hours, potentially as long as 24 to 48 hours if pH not normalized, in an attempt to normalize the pH of the anterior chamber (Smilkstein & Fraunfelder, 2002). Emergent ophthalmologic consultation is needed in these cases (Spector & Fernandez, 2008).
    3) MINOR INJURY
    a) SUMMARY
    1) If ocular damage is minor, artificial tears/lubricants, topical cycloplegics, and antibiotics may be all that are needed.
    b) ARTIFICIAL TEARS
    1) To promote re-epithelization, preservative-free artificial tears/lubricants (eg, hyaluronic acid hourly) may be used (Fish & Davidson, 2010; Tuft & Shortt, 2009).
    c) TOPICAL CYCLOPLEGIC
    1) Use to guard against development of posterior synechiae and ciliary spasm (Brodovsky et al, 2000b; Grant & Schuman, 1993a). Cyclopentolate 0.5% or 1% eye drops may be administered 4 times daily to control pain (Tuft & Shortt, 2009; Spector & Fernandez, 2008).
    d) TOPICAL ANTIBIOTICS
    1) An antibiotic ophthalmic ointment or drops should be used for as long as epithelial defects persist (Brodovsky et al, 2000b; Grant & Schuman, 1993a). Topical erythromycin or tetracycline ointment may be used (Spector & Fernandez, 2008).
    e) PAIN CONTROL
    1) If pain control is required, oral or parenteral NSAIDs or narcotics are preferred to topical ocular anesthetics, which may cause local corneal epithelial damage if used repeatedly (Spector & Fernandez, 2008; Grant & Schuman, 1993a). However, topical 0.5% proparacaine has been recommended (Spector & Fernandez, 2008).
    4) SEVERE INJURY
    a) SUMMARY
    1) If the damage is minor, the above may be all that is needed. For grade 3 or 4 injuries, one or more of the following may be used, only with ophthalmologic consultation: acetazolamide, topical timolol, topical steroids, citrate, ascorbate, EDTA, cysteine, NAC, penicillamine, tetracycline, or soft contact lenses.
    b) ARTIFICIAL TEARS
    1) To promote re-epithelization, preservative-free artificial tears/lubricants (eg, hyaluronic acid hourly) may be used (Fish & Davidson, 2010; Tuft & Shortt, 2009).
    c) PAIN CONTROL
    1) If pain control is required, oral or parenteral NSAIDs or narcotics are preferred to topical ocular anesthetics, which may cause local corneal epithelial damage if used repeatedly (Spector & Fernandez, 2008; Grant & Schuman, 1993a). However, topical 0.5% proparacaine has been recommended (Spector & Fernandez, 2008).
    d) CARBONIC ANHYDRASE INHIBITOR
    1) Acetazolamide (250 mg orally 4 times daily) may be given to control increased intraocular pressure (Singh et al, 2013; Tuft & Shortt, 2009; Spector & Fernandez, 2008).
    e) TOPICAL STEROIDS
    1) DOSE: Dexamethasone 0.1% ointment 4 times daily to reduce inflammation. If persistent epithelial defect is present, discontinue dexamethasone by day 14 to reduce the risk of stromal melt (Tuft & Shortt, 2009). Other sources suggest that corticosteroids should be stopped if the epithelium has not covered surface defects by 5 to 7 days (Grant & Schuman, 1993b).
    2) Topical prednisolone 0.5% has also been used. A further increase in corneoscleral melt may occur if topical steroids are used alone. In one study, topical prednisolone 0.5% was used in combination with topical ascorbate 10%; no increase in corneoscleral melt was observed when topical steroids were used until re-epithelization (Singh et al, 2013; Fish & Davidson, 2010).
    3) In one retrospective study, fluorometholone 1% drops were administered every 2 hours initially, then decreased to four times daily when there was evidence of progressive corneal reepithelialization and lessened inflammation, and discontinued when corneal reepithelialization was complete (Brodovsky et al, 2000a).
    a) STUDY: The combination of intensive topical corticosteroids, topical citrate and ascorbate, and oral citrate and ascorbate was associated with improved best corrected visual acuity and a trend towards more rapid corneal reepithelialization in Grade 3 alkali burns in one retrospective study (Brodovsky et al, 2000a).
    f) ASCORBATE
    1) Oral or topical ascorbate may be used to promote epithelial healing and reduce the risk of stromal necrosis (Fish & Davidson, 2010).
    2) DOSE: Ascorbate 10% 4 times daily topically or 1 g orally (2 g/day) (Singh et al, 2013; Tuft & Shortt, 2009).
    3) Ascorbate is needed for the formation of collagen and the concentration of ascorbate in the anterior chamber is decreased when the ciliary body is damaged by alkali burns (Tuft & Shortt, 2009; Grant & Schuman, 1993b). In one retrospective study, ascorbate drops (10%) were administered every 2 hours, then decreased to 4 times a day when there was evidence of progressive corneal reepithelialization and lessened inflammation, and discontinued when corneal reepithelialization was complete. These patients also received 500 mg of oral ascorbate 4 times daily, until discharge from the hospital (Brodovsky et al, 2000a).
    a) STUDY: The combination of intensive topical corticosteroids, topical citrate and ascorbate, and oral citrate and ascorbate was associated with improved best corrected visual acuity and a trend towards more rapid corneal reepithelialization in Grade 3 alkali burns in one retrospective study (Brodovsky et al, 2000a).
    g) CITRATE
    1) Topical citrate may be used to promote epithelial healing and reduce the risk of stromal necrosis (Fish & Davidson, 2010).
    2) DOSE: Potassium citrate 10% 4 times daily topically (Tuft & Shortt, 2009).
    3) Citrate chelates calcium, and thereby interferes with the harmful effects of neutrophil accumulation, such as release of proteolytic enzymes and superoxide free radicals, phagocytosis and ulceration (Grant & Schuman, 1993b). In one retrospective study, 10% citrate drops were administered every 2 hours, then decreased to 4 times a day when there was evidence of progressive corneal reepithelialization and lessened inflammation, and discontinued when corneal reepithelialization was complete. These patients also received a urinary alkalinizer containing 720 mg of citric acid anhydrous and 630 mg of sodium citrate anhydrous 3 times daily, until discharge from the hospital (Brodovsky et al, 2000a).
    a) STUDY: The combination of intensive topical corticosteroids, topical citrate and ascorbate, and oral citrate and ascorbate was associated with improved best corrected visual acuity and a trend towards more rapid corneal reepithelialization in Grade 3 alkali burns in one retrospective study (Brodovsky et al, 2000a).
    h) COLLAGENASE INHIBITORS
    1) Inhibitors of collagenase can inhibit collagenolytic activity, prevent stromal ulceration, and promote wound healing. Several effective agents, such as cysteine, n-acetylcysteine, sodium ethylenediamine tetra acetic acid (EDTA), calcium EDTA, penicillamine, and citrate, have been recommended (Singh et al, 2013; Tuft & Shortt, 2009; Perry et al, 1993; Seedor et al, 1987).
    2) TETRACYCLINE: Has been found to have an anticollagenolytic effect. Systemic tetracycline 50 mg/kg/day reduced the incidence of alkali-induced corneal ulcerations in rabbits (Seedor et al, 1987).
    3) DOXYCYCLINE: Decreased epithelial defects and collagenase activity in a rabbit model of alkali burns to the eye (Perry et al, 1993). DOSE: 100 mg twice daily (Tuft & Shortt, 2009).
    i) ANTIBIOTICS
    1) An antibiotic ophthalmic ointment or drops should be used for as long as epithelial defects persist (Brodovsky et al, 2000b; Grant & Schuman, 1993a). Topical erythromycin or tetracycline ointment may be used (Spector & Fernandez, 2008). In patients with severe burns, a topical fluoroquinolone antibiotic drop 4 times daily may also be used (Tuft & Shortt, 2009). A topical fourth generation fluoroquinolone has been recommended as an antimicrobial prophylaxis in patients with large epithelial defect (Fish & Davidson, 2010).
    j) TOPICAL CYCLOPLEGIC
    1) Cyclopentolate 0.5% or 1% eye drops may be administered 4 times daily to control pain (Tuft & Shortt, 2009; Spector & Fernandez, 2008).
    k) SOFT CONTACT LENSES
    1) A bandage contact lens (eg, silicone hydrogel) may make the patient more comfortable and protect the surface (Fish & Davidson, 2010; Tuft & Shortt, 2009). Hydrophilic high oxygen permeability lenses are preferred (Singh et al, 2013). Soft lenses with intermediate water content and inherent rigidity may facilitate reepithelialization. The use of 0.5 normal sodium chloride drops hourly and artificial tears or lubricant eyedrops instilled 4 times a day may help maintain adequate hydration and lens mobility.
    5) SURGICAL THERAPY
    a) SURGICAL THERAPY CAUSTIC EYE INJURY
    1) Early insertion of methylmethacrylate ring or suturing saran wrap over palpebral and cul-de-sac conjunctiva may prevent fibrinosis adhesions and reduce fibrotic contracture of conjunctiva, but the advantage of such treatments is not clear.
    2) Limbal stem cell transplantation has been used successfully in both the acute stage of injury and the chronically scarred healing phase in patients with persistent epithelial defects after chemical burns (Azuara-Blanco et al, 1999; Morgan & Murray, 1996; Ronk et al, 1994).
    3) In some patients, amniotic membrane transplantation (AMT) has been successful in improving corneal healing and visual acuity in patients with persistent epithelial defects after chemical burns. It can restore the conjunctival surface and decrease limbal stromal inflammation (Fish & Davidson, 2010; Sridhar et al, 2000; Su & Lin, 2000; Meller et al, 2000; Azuara-Blanco et al, 1999).
    4) Control glaucoma. Remove any cataracts formed (Fish & Davidson, 2010; Tuft & Shortt, 2009).
    5) In patients with severe injury, tenonplasty can be performed to promote epithelialization and prevent melting (Tuft & Shortt, 2009).
    6) A keratoprosthesis placement has also been indicated in severe cases (Fish & Davidson, 2010). Penetrating keratoplasty is usually delayed as long as possible as results appear to be better with a greater lag time between injury and keratoplasty (Grant & Schuman, 1993a).
    B) Treatment should include recommendations listed in the ORAL EXPOSURE section when appropriate.

