6.5.1) PREVENTION OF ABSORPTION/PREHOSPITAL
A) Prehospital gastrointestinal decontamination is not recommended because of the potential risk of agitation and seizures following N-benzylpiperazine exposure.
6.5.2) PREVENTION OF ABSORPTION
A) SUMMARY 1) GI decontamination is generally not indicated because patients usually present many hours after ingestion when symptoms have developed. Consider activated charcoal in those rare patients who present shortly after ingestion who are asymptomatic, alert, and cooperative, and able to protect their airway.
B) ACTIVATED CHARCOAL 1) CHARCOAL ADMINISTRATION a) Consider administration of activated charcoal after a potentially toxic ingestion (Chyka et al, 2005). Administer charcoal as an aqueous slurry; most effective when administered within one hour of ingestion.
2) CHARCOAL DOSE a) Use a minimum of 240 milliliters of water per 30 grams charcoal (FDA, 1985). Optimum dose not established; usual dose is 25 to 100 grams in adults and adolescents; 25 to 50 grams in children aged 1 to 12 years (or 0.5 to 1 gram/kilogram body weight) ; and 0.5 to 1 gram/kilogram in infants up to 1 year old (Chyka et al, 2005). 1) Routine use of a cathartic with activated charcoal is NOT recommended as there is no evidence that cathartics reduce drug absorption and cathartics are known to cause adverse effects such as nausea, vomiting, abdominal cramps, electrolyte imbalances and occasionally hypotension (None Listed, 2004).
b) ADVERSE EFFECTS/CONTRAINDICATIONS 1) Complications: emesis, aspiration (Chyka et al, 2005). Aspiration may be complicated by acute respiratory failure, ARDS, bronchiolitis obliterans or chronic lung disease (Golej et al, 2001; Graff et al, 2002; Pollack et al, 1981; Harris & Filandrinos, 1993; Elliot et al, 1989; Rau et al, 1988; Golej et al, 2001; Graff et al, 2002). Refer to the ACTIVATED CHARCOAL/TREATMENT management for further information. 2) Contraindications: unprotected airway (increases risk/severity of aspiration) , nonfunctioning gastrointestinal tract, uncontrolled vomiting, and ingestion of most hydrocarbons (Chyka et al, 2005).
6.5.3) TREATMENT
A) SUPPORT 1) Limited data. Treatment is symptomatic and supportive. Monitor vital signs and mental status. Monitor patient closely until all symptoms resolve. 2) The goal of treatment is to manage agitation and prevent end-organ damage. Monitor core temperature and treat hyperthermia with aggressive benzodiazepine sedation to control agitation, external cooling. Neuromuscular paralysis and endotracheal intubation may be necessary in patients with severe hyperthermia. 3) Monitor renal function following prolonged seizures or hyperthermia; initially treated with hydration (crystalloid) therapy. Monitor for bleeding and obtain coagulation studies in patients at risk (severe toxicity, hyperthermia); disseminated intravascular coagulation has developed in several patients with multiorgan toxicity. Treat with platelets and fresh frozen plasma as necessary.
B) MONITORING OF PATIENT 1) Monitor vital signs and mental status. 2) Monitor serum electrolytes and renal function. Monitor creatinine kinase in patients with prolonged agitation, seizures, hyperthermia or coma; monitor renal function and urine output in patients with evidence of rhabdomyolysis. 3) Obtain a baseline ECG and institute continuous cardiac monitoring in patients with moderate to severe toxicity (i.e., agitation, delirium, seizures, coma, hypotension). 4) Monitor liver enzymes and coagulation studies in patients with significant toxicity (especially hyperthermia). 5) Plasma levels are not clinically useful or readily available. N-benzylpiperazine (BZP) may cross-react with an immunoassay targeting amphetamine-type compounds.
C) PSYCHOMOTOR AGITATION 1) INDICATION a) If patient is severely agitated, sedate with IV benzodiazepines.