Dermal Exposure

    6.9.1) DECONTAMINATION
    A) DECONTAMINATION: Remove contaminated clothing and wash exposed area thoroughly with soap and water for 10 to 15 minutes. A physician may need to examine the area if irritation or pain persists (Burgess et al, 1999).
    6.9.2) TREATMENT
    A) IRRITATION SYMPTOM
    1) Treat dermal irritation or burns with standard topical therapy. Patients developing dermal hypersensitivity reactions may require treatment with systemic or topical corticosteroids or antihistamines.
    B) SKIN ABSORPTION
    1) Some chemicals can produce systemic poisoning by absorption through intact skin. Carefully observe patients with dermal exposure for the development of any systemic signs or symptoms and administer symptomatic treatment as necessary.
    C) Treatment should include recommendations listed in the ORAL EXPOSURE section when appropriate.

Enhanced Elimination

    A) HEMODIALYSIS
    1) Hemodialysis clearance of phosphate is at a rate of 50 to 100 mL/minute, which is more rapid than normal renal excretion (Caravati, 1987).
    B) PERITONEAL DIALYSIS
    1) Peritoneal dialysis can produce a phosphate clearance of only 10 mL/minute (Caravati, 1987).
    2) When normal renal function is impaired, or if severe, symptomatic hyperphosphatemia occurs, hemodialysis could be considered to remove excess phosphate from the plasma.
    3) Hemodialysis cannot be expected to be of value in treating any of the irritant or caustic effects of phosphoric acid.

Case Reports

    A) ACUTE EFFECTS
    1) Wason et al (1984) reported an incident in which a tanker containing phosphorus trichloride leaked this material. On contact with moisture in the air and water used to disperse the spill, phosphoric acid, hydrochloric acid, and oxides of phosphorus were released. The authors studied 17 patients exposed to these vapors.
    2) All complained of eye irritation, excessive lacrimation, nausea, vomiting, and dyspnea. Six were noted to have transient, asymptomatic elevations of LDH. All had normal chest x-rays, but there were decreases in vital capacity, maximal breathing capacity, forced expiratory volume in 1 second (FEV1), and maximal expiratory flow rates at 25 percent of vital capacity on pulmonary function testing in those patients who were closest to the spill site.
    3) On repeated pulmonary function testing one month later, 7 patients had improved. The authors felt that most of these abnormalities were due to inhalation of phosphorus trichloride fumes.
    B) ADULT
    1) Caravati (1987) reported the case of a 64-year-old man who ingested between 90 and 120 mL of a 20% hydrogen phosphate-containing porcelain and metal cleaning solution in a suicide attempt. A burning sensation in the throat, nausea, hoarseness, abdominal pain, hematemesis, and hematest-positive watery diarrhea were noted.
    2) Hypocalcemia and hyperphosphatemia were noted, as well as an elevated anion gap metabolic acidosis which persisted after initially elevated serum lactate and acetone levels had normalized. Hypophosphatemia later developed during therapy with oral aluminum hydroxide and sucralfate. A left lower lobe aspiration pneumonitis also developed.
    3) The patient had mild partial thickness burns of the oropharyngeal mucosa, distal esophagus, and of a pre-existing Bilroth II anastomosis. The patient recovered fully after being kept NPO except for treatment with oral sucralfate and aluminum hydroxide. The use of steroids or H2-blocking (cimetidine, ranitidine) agents was not reported.

Summary

    A) As little as 8 mL may be fatal if ingested, but ingestion of 90 to 120 mL of a 20% hydrogen phosphate product was survived.

Minimum Lethal Exposure

    A) GENERAL/SUMMARY
    1) Some references have stated that a fatal outcome may occur following ingestion of as little as 8 mL of phosphoric acid (Caravati, 1987).

Maximum Tolerated Exposure

    A) OCCUPATIONAL
    1) Unacclimated workers could not endure exposure to fumes of phosphorus pentoxide (the anhydride of phosphoric acid) at a concentration of 100 mg/m(3) (Hathaway et al, 1996).
    2) Exposure to concentrations between 3.6 and 11.3 mg/m(3) produced cough, whereas concentrations of 0.8 to 5.4 mg/m(3) were noticeable but not uncomfortable (ACGIH, 1986).
    a) Only experienced workers could tolerate concentrations of 100 mg/m(3). Such concentrations were unendurable to other subjects (ACGIH, 1986).
    3) A subcohort of workers from 16 phosphate companies who were occupationally exposed to unspecified amounts of phosphoric acid had no significant increase in cause-specific mortality (Hathaway et al, 1996).
    4) A dilute solution buffered to pH 2.5 caused a moderate brief stinging sensation but no injury when dropped in the human eye (Hathaway et al, 1996).
    5) A 75% solution will cause severe skin burns (Hathaway et al, 1996).
    6) Ingestion of 90 to 120 mL of a 20% phosphoric acid-containing liquid porcelain and metal cleaner was survived (Caravati, 1987).
    B) ANIMAL DATA
    1) Application of 595 mg for 24 hours caused severe dermal irritation in rabbits. Instillation of 119 mg caused severe eye irritation in rabbits (RTECS, 2002).

Workplace Standards

    A) ACGIH TLV Values for CAS7664-38-2 (American Conference of Governmental Industrial Hygienists, 2010):
    1) Editor's Note: The listed values are recommendations or guidelines developed by ACGIH(R) to assist in the control of health hazards. They should only be used, interpreted and applied by individuals trained in industrial hygiene. Before applying these values, it is imperative to read the introduction to each section in the current TLVs(R) and BEI(R) Book and become familiar with the constraints and limitations to their use. Always consult the Documentation of the TLVs(R) and BEIs(R) before applying these recommendations and guidelines.
    a) Adopted Value
    1) Phosphoric acid
    a) TLV:
    1) TLV-TWA: 1 mg/m(3)
    2) TLV-STEL: 3 mg/m(3)
    3) TLV-Ceiling:
    b) Notations and Endnotes:
    1) Carcinogenicity Category: Not Listed
    2) Codes: Not Listed
    3) Definitions: Not Listed
    c) TLV Basis - Critical Effect(s): URT, eye, and skin irr
    d) Molecular Weight: 98.0
    1) For gases and vapors, to convert the TLV from ppm to mg/m(3):
    a) [(TLV in ppm)(gram molecular weight of substance)]/24.45
    2) For gases and vapors, to convert the TLV from mg/m(3) to ppm:
    a) [(TLV in mg/m(3))(24.45)]/gram molecular weight of substance
    e) Additional information:

    B) NIOSH REL and IDLH Values for CAS7664-38-2 (National Institute for Occupational Safety and Health, 2007):
    1) Listed as: Phosphoric acid
    2) REL:
    a) TWA: 1 mg/m(3)
    b) STEL: 3 mg/m(3)
    c) Ceiling:
    d) Carcinogen Listing: (Not Listed) Not Listed
    e) Skin Designation: Not Listed
    f) Note(s):
    3) IDLH:
    a) IDLH: 1000 mg/m3
    b) Note(s): Not Listed

    C) Carcinogenicity Ratings for CAS7664-38-2 :
    1) ACGIH (American Conference of Governmental Industrial Hygienists, 2010): Not Listed ; Listed as: Phosphoric acid
    2) EPA (U.S. Environmental Protection Agency, 2011): Not Assessed under the IRIS program. ; Listed as: Phosphoric acid
    3) IARC (International Agency for Research on Cancer (IARC), 2016; International Agency for Research on Cancer, 2015; IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, 2010; IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, 2010a; IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, 2008; IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, 2007; IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, 2006; IARC, 2004): Not Listed
    4) NIOSH (National Institute for Occupational Safety and Health, 2007): Not Listed ; Listed as: Phosphoric acid
    5) MAK (DFG, 2002): Not Listed
    6) NTP (U.S. Department of Health and Human Services, Public Health Service, National Toxicology Project ): Not Listed

    D) OSHA PEL Values for CAS7664-38-2 (U.S. Occupational Safety, and Health Administration (OSHA), 2010):
    1) Listed as: Phosphoric acid
    2) Table Z-1 for Phosphoric acid:
    a) 8-hour TWA:
    1) ppm:
    a) Parts of vapor or gas per million parts of contaminated air by volume at 25 degrees C and 760 torr.
    2) mg/m3: 1
    a) Milligrams of substances per cubic meter of air. When entry is in this column only, the value is exact; when listed with a ppm entry, it is approximate.
    3) Ceiling Value:
    4) Skin Designation: No
    5) Notation(s): Not Listed

Toxicity Information

    7.7.1) TOXICITY VALUES
    A) Reference: RTECS, 1995
    1) LD50- (ORAL)RAT:
    a) 1530 mg/kg

Toxicologic Mechanism

    A) Phosphoric acid is a direct irritant and has caustic effects on the eyes, skin, and mucous membranes of the respiratory and gastrointestinal tracts (Plunkett, 1976; Gosselin et al, 1984; Caravati, 1987; Wason et al, 1984).
    B) There is no evidence that exposure to phosphoric acid can cause classical elemental phosphorus poisoning (Bingham et al, 2001).
    C) Phosphoric acid ingestion can cause elevated anion gap metabolic acidosis, hyperphosphatemia, and hypocalcemia (Caravati, 1987).

Physical Characteristics

    A) Phosphoric acid is unstable, orthorhombic crystals, or clear, syrupy liquid; easily supercooled into a glass. Phosphoric acid is a tribasic acid (Budavari, 1996).
    1) At 20 degrees C, the 50% and 75% strengths are mobile liquids, the 85% is of a syrupy consistency, and the 100% acid is in the form of crystals (Lewis, 1997).
    B) ODOR: Odorless (Lewis, 1997)
    C) TASTE: Pleasing acid taste when suitably diluted (Budavari, 1996)
    D) COLOR: Colorless (Lewis, 1997)
    E) It releases heat when dissolved in water (AAR, 2000).

Ph

    A) 1.5 (for 0.1N aqueous solution) (Budavari, 1996)

Molecular Weight

    A) 98.00 (Budavari, 1996)

Other

    A) ODOR THRESHOLD
    1) Odorless (CHRIS , 2002)

General Bibliography

    1) 40 CFR 372.28: Environmental Protection Agency - Toxic Chemical Release Reporting, Community Right-To-Know, Lower thresholds for chemicals of special concern. National Archives and Records Administration (NARA) and the Government Printing Office (GPO). Washington, DC. Final rules current as of Apr 3, 2006.
    2) 40 CFR 372.65: Environmental Protection Agency - Toxic Chemical Release Reporting, Community Right-To-Know, Chemicals and Chemical Categories to which this part applies. National Archives and Records Association (NARA) and the Government Printing Office (GPO), Washington, DC. Final rules current as of Apr 3, 2006.
    3) 49 CFR 172.101 - App. B: Department of Transportation - Table of Hazardous Materials, Appendix B: List of Marine Pollutants. National Archives and Records Administration (NARA) and the Government Printing Office (GPO), Washington, DC. Final rules current as of Aug 29, 2005.
    4) 49 CFR 172.101: Department of Transportation - Table of Hazardous Materials. National Archives and Records Administration (NARA) and the Government Printing Office (GPO), Washington, DC. Final rules current as of Aug 11, 2005.
    5) 62 FR 58840: Notice of the National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances - Proposed AEGL Values, Environmental Protection Agency, NAC/AEGL Committee. National Archives and Records Administration (NARA) and the Government Publishing Office (GPO), Washington, DC, 1997.
    6) 65 FR 14186: Notice of the National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances - Proposed AEGL Values, Environmental Protection Agency, NAC/AEGL Committee. National Archives and Records Administration (NARA) and the Government Publishing Office (GPO), Washington, DC, 2000.
    7) 65 FR 39264: Notice of the National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances - Proposed AEGL Values, Environmental Protection Agency, NAC/AEGL Committee. National Archives and Records Administration (NARA) and the Government Publishing Office (GPO), Washington, DC, 2000.
    8) 65 FR 77866: Notice of the National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances - Proposed AEGL Values, Environmental Protection Agency, NAC/AEGL Committee. National Archives and Records Administration (NARA) and the Government Publishing Office (GPO), Washington, DC, 2000.
    9) 66 FR 21940: Notice of the National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances - Proposed AEGL Values, Environmental Protection Agency, NAC/AEGL Committee. National Archives and Records Administration (NARA) and the Government Publishing Office (GPO), Washington, DC, 2001.
    10) 67 FR 7164: Notice of the National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances - Proposed AEGL Values, Environmental Protection Agency, NAC/AEGL Committee. National Archives and Records Administration (NARA) and the Government Publishing Office (GPO), Washington, DC, 2002.
    11) 68 FR 42710: Notice of the National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances - Proposed AEGL Values, Environmental Protection Agency, NAC/AEGL Committee. National Archives and Records Administration (NARA) and the Government Publishing Office (GPO), Washington, DC, 2003.
    12) 69 FR 54144: Notice of the National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances - Proposed AEGL Values, Environmental Protection Agency, NAC/AEGL Committee. National Archives and Records Administration (NARA) and the Government Publishing Office (GPO), Washington, DC, 2004.
    13) AAR: Emergency Handling of Hazardous Material in Surface Transportation, Bureau of Explosives, Association of American Railroads, Washington, DC, 1987, pp 548.
    14) AAR: Emergency Handling of Hazardous Materials in Surface Transportation, Bureau of Explosives, Association of American Railroads, Washington, DC, 1992.
    15) ACGIH: Documentation of the Threshold Limit Values, 5th ed, Am Conference of Govt Ind Hyg, Inc, Cincinnati, OH, 1986, pp 483.
    16) AIHA: 2006 Emergency Response Planning Guidelines and Workplace Environmental Exposure Level Guides Handbook, American Industrial Hygiene Association, Fairfax, VA, 2006.
    17) AMA Department of DrugsAMA Department of Drugs: AMA Evaluations Subscription, American Medical Association, Chicago, IL, 1992.
    18) Aceto T Jr, Terplan K, & Fiore RR: Chemical burns of the esophagus in children and glucocorticoid therapy. J Med 1970; 1:101-109.
    19) Adam JS & Brick HG: Pediatric caustic ingestion. Ann Otol Laryngol 1982; 91:656-658.
    20) American Conference of Governmental Industrial Hygienists : ACGIH 2010 Threshold Limit Values (TLVs(R)) for Chemical Substances and Physical Agents and Biological Exposure Indices (BEIs(R)), American Conference of Governmental Industrial Hygienists, Cincinnati, OH, 2010.
    21) Anderson KD, Touse TM, & Randolph JG: A controlled trial of corticosteroids in children with corrosive injury of the esophagus. N Engl J Med 1990; 323:637-640.
    22) Anon: Cases of hot phosphoric acid poisoning. Arch Ind Health 1955; 12:582.
    23) Ansell-Edmont: SpecWare Chemical Application and Recommendation Guide. Ansell-Edmont. Coshocton, OH. 2001. Available from URL: http://www.ansellpro.com/specware. As accessed 10/31/2001.
    24) Artigas A, Bernard GR, Carlet J, et al: The American-European consensus conference on ARDS, part 2: ventilatory, pharmacologic, supportive therapy, study design strategies, and issues related to recovery and remodeling.. Am J Respir Crit Care Med 1998; 157:1332-1347.
    25) Azuara-Blanco A, Pillai CT, & Dua HS: Amniotic membrane transplantation for ocular surface reconstruction. Br J Ophthalmol 1999; 83:399-402.
    26) Bartalini E & Vaggi L: Pathologic manifestations in workers employed in the production of phosphoric acid. Lavoro Umano 1958; 10:323-331.
    27) Bata Shoe Company: Industrial Footwear Catalog, Bata Shoe Company, Belcamp, MD, 1995.
    28) Best Manufacturing: ChemRest Chemical Resistance Guide. Best Manufacturing. Menlo, GA. 2002. Available from URL: http://www.chemrest.com. As accessed 10/8/2002.
    29) Best Manufacturing: Degradation and Permeation Data. Best Manufacturing. Menlo, GA. 2004. Available from URL: http://www.chemrest.com/DomesticPrep2/. As accessed 04/09/2004.
    30) Bhargava DS & Sheldarkar SB: Effects of adsorbent dose and size on phosphate-removal from wastewaters. Environ Pollut 1992; 76:51-60.
    31) Bingham E, Cohrssen B, & Powell CH: Patty's Toxicology, 5th ed, John Wiley & Sons, Inc, New York, NY, 2001.
    32) Boss Manufacturing Company: Work Gloves, Boss Manufacturing Company, Kewanee, IL, 1998.
    33) Boukthir S, Fetni I, Mrad SM, et al: [High doses of steroids in the management of caustic esophageal burns in children]. Arch Pediatr 2004; 11(1):13-17.
    34) Boysen PG & Modell JH: Pulmonary edema, in: Textbook of Critical Care Medicine, 2nd ed. Shoemaker WC, Ayres S, Grenvik A et al (Eds), WB Saunders Company, Philadelphia, PA, 1989, pp 515-518.
    35) Brodovsky SC, McCarty AC, & Snibson G: Management of alkali burns an 11-year retrospective review. Ophthalmology 2000; 107:1829-1835.
    36) Brodovsky SC, McCarty CA, & Snibson G: Management of alkali burns an 11-year retrospective review. Ophthalmology 2000a; 107:1829-1835.
    37) Brodovsky SC, McCarty CA, & Snibson G: Management of alkali burns an 11-year review. Ophthalmology 2000b; 107:1829-1835.
    38) Brophy GM, Bell R, Claassen J, et al: Guidelines for the evaluation and management of status epilepticus. Neurocrit Care 2012; 17(1):3-23.
    39) Brower RG, Matthay AM, & Morris A: Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Eng J Med 2000; 342:1301-1308.
    40) Budavari S: The Merck Index, 11th ed, Merck & Co, Inc, Rahway, NJ, 1989.
    41) Budavari S: The Merck Index, 12th ed, Merck & Co, Inc, Whitehouse Station, NJ, 1996.
    42) Burgess JL, Kirk M, Borron SW, et al: Emergency department hazardous materials protocol for contaminated patients. Ann Emerg Med 1999; 34(2):205-212.
    43) CCOHS: Safety Infogram, K11 PPE - Chemical Protective Gloves, Canadian Centre for Occupational Health and Safety, Hamilton, Ontario, 1989.
    44) CHRIS : CHRIS Hazardous Chemical Data. US Department of Transportation, US Coast Guard. Washington, DC (Internet Version). Edition expires 1985; provided by Truven Health Analytics Inc., Greenwood Village, CO.
    45) CHRIS : CHRIS Hazardous Chemical Data. US Department of Transportation, US Coast Guard. Washington, DC (Internet Version). Edition expires 2002; provided by Truven Health Analytics Inc., Greenwood Village, CO.
    46) CHRIS : CHRIS Hazardous Chemical Data. US Department of Transportation, US Coast Guard. Washington, DC (Internet Version). Edition expires Apr/30/1995; provided by Truven Health Analytics Inc., Greenwood Village, CO.
    47) Caravati EM: Alkali. In: Dart RC, ed. Medical Toxicology, Lippincott Williams & Wilkins, Philadelphia, PA, 2004.
    48) Caravati EM: Metabolic abnormalities associated with phosphoric acid ingestion. Ann Emerg Med 1987; 16:904-906.
    49) Cataletto M: Respiratory Distress Syndrome, Acute(ARDS). In: Domino FJ, ed. The 5-Minute Clinical Consult 2012, 20th ed. Lippincott Williams & Wilkins, Philadelphia, PA, 2012.
    50) Chamberlain JM, Altieri MA, & Futterman C: A prospective, randomized study comparing intramuscular midazolam with intravenous diazepam for the treatment of seizures in children. Ped Emerg Care 1997; 13:92-94.