2) DIAZEPAM DOSE a) ADULT: 5 to 10 mg IV initially, repeat every 5 to 20 minutes as needed (Brophy et al, 2012; Prod Info diazepam IM, IV injection, 2008; Manno, 2003). b) CHILD: 0.1 to 0.5 mg/kg IV over 2 to 5 minutes; up to a maximum of 10 mg/dose. May repeat dose every 5 to 10 minutes as needed (Loddenkemper & Goodkin, 2011; Hegenbarth & American Academy of Pediatrics Committee on Drugs, 2008).
3) LORAZEPAM DOSE a) ADULT: 2 to 4 mg IV initially; repeat every 5 to 10 minutes as needed (Manno, 2003). b) CHILD: 0.05 to 0.1 mg/kg IV over 2 to 5 minutes, up to a maximum of 4 mg/dose; may repeat in 5 to 15 minutes as needed (Brophy et al, 2012; Loddenkemper & Goodkin, 2011; Hegenbarth & American Academy of Pediatrics Committee on Drugs, 2008).
4) Extremely large doses of benzodiazepines may be required in patients with severe intoxication in order to obtain adequate sedation. Titrate dose to clinical response and monitor for hypotension, CNS and respiratory depression, and the need for endotracheal intubation. 5) Phenothiazines are not routinely recommended due to undesirable side effects (orthostatic hypotension, decreased seizure threshold, and mental status changes). D) SEIZURE 1) Seizures have occurred with N-benzylpiperazine use and may occur more frequently in patients that have taken a combination product. 2) SUMMARY a) Attempt initial control with a benzodiazepine (eg, diazepam, lorazepam). If seizures persist or recur, administer phenobarbital or propofol. b) Monitor for respiratory depression, hypotension, and dysrhythmias. Endotracheal intubation should be performed in patients with persistent seizures. c) Evaluate for hypoxia, electrolyte disturbances, and hypoglycemia (or, if immediate bedside glucose testing is not available, treat with intravenous dextrose).
3) DIAZEPAM a) ADULT DOSE: Initially 5 to 10 mg IV, OR 0.15 mg/kg IV up to 10 mg per dose up to a rate of 5 mg/minute; may be repeated every 5 to 20 minutes as needed (Brophy et al, 2012; Prod Info diazepam IM, IV injection, 2008; Manno, 2003). b) PEDIATRIC DOSE: 0.1 to 0.5 mg/kg IV over 2 to 5 minutes; up to a maximum of 10 mg/dose. May repeat dose every 5 to 10 minutes as needed (Loddenkemper & Goodkin, 2011; Hegenbarth & American Academy of Pediatrics Committee on Drugs, 2008). c) Monitor for hypotension, respiratory depression, and the need for endotracheal intubation. Consider a second agent if seizures persist or recur after repeated doses of diazepam .
4) NO INTRAVENOUS ACCESS a) DIAZEPAM may be given rectally or intramuscularly (Manno, 2003). RECTAL DOSE: CHILD: Greater than 12 years: 0.2 mg/kg; 6 to 11 years: 0.3 mg/kg; 2 to 5 years: 0.5 mg/kg (Brophy et al, 2012). b) MIDAZOLAM has been used intramuscularly and intranasally, particularly in children when intravenous access has not been established. ADULT DOSE: 0.2 mg/kg IM, up to a maximum dose of 10 mg (Brophy et al, 2012). PEDIATRIC DOSE: INTRAMUSCULAR: 0.2 mg/kg IM, up to a maximum dose of 7 mg (Chamberlain et al, 1997) OR 10 mg IM (weight greater than 40 kg); 5 mg IM (weight 13 to 40 kg); INTRANASAL: 0.2 to 0.5 mg/kg up to a maximum of 10 mg/dose (Loddenkemper & Goodkin, 2011; Brophy et al, 2012). BUCCAL midazolam, 10 mg, has been used in adolescents and older children (5-years-old or more) to control seizures when intravenous access was not established (Scott et al, 1999).