    51) ChemFab Corporation: Chemical Permeation Guide Challenge Protective Clothing Fabrics, ChemFab Corporation, Merrimack, NH, 1993.
    52) Chin RF , Neville BG , Peckham C , et al: Treatment of community-onset, childhood convulsive status epilepticus: a prospective, population-based study. Lancet Neurol 2008; 7(8):696-703.
    53) Chodak GW & Passaro E: Acid ingestion: need for gastric resection. JAMA 1978; 239:229-226.
    54) Choonara IA & Rane A: Therapeutic drug monitoring of anticonvulsants state of the art. Clin Pharmacokinet 1990; 18:318-328.
    55) Chudnofsky CR & Otten EJ: Acute pulmonary toxicity to nitrofurantoin. J Emerg Med 1989; 7:15-19.
    56) Clayton GD & Clayton FE: Patty's Industrial Hygiene and Toxicology, Vol 2, Toxicology, 3rd ed, John Wiley & Sons, New York, NY, 1982, pp 2125.
    57) Clayton GD & Clayton FE: Patty's Industrial Hygiene and Toxicology, Vol 2A, Toxicology, 4th ed, John Wiley & Sons, New York, NY, 1993.
    58) Cleveland WW, Chandler JR, & Lawson RB: Treatment of caustic burns of the esophagus. JAMA 1963; 186:182-183.
    59) Comasec Safety, Inc.: Chemical Resistance to Permeation Chart. Comasec Safety, Inc.. Enfield, CT. 2003. Available from URL: http://www.comasec.com/webcomasec/english/catalogue/mtabgb.html. As accessed 4/28/2003.
    60) Comasec Safety, Inc.: Product Literature, Comasec Safety, Inc., Enfield, CT, 2003a.
    61) Curtin D, Selles F, & Steppuhn H: Influence of salt concentration and sodicity on the solubility of phosphate in soils. Soil Sci 1992; 153:409-416.
    62) DFG: List of MAK and BAT Values 2002, Report No. 38, Deutsche Forschungsgemeinschaft, Commission for the Investigation of Health Hazards of Chemical Compounds in the Work Area, Wiley-VCH, Weinheim, Federal Republic of Germany, 2002.
    63) Demerec M: Am Nat 1951; 85:119-136.
    64) Dilawari JB, Singh S, & Rao PN: Corrosive acid ingestion in man, a clinical and endoscopic study. Gut 1984; 25:183-187.
    65) DuPont: DuPont Suit Smart: Interactive Tool for the Selection of Protective Apparel. DuPont. Wilmington, DE. 2002. Available from URL: http://personalprotection.dupont.com/protectiveapparel/suitsmart/smartsuit2/na_english.asp. As accessed 10/31/2002.
    66) DuPont: Permeation Guide for DuPont Tychem Protective Fabrics. DuPont. Wilmington, DE. 2003. Available from URL: http://personalprotection.dupont.com/en/pdf/tyvektychem/pgcomplete20030128.pdf. As accessed 4/26/2004.
    67) DuPont: Permeation Test Results. DuPont. Wilmington, DE. 2002a. Available from URL: http://www.tyvekprotectiveapprl.com/databases/default.htm. As accessed 7/31/2002.
    68) EPA: Search results for Toxic Substances Control Act (TSCA) Inventory Chemicals. US Environmental Protection Agency, Substance Registry System, U.S. EPA's Office of Pollution Prevention and Toxics. Washington, DC. 2005. Available from URL: http://www.epa.gov/srs/.
    69) ERG: Emergency Response Guidebook. A Guidebook for First Responders During the Initial Phase of a Dangerous Goods/Hazardous Materials Incident, U.S. Department of Transportation, Research and Special Programs Administration, Washington, DC, 2004.
    70) Ernst AA, Thomson T, & Haynes ML: Warmed versus room temperature saline solution for ocular irrigation: a randomized clinical trial. Ann Emerg Med 1998; 32:676-679.
    71) Estrera A, Taylor W, & Mills LJ: Corrosive burns of the esophagus and stomach: a recommendation of an aggressive surgical approach. Ann Thorac Surg 1986; 41:276-283.
    72) Ferguson MK, Migliore M, & Staszak VM: Early evaluation and therapy for caustic esophageal injury. Am J Surg 1989; 157:116-120.
    73) Fish R & Davidson RS: Management of ocular thermal and chemical injuries, including amniotic membrane therapy. Curr Opin Ophthalmol 2010; 21(4):317-321.
    74) Fisher TR, Peele ER, & Ammerman JW: Nutrient limitation of phytoplankton in Chesapeake Bay. Marine Ecol - Progr Ser 1992; 82:51-63.
    75) Goldaber KG, Gilstrap LC III, & Leveno KJ: Pathologic fetal acidemia. Obstet Gynecol 1991; 78:1103-1107.
    76) Gorman RL, Khin-Maung-Gyi MT, & Klein-Schwartz W: Initial symptoms as predictors of esophageal injury in alkaline corrosive ingestions. Am J Emerg Med 1992; 10:89-94.
    77) Gosselin RE, Smith RP, & Hodge HC: Clinical Toxicology of Commercial Products, 5th ed, Williams & Wilkins, Baltimore, MD, 1984, pp 11-101.
    78) Grant WM & Schuman JS: Toxicology of the Eye, 4th ed, Charles C Thomas, Springfield, IL, 1993.
    79) Grant WM & Schuman JS: Toxicology of the Eye, 4th ed, Charles C Thomas, Springfield, IL, 1993a.
    80) Grant WM & Schuman JS: Toxicology of the Eye, 4th ed, Charles C Thomas, Springfield, IL, 1993b.
    81) Guardian Manufacturing Group: Guardian Gloves Test Results. Guardian Manufacturing Group. Willard, OH. 2001. Available from URL: http://www.guardian-mfg.com/guardianmfg.html. As accessed 12/11/2001.
    82) Guerrero-Romero F, Rodriguez-Moran M, & Reyes E: Consumption of soft drinks with phosphoric acid as a risk factor for the development of hypocalcemia in postmenopausal women. J Clin Epidemiol 1999; 52:1007-1010.
    83) HSDB : Hazardous Substances Data Bank. National Library of Medicine. Bethesda, MD (Internet Version). Edition expires Apr/30/1995; provided by Truven Health Analytics Inc., Greenwood Village, CO.
    84) HSDB : Hazardous Substances Data Bank. National Library of Medicine. Bethesda, MD (Internet Version). Edition expires Nov/30/2002; provided by Truven Health Analytics Inc., Greenwood Village, CO.
    85) Haas CF: Mechanical ventilation with lung protective strategies: what works?. Crit Care Clin 2011; 27(3):469-486.
    86) Haller JA & Bachman K: The comparative effect of current therapy on experimental caustic burns of the esophagus. Pediatrics 1964; 236-245.
    87) Haller JA, Andrews HG, & White JJ: Pathophysiology and management of acute corrosive burns of the esophagus. J Pediatr Surg 1971; 6:578-584.
    88) Hathaway GJ, Proctor NH, & Hughes JP: Chemical Hazards of the Workplace, 3rd ed, Van Nostrand Reinhold Company, New York, NY, 1991, pp 478.
    89) Hathaway GJ, Proctor NH, & Hughes JP: Proctor and Hughes' Chemical Hazards of the Workplace, 4th ed, Van Nostrand Reinhold, New York, NY, 1996.
    90) Hawkins DB, Demeter MJ, & Barnett TE: Caustic ingestion: controversies in management. A review of 214 cases. Laryngoscope 1980; 90:98-109.
    91) Hegenbarth MA & American Academy of Pediatrics Committee on Drugs: Preparing for pediatric emergencies: drugs to consider. Pediatrics 2008; 121(2):433-443.
    92) Hovarth OP, Olah T, & Zentai G: Emergency esophagogastrectomy for the treatment of hydrochloric acid injury. Ann Thorac Surg 1991; 52:98-101.
    93) Howell JM, Dalsey WC, & Hartsell FW: Steroids for the treatment of corrosive esophageal injury: a statistical analysis of past studies. Am J Emerg Med 1992; 10:421-425.
    94) Howell JM: Alkaline ingestions. Ann Emerg Med 1987; 15:820-825.
    95) Hvidberg EF & Dam M: Clinical pharmacokinetics of anticonvulsants. Clin Pharmacokinet 1976; 1:161.
    96) IARC Working Group on the Evaluation of Carcinogenic Risks to Humans : IARC Monographs on the Evaluation of Carcinogenic Risks to Humans: 1,3-Butadiene, Ethylene Oxide and Vinyl Halides (Vinyl Fluoride, Vinyl Chloride and Vinyl Bromide), 97, International Agency for Research on Cancer, Lyon, France, 2008.
    97) IARC Working Group on the Evaluation of Carcinogenic Risks to Humans : IARC Monographs on the Evaluation of Carcinogenic Risks to Humans: Formaldehyde, 2-Butoxyethanol and 1-tert-Butoxypropan-2-ol, 88, International Agency for Research on Cancer, Lyon, France, 2006.
    98) IARC Working Group on the Evaluation of Carcinogenic Risks to Humans : IARC Monographs on the Evaluation of Carcinogenic Risks to Humans: Household Use of Solid Fuels and High-temperature Frying, 95, International Agency for Research on Cancer, Lyon, France, 2010a.
    99) IARC Working Group on the Evaluation of Carcinogenic Risks to Humans : IARC Monographs on the Evaluation of Carcinogenic Risks to Humans: Smokeless Tobacco and Some Tobacco-specific N-Nitrosamines, 89, International Agency for Research on Cancer, Lyon, France, 2007.
    100) IARC Working Group on the Evaluation of Carcinogenic Risks to Humans : IARC Monographs on the Evaluation of Carcinogenic Risks to Humans: Some Non-heterocyclic Polycyclic Aromatic Hydrocarbons and Some Related Exposures, 92, International Agency for Research on Cancer, Lyon, France, 2010.
    101) IARC: List of all agents, mixtures and exposures evaluated to date - IARC Monographs: Overall Evaluations of Carcinogenicity to Humans, Volumes 1-88, 1972-PRESENT. World Health Organization, International Agency for Research on Cancer. Lyon, FranceAvailable from URL: http://monographs.iarc.fr/monoeval/crthall.html. As accessed Oct 07, 2004.
    102) ICAO: Technical Instructions for the Safe Transport of Dangerous Goods by Air, 2003-2004. International Civil Aviation Organization, Montreal, Quebec, Canada, 2002.
    103) ILC Dover, Inc.: Ready 1 The Chemturion Limited Use Chemical Protective Suit, ILC Dover, Inc., Frederica, DE, 1998.
    104) ITI: Toxic and Hazardous Industrial Chemicals Safety Manual, The International Technical Information Institute, Tokyo, Japan, 1985.
    105) ITI: Toxic and Hazardous Industrial Chemicals Safety Manual, The International Technical Information Institute, Tokyo, Japan, 1988.
    106) International Agency for Research on Cancer (IARC): IARC monographs on the evaluation of carcinogenic risks to humans: list of classifications, volumes 1-116. International Agency for Research on Cancer (IARC). Lyon, France. 2016. Available from URL: http://monographs.iarc.fr/ENG/Classification/latest_classif.php. As accessed 2016-08-24.
    107) International Agency for Research on Cancer: IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. World Health Organization. Geneva, Switzerland. 2015. Available from URL: http://monographs.iarc.fr/ENG/Classification/. As accessed 2015-08-06.
    108) Ip M, Wong K-L, & Wong K-F: Lung injury in dimethyl sulfate poisoning. J Occup Med 1989; 31:141-143.
    109) Kappler, Inc.: Suit Smart. Kappler, Inc.. Guntersville, AL. 2001. Available from URL: http://www.kappler.com/suitsmart/smartsuit2/na_english.asp?select=1. As accessed 7/10/2001.