5) LORAZEPAM a) MAXIMUM RATE: The rate of intravenous administration of lorazepam should not exceed 2 mg/min (Brophy et al, 2012; Prod Info lorazepam IM, IV injection, 2008). b) ADULT DOSE: 2 to 4 mg IV initially; repeat every 5 to 10 minutes as needed, if seizures persist (Manno, 2003; Brophy et al, 2012). c) PEDIATRIC DOSE: 0.05 to 0.1 mg/kg IV over 2 to 5 minutes, up to a maximum of 4 mg/dose; may repeat in 5 to 15 minutes as needed, if seizures continue (Brophy et al, 2012; Loddenkemper & Goodkin, 2011; Hegenbarth & American Academy of Pediatrics Committee on Drugs, 2008; Sreenath et al, 2010; Chin et al, 2008).
6) PHENOBARBITAL a) ADULT LOADING DOSE: 20 mg/kg IV at an infusion rate of 50 to 100 mg/minute IV. An additional 5 to 10 mg/kg dose may be given 10 minutes after loading infusion if seizures persist or recur (Brophy et al, 2012). b) Patients receiving high doses will require endotracheal intubation and may require vasopressor support (Brophy et al, 2012). c) PEDIATRIC LOADING DOSE: 20 mg/kg may be given as single or divided application (2 mg/kg/minute in children weighing less than 40 kg up to 100 mg/min in children weighing greater than 40 kg). A plasma concentration of about 20 mg/L will be achieved by this dose (Loddenkemper & Goodkin, 2011). d) REPEAT PEDIATRIC DOSE: Repeat doses of 5 to 20 mg/kg may be given every 15 to 20 minutes if seizures persist, with cardiorespiratory monitoring (Loddenkemper & Goodkin, 2011). e) MONITOR: For hypotension, respiratory depression, and the need for endotracheal intubation (Loddenkemper & Goodkin, 2011; Manno, 2003). f) SERUM CONCENTRATION MONITORING: Monitor serum concentrations over the next 12 to 24 hours. Therapeutic serum concentrations of phenobarbital range from 10 to 40 mcg/mL, although the optimal plasma concentration for some individuals may vary outside this range (Hvidberg & Dam, 1976; Choonara & Rane, 1990; AMA Department of Drugs, 1992).
7) OTHER AGENTS a) If seizures persist after phenobarbital, propofol or pentobarbital infusion, or neuromuscular paralysis with general anesthesia (isoflurane) and continuous EEG monitoring should be considered (Manno, 2003). Other anticonvulsants can be considered (eg, valproate sodium, levetiracetam, lacosamide, topiramate) if seizures persist or recur; however, there is very little data regarding their use in toxin induced seizures, controlled trials are not available to define the optimal dosage ranges for these agents in status epilepticus (Brophy et al, 2012): 1) VALPROATE SODIUM: ADULT DOSE: An initial dose of 20 to 40 mg/kg IV, at a rate of 3 to 6 mg/kg/minute; may give an additional dose of 20 mg/kg 10 minutes after loading infusion. PEDIATRIC DOSE: 1.5 to 3 mg/kg/minute (Brophy et al, 2012). 2) LEVETIRACETAM: ADULT DOSE: 1000 to 3000 mg IV, at a rate of 2 to 5 mg/kg/min IV. PEDIATRIC DOSE: 20 to 60 mg/kg IV (Brophy et al, 2012; Loddenkemper & Goodkin, 2011). 3) LACOSAMIDE: ADULT DOSE: 200 to 400 mg IV; 200 mg IV over 15 minutes (Brophy et al, 2012). PEDIATRIC DOSE: In one study, median starting doses of 1.3 mg/kg/day and maintenance doses of 4.7 mg/kg/day were used in children 8 years and older (Loddenkemper & Goodkin, 2011). 4) TOPIRAMATE: ADULT DOSE: 200 to 400 mg nasogastric/orally OR 300 to 1600 mg/day orally divided in 2 to 4 times daily (Brophy et al, 2012).