    110) Kimberly-Clark, Inc.: Chemical Test Results. Kimberly-Clark, Inc.. Atlanta, GA. 2002. Available from URL: http://www.kc-safety.com/tech_cres.html. As accessed 10/4/2002.
    111) Kleinman ME, Chameides L, Schexnayder SM, et al: 2010 American Heart Association guidelines for cardiopulmonary resuscitation and emergency cardiovascular care. Part 14: pediatric advanced life support. Circulation 2010; 122(18 Suppl.3):S876-S908.
    112) Knox WG, Scott JR, & Zintel HA: Bouginage and steroids used singly or in combination in experimental corrosive esophagitis. Ann Surg 1967; 166:930-941.
    113) Kollef MH & Schuster DP: The acute respiratory distress syndrome. N Engl J Med 1995; 332:27-37.
    114) Kraut JA & Madias NE: Metabolic acidosis: pathophysiology, diagnosis and management. Nat Rev Nephrol 2010; 6(5):274-285.
    115) Kuckelkorn R, Kottek A, & Schrage N: Poor prognosis of severe chemical and thermal eye burns: the need for adequate emergency care and primary prevention. Int Arch Occup Environ Health 1995; 281-284.
    116) LaCrosse-Rainfair: Safety Products, LaCrosse-Rainfair, Racine, WI, 1997.
    117) Lewis RJ: Sax's Dangerous Properties of Industrial Materials, 10th ed, John Wiley & Sons, Inc, New York, NY, 2000.
    118) Lewis RJ: Hawley's Condensed Chemical Dictionary, 12th ed, Van Nostrand Reinhold Company, New York, NY, 1993, pp 908.
    119) Lewis RJ: Hawley's Condensed Chemical Dictionary, 13th ed, John Wiley & Sons, Inc, New York, NY, 1997.
    120) LoVecchio F, Hamilton R, & Sturman K: A meta-analysis of the use of steroids in the prevention of stricture formation from second degree caustic burns of the esophagus (abstract). J Toxicol-Clin Toxicol 1996; 35:579-580.
    121) Loddenkemper T & Goodkin HP: Treatment of Pediatric Status Epilepticus. Curr Treat Options Neurol 2011; Epub:Epub.
    122) MAPA Professional: Chemical Resistance Guide. MAPA North America. Columbia, TN. 2003. Available from URL: http://www.mapaglove.com/pro/ChemicalSearch.asp. As accessed 4/21/2003.
    123) MAPA Professional: Chemical Resistance Guide. MAPA North America. Columbia, TN. 2004. Available from URL: http://www.mapaglove.com/ProductSearch.cfm?id=1. As accessed 6/10/2004.
    124) Maggart M & Stewart S: The mechanisms and management of noncardiogenic pulmonary edema following cardiopulmonary bypass. Ann Thorac Surg 1987; 43:231-236.
    125) Manno EM: New management strategies in the treatment of status epilepticus. Mayo Clin Proc 2003; 78(4):508-518.
    126) Mar-Mac Manufacturing, Inc: Product Literature, Protective Apparel, Mar-Mac Manufacturing, Inc., McBee, SC, 1995.
    127) Marigold Industrial: US Chemical Resistance Chart, on-line version. Marigold Industrial. Norcross, GA. 2003. Available from URL: www.marigoldindustrial.com/charts/uschart/uschart.html. As accessed 4/14/2003.
    128) Marsh KB, Tillman RW, & Syers JK: Effect of changes in pH on sulphate and phosphate retention in soils. NZ J Ag Res 1992; 35:93-100.
    129) Marshall F II: Caustic burns of the esophagus: ten year results of aggressive care. South Med J 1979; 72:1236-1237.
    130) Meller D, Pires RT, & Mack RJS: Amniotic membrane transplantation for acute chemical or thermal burns. Ophthalmology 2000; 107:980-990.
    131) Memphis Glove Company: Permeation Guide. Memphis Glove Company. Memphis, TN. 2001. Available from URL: http://www.memphisglove.com/permeation.html. As accessed 7/2/2001.
    132) Meredith JW, Kon ND, & Thompson JN: Management of injuries from liquid lye ingestion. J Trauma 1988; 28:1173-1180.
    133) Moazam F, Talbert JL, & Miller D: Caustic ingestion and its sequelae in children. South Med J 1987; 80:187-188.
    134) Montgomery Safety Products: Montgomery Safety Products Chemical Resistant Glove Guide, Montgomery Safety Products, Canton, OH, 1995.
    135) Morgan S & Murray A: Limbal autotransplantation in the acute and chronic phases of severe chemical injuries. Eye 1996; 10:349-354.
    136) NFPA: Fire Protection Guide to Hazardous Materials, 12th ed, National Fire Protection Association, Quincy, MA, 1997.
    137) NFPA: Fire Protection Guide to Hazardous Materials, 13th ed., National Fire Protection Association, Quincy, MA, 2002.
    138) NHLBI ARDS Network: Mechanical ventilation protocol summary. Massachusetts General Hospital. Boston, MA. 2008. Available from URL: http://www.ardsnet.org/system/files/6mlcardsmall_2008update_final_JULY2008.pdf. As accessed 2013-08-07.
    139) NRC: Acute Exposure Guideline Levels for Selected Airborne Chemicals - Volume 1, Subcommittee on Acute Exposure Guideline Levels, Committee on Toxicology, Board on Environmental Studies and Toxicology, Commission of Life Sciences, National Research Council. National Academy Press, Washington, DC, 2001.
    140) NRC: Acute Exposure Guideline Levels for Selected Airborne Chemicals - Volume 2, Subcommittee on Acute Exposure Guideline Levels, Committee on Toxicology, Board on Environmental Studies and Toxicology, Commission of Life Sciences, National Research Council. National Academy Press, Washington, DC, 2002.
    141) NRC: Acute Exposure Guideline Levels for Selected Airborne Chemicals - Volume 3, Subcommittee on Acute Exposure Guideline Levels, Committee on Toxicology, Board on Environmental Studies and Toxicology, Commission of Life Sciences, National Research Council. National Academy Press, Washington, DC, 2003.
    142) NRC: Acute Exposure Guideline Levels for Selected Airborne Chemicals - Volume 4, Subcommittee on Acute Exposure Guideline Levels, Committee on Toxicology, Board on Environmental Studies and Toxicology, Commission of Life Sciences, National Research Council. National Academy Press, Washington, DC, 2004.
    143) Naradzay J & Barish RA: Approach to ophthalmologic emergencies. Med Clin North Am 2006; 90(2):305-328.
    144) Nat-Wear: Protective Clothing, Hazards Chart. Nat-Wear. Miora, NY. 2001. Available from URL: http://www.natwear.com/hazchart1.htm. As accessed 7/12/2001.
    145) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for 1,2,3-Trimethylbenzene (Proposed). United States Environmental Protection Agency. Washington, DC. 2006k. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d68a&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    146) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for 1,2,4-Trimethylbenzene (Proposed). United States Environmental Protection Agency. Washington, DC. 2006m. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d68a&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    147) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for 1,2-Butylene Oxide (Proposed). United States Environmental Protection Agency. Washington, DC. 2008d. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648083cdbb&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    148) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for 1,2-Dibromoethane (Proposed). United States Environmental Protection Agency. Washington, DC. 2007g. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064802796db&disposition=attachment&contentType=pdf. As accessed 2010-08-18.
    149) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for 1,3,5-Trimethylbenzene (Proposed). United States Environmental Protection Agency. Washington, DC. 2006l. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d68a&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    150) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for 2-Ethylhexyl Chloroformate (Proposed). United States Environmental Protection Agency. Washington, DC. 2007b. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648037904e&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    151) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Acrylonitrile (Proposed). United States Environmental Protection Agency. Washington, DC. 2007c. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648028e6a3&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    152) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Adamsite (Proposed). United States Environmental Protection Agency. Washington, DC. 2007h. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020fd29&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    153) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Agent BZ (3-quinuclidinyl benzilate) (Proposed). United States Environmental Protection Agency. Washington, DC. 2007f. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064803ad507&disposition=attachment&contentType=pdf. As accessed 2010-08-18.
    154) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Allyl Chloride (Proposed). United States Environmental Protection Agency. Washington, DC. 2008. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648039d9ee&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    155) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Aluminum Phosphide (Proposed). United States Environmental Protection Agency. Washington, DC. 2005b. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c5ed&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    156) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Arsenic Trioxide (Proposed). United States Environmental Protection Agency. Washington, DC. 2007m. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480220305&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    157) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Automotive Gasoline Unleaded (Proposed). United States Environmental Protection Agency. Washington, DC. 2009a. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a7cc17&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    158) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Biphenyl (Proposed). United States Environmental Protection Agency. Washington, DC. 2005j. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064801ea1b7&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    159) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Bis-Chloromethyl Ether (BCME) (Proposed). United States Environmental Protection Agency. Washington, DC. 2006n. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648022db11&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    160) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Boron Tribromide (Proposed). United States Environmental Protection Agency. Washington, DC. 2008a. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064803ae1d3&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    161) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Bromine Chloride (Proposed). United States Environmental Protection Agency. Washington, DC. 2007d. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648039732a&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    162) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Bromoacetone (Proposed). United States Environmental Protection Agency. Washington, DC. 2008e. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064809187bf&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    163) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Calcium Phosphide (Proposed). United States Environmental Protection Agency. Washington, DC. 2005d. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c5ed&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    164) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Carbonyl Fluoride (Proposed). United States Environmental Protection Agency. Washington, DC. 2008b. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064803ae328&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    165) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Carbonyl Sulfide (Proposed). United States Environmental Protection Agency. Washington, DC. 2007e. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648037ff26&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    166) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Chlorobenzene (Proposed). United States Environmental Protection Agency. Washington, DC. 2008c. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064803a52bb&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    167) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Cyanogen (Proposed). United States Environmental Protection Agency. Washington, DC. 2008f. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064809187fe&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    168) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Dimethyl Phosphite (Proposed). United States Environmental Protection Agency. Washington, DC. 2009. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a7cbf3&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    169) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Diphenylchloroarsine (Proposed). United States Environmental Protection Agency. Washington, DC. 2007l. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020fd29&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    170) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Ethyl Isocyanate (Proposed). United States Environmental Protection Agency. Washington, DC. 2008h. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648091884e&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    171) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Ethyl Phosphorodichloridate (Proposed). United States Environmental Protection Agency. Washington, DC. 2008i. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480920347&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    172) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Ethylbenzene (Proposed). United States Environmental Protection Agency. Washington, DC. 2008g. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064809203e7&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    173) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Ethyldichloroarsine (Proposed). United States Environmental Protection Agency. Washington, DC. 2007j. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020fd29&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    174) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Germane (Proposed). United States Environmental Protection Agency. Washington, DC. 2008j. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480963906&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    175) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Hexafluoropropylene (Proposed). United States Environmental Protection Agency. Washington, DC. 2006. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064801ea1f5&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    176) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Ketene (Proposed). United States Environmental Protection Agency. Washington, DC. 2007. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020ee7c&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    177) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Magnesium Aluminum Phosphide (Proposed). United States Environmental Protection Agency. Washington, DC. 2005h. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c5ed&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    178) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Magnesium Phosphide (Proposed). United States Environmental Protection Agency. Washington, DC. 2005g. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c5ed&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    179) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Malathion (Proposed). United States Environmental Protection Agency. Washington, DC. 2009k. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064809639df&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    180) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Mercury Vapor (Proposed). United States Environmental Protection Agency. Washington, DC. 2009b. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a8a087&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    181) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Methyl Isothiocyanate (Proposed). United States Environmental Protection Agency. Washington, DC. 2008k. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480963a03&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    182) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Methyl Parathion (Proposed). United States Environmental Protection Agency. Washington, DC. 2008l. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480963a57&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    183) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Methyl tertiary-butyl ether (Proposed). United States Environmental Protection Agency. Washington, DC. 2007a. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064802a4985&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    184) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Methylchlorosilane (Proposed). United States Environmental Protection Agency. Washington, DC. 2005. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c5f4&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    185) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Methyldichloroarsine (Proposed). United States Environmental Protection Agency. Washington, DC. 2007i. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020fd29&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    186) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Methyldichlorosilane (Proposed). United States Environmental Protection Agency. Washington, DC. 2005a. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c646&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    187) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Nitrogen Mustard (HN1 CAS Reg. No. 538-07-8) (Proposed). United States Environmental Protection Agency. Washington, DC. 2006a. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d6cb&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    188) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Nitrogen Mustard (HN2 CAS Reg. No. 51-75-2) (Proposed). United States Environmental Protection Agency. Washington, DC. 2006b. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d6cb&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    189) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Nitrogen Mustard (HN3 CAS Reg. No. 555-77-1) (Proposed). United States Environmental Protection Agency. Washington, DC. 2006c. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d6cb&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    190) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Nitrogen Tetroxide (Proposed). United States Environmental Protection Agency. Washington, DC. 2008n. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648091855b&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    191) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Nitrogen Trifluoride (Proposed). United States Environmental Protection Agency. Washington, DC. 2009l. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480963e0c&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    192) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Parathion (Proposed). United States Environmental Protection Agency. Washington, DC. 2008o. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480963e32&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    193) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Perchloryl Fluoride (Proposed). United States Environmental Protection Agency. Washington, DC. 2009c. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a7e268&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    194) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Perfluoroisobutylene (Proposed). United States Environmental Protection Agency. Washington, DC. 2009d. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a7e26a&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    195) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Phenyl Isocyanate (Proposed). United States Environmental Protection Agency. Washington, DC. 2008p. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648096dd58&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    196) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Phenyl Mercaptan (Proposed). United States Environmental Protection Agency. Washington, DC. 2006d. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020cc0c&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    197) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Phenyldichloroarsine (Proposed). United States Environmental Protection Agency. Washington, DC. 2007k. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020fd29&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    198) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Phorate (Proposed). United States Environmental Protection Agency. Washington, DC. 2008q. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648096dcc8&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    199) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Phosgene (Draft-Revised). United States Environmental Protection Agency. Washington, DC. 2009e. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a8a08a&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    200) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Phosgene Oxime (Proposed). United States Environmental Protection Agency. Washington, DC. 2009f. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a7e26d&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    201) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Potassium Cyanide (Proposed). United States Environmental Protection Agency. Washington, DC. 2009g. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a7cbb9&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    202) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Potassium Phosphide (Proposed). United States Environmental Protection Agency. Washington, DC. 2005c. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c5ed&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    203) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Propargyl Alcohol (Proposed). United States Environmental Protection Agency. Washington, DC. 2006e. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020ec91&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    204) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Selenium Hexafluoride (Proposed). United States Environmental Protection Agency. Washington, DC. 2006f. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020ec55&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    205) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Silane (Proposed). United States Environmental Protection Agency. Washington, DC. 2006g. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d523&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    206) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Sodium Cyanide (Proposed). United States Environmental Protection Agency. Washington, DC. 2009h. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a7cbb9&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    207) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Sodium Phosphide (Proposed). United States Environmental Protection Agency. Washington, DC. 2005i. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c5ed&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    208) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Strontium Phosphide (Proposed). United States Environmental Protection Agency. Washington, DC. 2005f. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c5ed&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    209) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Sulfuryl Chloride (Proposed). United States Environmental Protection Agency. Washington, DC. 2006h. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020ec7a&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    210) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Tear Gas (Proposed). United States Environmental Protection Agency. Washington, DC. 2008s. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648096e551&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    211) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Tellurium Hexafluoride (Proposed). United States Environmental Protection Agency. Washington, DC. 2009i. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a7e2a1&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    212) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Tert-Octyl Mercaptan (Proposed). United States Environmental Protection Agency. Washington, DC. 2008r. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648096e5c7&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    213) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Tetramethoxysilane (Proposed). United States Environmental Protection Agency. Washington, DC. 2006j. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d632&disposition=attachment&contentType=pdf. As accessed 2010-08-17.
    214) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Trimethoxysilane (Proposed). United States Environmental Protection Agency. Washington, DC. 2006i. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d632&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    215) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Trimethyl Phosphite (Proposed). United States Environmental Protection Agency. Washington, DC. 2009j. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a7d608&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    216) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Trimethylacetyl Chloride (Proposed). United States Environmental Protection Agency. Washington, DC. 2008t. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648096e5cc&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    217) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Zinc Phosphide (Proposed). United States Environmental Protection Agency. Washington, DC. 2005e. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c5ed&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    218) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for n-Butyl Isocyanate (Proposed). United States Environmental Protection Agency. Washington, DC. 2008m. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064808f9591&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    219) National Heart,Lung,and Blood Institute: Expert panel report 3: guidelines for the diagnosis and management of asthma. National Heart,Lung,and Blood Institute. Bethesda, MD. 2007. Available from URL: http://www.nhlbi.nih.gov/guidelines/asthma/asthgdln.pdf.
    220) National Institute for Occupational Safety and Health: NIOSH Pocket Guide to Chemical Hazards, U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, Cincinnati, OH, 2007.
    221) National Research Council : Acute exposure guideline levels for selected airborne chemicals, 5, National Academies Press, Washington, DC, 2007.
    222) National Research Council: Acute exposure guideline levels for selected airborne chemicals, 6, National Academies Press, Washington, DC, 2008.
    223) National Research Council: Acute exposure guideline levels for selected airborne chemicals, 7, National Academies Press, Washington, DC, 2009.
    224) National Research Council: Acute exposure guideline levels for selected airborne chemicals, 8, National Academies Press, Washington, DC, 2010.
    225) Neese Industries, Inc.: Fabric Properties Rating Chart. Neese Industries, Inc.. Gonzales, LA. 2003. Available from URL: http://www.neeseind.com/new/TechGroup.asp?Group=Fabric+Properties&Family=Technical. As accessed 4/15/2003.
    226) North: Chemical Resistance Comparison Chart - Protective Footwear . North Safety. Cranston, RI. 2002. Available from URL: http://www.linkpath.com/index2gisufrm.php?t=N-USA1. As accessed April 30, 2004.
    227) North: eZ Guide Interactive Software. North Safety. Cranston, RI. 2002a. Available from URL: http://www.northsafety.com/feature1.htm. As accessed 8/31/2002.
    228) Nuutinen M, Uhari M, & Karvali T: Consequences of caustic ingestions in children. Acta Paediatr 1994; 83:1200-1205.
    229) OHM/TADS : Oil and Hazardous Materials/Technical Assistance Data System. US Environmental Protection Agency. Washington, DC (Internet Version). Edition expires Apr/30/1995; provided by Truven Health Analytics Inc., Greenwood Village, CO.
    230) Oakes DD, Sherck JP, & Mark JBD: Lye ingestion. J Thorac Cardiovasc Surg 1982; 83:194-204.
    231) Peate WF: Work-related eye injuries and illnesses. Am Fam Physician 2007; 75(7):1017-1022.
    232) Peberdy MA , Callaway CW , Neumar RW , et al: 2010 American Heart Association guidelines for cardiopulmonary resuscitation and emergency cardiovascular care science. Part 9: post–cardiac arrest care. Circulation 2010; 122(18 Suppl 3):S768-S786.
    233) Pelclova D & Navratil T: Do corticosteroids prevent oesophageal stricture after corrosive ingestion?. Toxicol Rev 2005; 24(2):125-129.
    234) Perry HD, Hodes LW, & Seedor JA: Effect of doxycycline hyclate on corneal epithelial wound healing in the rabbit alkali-burn model. Preliminary observations. Cornea 1993; 12:379-82.
    235) Playtex: Fits Tough Jobs Like a Glove, Playtex, Westport, CT, 1995.
    236) Plunkett ER: Handbook of Industrial Toxicology, Chemical Publishing Co, Inc, New York, NY, 1976, pp 333.
    237) Previtera C, Giusti F, & Gugliemi M: Predictive value of visible lesions (cheeks, lips, oropharynx) in suspected caustic ingestion: may endoscopy reasonably be omitted in completely negative pediatric patients?. Pediatr Emerg Care 1990; 6:176-178.
    238) Product Information: diazepam IM, IV injection, diazepam IM, IV injection. Hospira, Inc (per Manufacturer), Lake Forest, IL, 2008.
    239) Product Information: dopamine hcl, 5% dextrose IV injection, dopamine hcl, 5% dextrose IV injection. Hospira,Inc, Lake Forest, IL, 2004.
    240) Product Information: lorazepam IM, IV injection, lorazepam IM, IV injection. Akorn, Inc, Lake Forest, IL, 2008.
    241) Product Information: norepinephrine bitartrate injection, norepinephrine bitartrate injection. Sicor Pharmaceuticals,Inc, Irvine, CA, 2005.
    242) RTECS : Registry of Toxic Effects of Chemical Substances. National Institute for Occupational Safety and Health. Cincinnati, OH (Internet Version). Edition expires 1987; provided by Truven Health Analytics Inc., Greenwood Village, CO.
    243) RTECS : Registry of Toxic Effects of Chemical Substances. National Institute for Occupational Safety and Health. Cincinnati, OH (Internet Version). Edition expires Apr/30/1995; provided by Truven Health Analytics Inc., Greenwood Village, CO.