E) BODY TEMPERATURE ABOVE REFERENCE RANGE 1) SUMMARY a) Hyperthermia has developed in several patients that developed multiorgan failure; in one case the patient had ingested N-benzylpiperazine alone and the other was a mixed ingestion that included MDMA (Gee et al, 2010).
2) MONITORING/TREATMENT a) Monitor core temperature and treat hyperthermia rapidly and aggressively; prolonged or severe hyperthermia may lead to multiorgan failure and death. b) Minimize physical activity. Aggressively control agitation with IV benzodiazepines. Remove the patient's clothes, keep skin damp with tepid to cool water, and use fans to maximize evaporative heat loss. c) Place patient on a hypothermia blanket. d) Large doses of benzodiazepines may be needed to control neuromuscular hyperactivity. In severe cases sedation, neuromuscular paralysis and orotracheal intubation may be necessary. e) Immersion in ice water makes monitoring and resuscitation more difficult but can be useful for severe hyperthermia not responding to the above therapies.
F) HYPERTENSIVE EPISODE 1) SUMMARY a) Hypertension has been reported with N-benzylpiperazine but is generally not life threatening. Of the limited number of cases, treatment has not been required. Initially, treat with benzodiazepines as necessary.
2) Monitor vital signs regularly. For mild/moderate hypertension without evidence of end organ damage, pharmacologic intervention is generally not necessary. Sedative agents such as benzodiazepines may be helpful in treating hypertension and tachycardia in agitated patients, especially if a sympathomimetic agent is involved in the poisoning. 3) For hypertensive emergencies (severe hypertension with evidence of end organ injury (CNS, cardiac, renal), or emergent need to lower mean arterial pressure 20% to 25% within one hour), sodium nitroprusside is preferred. Nitroglycerin and phentolamine are possible alternatives. 4) SODIUM NITROPRUSSIDE/INDICATIONS a) Useful for emergent treatment of severe hypertension secondary to poisonings. Sodium nitroprusside has a rapid onset of action, a short duration of action and a half-life of about 2 minutes (Prod Info NITROPRESS(R) injection for IV infusion, 2007) that can allow accurate titration of blood pressure, as the hypertensive effects of drug overdoses are often short lived.
5) SODIUM NITROPRUSSIDE/DOSE a) ADULT: Begin intravenous infusion at 0.1 microgram/kilogram/minute and titrate to desired effect; up to 10 micrograms/kilogram/minute may be required (American Heart Association, 2005). Frequent hemodynamic monitoring and administration by an infusion pump that ensures a precise flow rate is mandatory (Prod Info NITROPRESS(R) injection for IV infusion, 2007). PEDIATRIC: Initial: 0.5 to 1 microgram/kilogram/minute; titrate to effect up to 8 micrograms/kilogram/minute (Kleinman et al, 2010).
6) SODIUM NITROPRUSSIDE/SOLUTION PREPARATION a) The reconstituted 50 mg solution must be further diluted in 250 to 1000 mL D5W to desired concentration (recommended 50 to 200 mcg/mL) (Prod Info NITROPRESS(R) injection, 2004). Prepare fresh every 24 hours; wrap in aluminum foil. Discard discolored solution (Prod Info NITROPRESS(R) injection for IV infusion, 2007).
7) SODIUM NITROPRUSSIDE/MAJOR ADVERSE REACTIONS a) Severe hypotension; headaches, nausea, vomiting, abdominal cramps; thiocyanate or cyanide toxicity (generally from prolonged, high dose infusion); methemoglobinemia; lactic acidosis; chest pain or dysrhythmias (high doses) (Prod Info NITROPRESS(R) injection for IV infusion, 2007). The addition of 1 gram of sodium thiosulfate to each 100 milligrams of sodium nitroprusside for infusion may help to prevent cyanide toxicity in patients receiving prolonged or high dose infusions (Prod Info NITROPRESS(R) injection for IV infusion, 2007).
8) SODIUM NITROPRUSSIDE/MONITORING PARAMETERS a) Monitor blood pressure every 30 to 60 seconds at onset of infusion; once stabilized, monitor every 5 minutes. Continuous blood pressure monitoring with an intra-arterial catheter is advised (Prod Info NITROPRESS(R) injection for IV infusion, 2007).
9) PHENTOLAMINE/INDICATIONS a) Useful for severe hypertension, particularly if caused by agents with alpha adrenergic agonist effects usually induced by catecholamine excess (Rhoney & Peacock, 2009).
10) PHENTOLAMINE/ADULT DOSE a) BOLUS DOSE: 5 to 15 mg IV bolus repeated as needed (U.S. Departement of Health and Human Services, National Institutes of Health, and National Heart, Lung, and Blood Institute, 2004). Onset of action is 1 to 2 minutes with a duration of 10 to 30 minutes (Rhoney & Peacock, 2009). b) CONTINUOUS INFUSION: 1 mg/hr, adjusted hourly to stabilize blood pressure. Prepared by adding 60 mg of phentolamine mesylate to 100 mL of 0.9% sodium chloride injection; continuous infusion ranging from 12 to 52 mg/hr over 4 days has been used in case reports (McMillian et al, 2011).
11) PHENTOLAMINE/PEDIATRIC DOSE a) 0.05 to 0.1 mg/kg/dose (maximum of 5 mg per dose) intravenously every 5 minutes until hypertension is controlled, then every 2 to 4 hours as needed (Singh et al, 2012; Koch-Weser, 1974).
12) PHENTOLAMINE/ADVERSE EFFECTS a) Adverse events can include orthostatic or prolonged hypotension, tachycardia, dysrhythmias, angina, flushing, headache, nasal congestion, nausea, vomiting, abdominal pain and diarrhea (Rhoney & Peacock, 2009; Prod Info Phentolamine Mesylate IM, IV injection Sandoz Standard, 2005).
13) CAUTION a) Phentolamine should be used with caution in patients with coronary artery disease because it may induce angina or myocardial infarction (Rhoney & Peacock, 2009).
14) LABETALOL a) INTRAVENOUS INDICATIONS 1) Consider if severe hypertension is unresponsive to short acting titratable agents such as sodium nitroprusside. Although labetalol has mixed alpha and beta adrenergic effects (Pearce & Wallin, 1994), it should be used cautiously if sympathomimetic agents are involved in the poisoning, as worsening hypertension may develop from alpha adrenergic effects.
b) ADULT DOSE 1) INTRAVENOUS BOLUS: Initial dose of 20 mg by slow IV injection over 2 minutes. Repeat with 40 to 80 mg at 10 minute intervals. Maximum total dose: 300 mg. Maximum effects on blood pressure usually occur within 5 minutes (Prod Info Trandate(R) IV injection, 2010). 2) INTRAVENOUS INFUSION: Administer infusion after initial bolus, until desired blood pressure is reached. Administer IV at 2 mg/min of diluted labetalol solution (1 mg/mL or 2 mg/3 mL concentrations); adjust as indicated and continue until adequate response is achieved; usual effective IV dose range is 50 to 200 mg total dose; maximum dose: 300 mg. Prepare 1 mg/mL concentration by adding 200 mg labetalol (40 mL) to 160 mL of a compatible solution and administered at a rate of 2 mL/min (2 mg/min); also can be mixed as an approximate 2 mg/3 mL concentration by adding 200 mg labetalol (40 mL) to 250 mL of solution and administered at a rate of 3 mL/min (2 mg/min) (Prod Info Trandate(R) IV injection, 2010). Use of an infusion pump is recommended (Prod Info Trandate(R) IV injection, 2010).