    244) Reyes HM, Lin CY, & Schluhk FF: Experimental treatment of corrosive esophageal burns. J Pediatr Surg 1974; 9:317-327.
    245) River City: Protective Wear Product Literature, River City, Memphis, TN, 1995.
    246) Ronk JF, Ruiz-Esmenjaud S, & Osorio M: Limbal conjunctival autograft in subacute alkaline corneal burn. Cornea 1994; 13:465-468.
    247) Rosenberg N, Kunderman PJ, & Vroman L: Prevention of experimental esophageal stricture by cortisone II. Arch Surg 1953; 66:593-598.
    248) Rosensteel BA & Strom PF: River phosphorus dynamics and reservoir eutrophication potential. Water Resources Bull 1991; 27:957-965.
    249) S Sweetman : Martindale: The Complete Drug Reference. Pharmaceutical Press. London, UK (Internet Version). Edition expires 2001; provided by Truven Health Analytics Inc., Greenwood Village, CO.
    250) Saari KM, Leinonen J, & Aine E: Management of chemical eye injuries with prolonged irrigation. Acta Ophthalmol Suppl 1984; 52-59.
    251) Saedi S, Nyhus LM, & Gabrys BF: Pharmacological prevention of esophageal stricture: an experimental study in the cat. Am Surg 1973a; 39:465-469.
    252) Saedi S, Nyhust LM, & Gabrys BF: Pharmacological prevention of esophageal stricture: an experimental study in the cat. Am Surg 1973; 39:465-469.
    253) Safety 4: North Safety Products: Chemical Protection Guide. North Safety. Cranston, RI. 2002. Available from URL: http://www.safety4.com/guide/set_guide.htm. As accessed 8/14/2002.
    254) Schild JA: Caustic ingestion in adult patients. Laryngoscope 1985; 95:1199-1201.
    255) Scott R, Besag FMC, & Neville BGR: Buccal midazolam and rectal diazepam for treatment of prolonged seizures in childhood and adolescence: a randomized trial. Lancet 1999; 353:623-626.
    256) Seedor JA, Perry HD, & McNamara TF: Systemic tetracycline treatment of alkali-induced corneal ulceration in rabbits. Arch Ophthalmol 1987; 105:268-271.
    257) Servus: Norcross Safety Products, Servus Rubber, Servus, Rock Island, IL, 1995.
    258) Singh P, Tyagi M, Kumar Y, et al: Ocular chemical injuries and their management. Oman J Ophthalmol 2013; 6(2):83-86.
    259) Smilkstein MJ & Fraunfelder F: Ophthalmic Principles, In: Goldfrank LR, Flomenbaum NE, Lewin NA, et al, eds. Goldfrank's Toxicologic Emergencies. 7th ed., McGraw-Hill, New York, NY, 2002.
    260) Spector J & Fernandez WG: Chemical, thermal, and biological ocular exposures. Emerg Med Clin North Am 2008; 26(1):125-136.
    261) Sreenath TG, Gupta P, Sharma KK, et al: Lorazepam versus diazepam-phenytoin combination in the treatment of convulsive status epilepticus in children: A randomized controlled trial. Eur J Paediatr Neurol 2010; 14(2):162-168.
    262) Sridhar MS, Bansal AK, & Sangwan VS: Amniotic membrans transplantation in acute chemical and thermal injury. Am J Ophthalmol 2000; 130:134-137.
    263) Stana RR & Muralidhara HS(Eds): Total recycling of wastewater in wet process phosphoric acid production. Proceedings of the 1989 International Symposium on Solid/Liquid Separation: Waste Management and Productivity Enhancement, Dec. 1989, 1990.
    264) Standard Safety Equipment: Product Literature, Standard Safety Equipment, McHenry, IL, 1995.
    265) Stentoft J: The toxicity of cytarabine. Drug Saf 1990; 5:7-27.
    266) Sterner RT: Whole-body exposures to a phosphoric acids aerosol: II. Food/water/weight effects in wild rodent and avian species. J Toxicol Environ Health 1993; 39:497-515.
    267) Stolbach A & Hoffman RS: Respiratory Principles. In: Nelson LS, Hoffman RS, Lewin NA, et al, eds. Goldfrank's Toxicologic Emergencies, 9th ed. McGraw Hill Medical, New York, NY, 2011.
    268) Su CY & Lin CP: Combined use of an amniotic membrane and tissue adhesive in treating corneal perforation: a case report. Ophtalmic Sufr Lasers 2000; 31:151-154.
    269) Sugawa C & Lucas CE: Caustic injury of the upper gastrointestinal tract in adults: a clinical and endoscopic study. Surgery 1989; 106:802-807.
    270) Tingley: Chemical Degradation for Footwear and Clothing. Tingley. South Plainfield, NJ. 2002. Available from URL: http://www.tingleyrubber.com/tingley/Guide_ChemDeg.pdf. As accessed 10/16/2002.
    271) Torrent J, Schwertmann U, & Barron V: Fast and slow phosphate sorption by Goethite-Rich natural materials. Clays and Clay Minerals 1992; 40:14-21.
    272) Trelleborg-Viking, Inc.: Chemical and Biological Tests (database). Trelleborg-Viking, Inc.. Portsmouth, NH. 2002. Available from URL: http://www.trelleborg.com/protective/. As accessed 10/18/2002.
    273) Trelleborg-Viking, Inc.: Trellchem Chemical Protective Suits, Interactive manual & Chemical Database. Trelleborg-Viking, Inc.. Portsmouth, NH. 2001.
    274) Tuft SJ & Shortt AJ: Surgical rehabilitation following severe ocular burns. Eye (Lond) 2009; 23(10):1966-1971.
    275) U.S. Department of Energy, Office of Emergency Management: Protective Action Criteria (PAC) with AEGLs, ERPGs, & TEELs: Rev. 26 for chemicals of concern. U.S. Department of Energy, Office of Emergency Management. Washington, DC. 2010. Available from URL: http://www.hss.doe.gov/HealthSafety/WSHP/Chem_Safety/teel.html. As accessed 2011-06-27.
    276) U.S. Department of Health and Human Services, Public Health Service, National Toxicology Project : 11th Report on Carcinogens. U.S. Department of Health and Human Services, Public Health Service, National Toxicology Program. Washington, DC. 2005. Available from URL: http://ntp.niehs.nih.gov/INDEXA5E1.HTM?objectid=32BA9724-F1F6-975E-7FCE50709CB4C932. As accessed 2011-06-27.
    277) U.S. Environmental Protection Agency: Discarded commercial chemical products, off-specification species, container residues, and spill residues thereof. Environmental Protection Agency's (EPA) Resource Conservation and Recovery Act (RCRA); List of hazardous substances and reportable quantities 2010b; 40CFR(261.33, e-f):77-.
    278) U.S. Environmental Protection Agency: Integrated Risk Information System (IRIS). U.S. Environmental Protection Agency. Washington, DC. 2011. Available from URL: http://cfpub.epa.gov/ncea/iris/index.cfm?fuseaction=iris.showSubstanceList&list_type=date. As accessed 2011-06-21.
    279) U.S. Environmental Protection Agency: List of Radionuclides. U.S. Environmental Protection Agency. Washington, DC. 2010a. Available from URL: http://www.gpo.gov/fdsys/pkg/CFR-2010-title40-vol27/pdf/CFR-2010-title40-vol27-sec302-4.pdf. As accessed 2011-06-17.
    280) U.S. Environmental Protection Agency: List of hazardous substances and reportable quantities. U.S. Environmental Protection Agency. Washington, DC. 2010. Available from URL: http://www.gpo.gov/fdsys/pkg/CFR-2010-title40-vol27/pdf/CFR-2010-title40-vol27-sec302-4.pdf. As accessed 2011-06-17.
    281) U.S. Environmental Protection Agency: The list of extremely hazardous substances and their threshold planning quantities (CAS Number Order). U.S. Environmental Protection Agency. Washington, DC. 2010c. Available from URL: http://www.gpo.gov/fdsys/pkg/CFR-2010-title40-vol27/pdf/CFR-2010-title40-vol27-part355.pdf. As accessed 2011-06-17.
    282) U.S. Occupational Safety and Health Administration: Part 1910 - Occupational safety and health standards (continued) Occupational Safety, and Health Administration's (OSHA) list of highly hazardous chemicals, toxics and reactives. Subpart Z - toxic and hazardous substances. CFR 2010 2010; Vol6(SEC1910):7-.
    283) U.S. Occupational Safety, and Health Administration (OSHA): Process safety management of highly hazardous chemicals. 29 CFR 2010 2010; 29(1910.119):348-.
    284) United States Environmental Protection Agency Office of Pollution Prevention and Toxics: Acute Exposure Guideline Levels (AEGLs) for Vinyl Acetate (Proposed). United States Environmental Protection Agency. Washington, DC. 2006. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d6af&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    285) Vaithiyanathan P & Correll DL: The Rhode River watershed - phosphorus distribution and export in forest and agricultural soils. J Environ Qual 1992; 21:280-288.
    286) Vale JA: Position Statement: gastric lavage. American Academy of Clinical Toxicology; European Association of Poisons Centres and Clinical Toxicologists. J Toxicol Clin Toxicol 1997; 35:711-719.
    287) Vergauwen P, Moulin D, & Buts JP: Caustic burns of the upper digestive and respiratory tracts. Eur J Pediatr 1991; 150:700-703.
    288) Wason S, Gomolin I, & Gross P: Phosphorus trichloride toxicity: Preliminary report. Am J Med 1984; 77:1039-1042.
    289) Weaver DM, Ritchie GSP, & Gilkes RJ: Phosphorus sorption by gravels in lateritic soils. Aust J Soil Res 1992; 30:319-330.
    290) Wells Lamont Industrial: Chemical Resistant Glove Application Chart. Wells Lamont Industrial. Morton Grove, IL. 2002. Available from URL: http://www.wellslamontindustry.com. As accessed 10/31/2002.
    291) Willson DF, Truwit JD, Conaway MR, et al: The adult calfactant in acute respiratory distress syndrome (CARDS) trial. Chest 2015; 148(2):356-364.
    292) Wilson DF, Thomas NJ, Markovitz BP, et al: Effect of exogenous surfactant (calfactant) in pediatric acute lung injury. A randomized controlled trial. JAMA 2005; 293:470-476.
    293) Workrite: Chemical Splash Protection Garments, Technical Data and Application Guide, W.L. Gore Material Chemical Resistance Guide, Workrite, Oxnard, CA, 1997.
    294) Wu MH & Lai WW: Surgical management of extensive corrosive injuries of the alimentary tract. Surg Gynecol Obstetr 1993; 177:12-16.
    295) Yarington CT & Heatly CA: Steroids, antibiotics, and early esophagoscopy in caustic esophageal trauma. N Y State J Med 1963; 63:2960-2963.
    296) Zargar SA, Kochhar R, & Mehta S: The role of fiberoptic endoscopy in the management of corrosive ingestion and modified endoscopic classification of burns. Gastrointest Endosc 1991; 37:165-169.
    297) Zargar SA, Kochhar R, & Nagi B: Ingestion of corrosive acids: spectrum of injury to upper gastrointestinal tract and natural history. Gastroenterology 1989; 97:702-707.
    298) Zitnik RJ & Cooper JA: Pulmonary disease due to antirheumatic agents. Clin Chest Med 1990; 11:139-150.
    299) Zura KD & Grant WF: Mutat Res 1981; 84:349-364.