c) PEDIATRIC DOSE 1) INTRAVENOUS: LOADING DOSE: 0.2 to 1 mg/kg, may repeat every 5 to 10 minutes (Hari & Sinha, 2011; Flynn & Tullus, 2009; Temple & Nahata, 2000; Fivush et al, 1997; Fivush et al, 1997; Bunchman et al, 1992). Maximum dose: 40 mg/dose (Hari & Sinha, 2011; Flynn & Tullus, 2009). CONTINUOUS INFUSION: 0.25 to 3 mg/kg/hour IV (Hari & Sinha, 2011; Flynn & Tullus, 2009; Temple & Nahata, 2000; Fivush et al, 1997; Miller, 1994; Deal et al, 1992; Bunchman et al, 1992).
d) ADVERSE REACTIONS 1) Common adverse events include postural hypotension, dizziness; fatigue; nausea; vomiting, sweating, and flushing (Pearce & Wallin, 1994).
e) PRECAUTIONS 1) Contraindicated in patients with bronchial asthma, congestive heart failure, greater than first degree heart block, cardiogenic shock, or severe bradycardia or other conditions associated with prolonged or severe hypotension. In patients with pheochromocytoma, labetalol should be used with caution because it has produced a paradoxical hypertensive response in some patients with this tumor (Prod Info Trandate(R) IV injection, 2010). 2) Use caution in hepatic disease or intermittent claudication; effects of halothane may be enhanced by labetalol (Prod Info Trandate(R) IV injection, 2010). Labetalol should be stopped if there is laboratory evidence of liver injury or jaundice (Prod Info Trandate(R) IV injection, 2010).
f) MONITORING PARAMETER 1) Monitor blood pressure frequently during initial dosing and infusion (Prod Info Trandate(R) IV injection, 2010).
G) RHABDOMYOLYSIS 1) SUMMARY: Early aggressive fluid replacement is the mainstay of therapy and may help prevent renal insufficiency. Diuretics such as mannitol or furosemide may be added if necessary to maintain urine output but only after volume status has been restored as hypovolemia will increase renal tubular damage. Urinary alkalinization is NOT routinely recommended. 2) Initial treatment should be directed towards controlling acute metabolic disturbances such as hyperkalemia, hyperthermia, and hypovolemia. Control seizures, agitation, and muscle contractions (Erdman & Dart, 2004). 3) FLUID REPLACEMENT: Early and aggressive fluid replacement is the mainstay of therapy to prevent renal failure. Vigorous fluid replacement with 0.9% saline (10 to 15 mL/kg/hour) is necessary even if there is no evidence of dehydration. Several liters of fluid may be needed within the first 24 hours (Walter & Catenacci, 2008; Camp, 2009; Huerta-Alardin et al, 2005; Criddle, 2003; Polderman, 2004). Hypovolemia, increased insensible losses, and third spacing of fluid commonly increase fluid requirements. Strive to maintain a urine output of at least 1 to 2 mL/kg/hour (or greater than 150 to 300 mL/hour) (Walter & Catenacci, 2008; Camp, 2009; Erdman & Dart, 2004; Criddle, 2003). To maintain a urine output this high, 500 to 1000 mL of fluid per hour may be required (Criddle, 2003). Monitor fluid input and urine output, plus insensible losses. Monitor for evidence of fluid overload and compartment syndrome; monitor serum electrolytes, CK, and renal function tests. 4) DIURETICS: Diuretics (eg, mannitol or furosemide) may be needed to ensure adequate urine output and to prevent acute renal failure when used in combination with aggressive fluid therapy. Loop diuretics increase tubular flow and decrease deposition of myoglobin. These agents should be used only after volume status has been restored, as hypovolemia will increase renal tubular damage. If the patient is maintaining adequate urine output, loop diuretics are not necessary (Vanholder et al, 2000). 5) URINARY ALKALINIZATION: Alkalinization of the urine is not routinely recommended, as it has never been documented to reduce nephrotoxicity, and may cause complications such as hypocalcemia and hypokalemia (Walter & Catenacci, 2008; Huerta-Alardin et al, 2005; Brown et al, 2004; Polderman, 2004). Retrospective studies have failed to demonstrate any clinical benefit from the use of urinary alkalinization (Brown et al, 2004; Polderman, 2004; Homsi et al, 1997).
|