MOBILE VIEW  | 

MESITYLENE

Classification   |    Detailed evidence-based information

Therapeutic Toxic Class

    A) Mesitylene is a trimethylbenzene isomer.

Specific Substances

    A) No Synonyms were found in group or single elements
    1.2.1) MOLECULAR FORMULA
    1) C9-H12 C6H3(CH3)3

Available Forms Sources

    A) FORMS
    1) The commercial product is 98.5% pure by weight and may contain 1% pseudocumene and 0.5% other aromatic compounds (HSDB , 2002).
    B) SOURCES
    1) Mesitylene is one of three isomers of trimethylbenzene and is found in refined petroleum and in coal tars (through fractionation). It can also be produced by the dehydration of acetone with sulfuric acid or by the disproportionation of xylene when in the presence of aluminum chloride (Bingham et al, 2001; Budavari, 2000; HSDB , 2002; Laham, 1987).
    C) USES
    1) Mesitylene is used in paint and lacquer thinners, as a solvent in paint and varnish formulations, as a component in motor fuel, as an ultraviolet oxidation stabilizer for plastics, and as an intermediate in the manufacture of organic chemicals. It is also used in the production of plastics and dyes (AAR, 1998; Bingham et al, 2001; Pohanish, 2002; Laham, 1987) .

Life Support

    A) This overview assumes that basic life support measures have been instituted.

Clinical Effects

    0.2.1) SUMMARY OF EXPOSURE
    A) Mesitylene is irritating to the eyes, skin, and mucous membranes. Mesitylene can cause CNS depression. Fatigue, drowsiness, headache, dizziness, confusion, incoordination, nervousness, and anxiety may be noted. Pulmonary aspiration may result in chemical pneumonitis with acute lung injury and hemorrhage.
    B) Thrombocytopenia, leukopenia, mild anemia, and coagulation disorders may also occur. Elevated liver function tests have been noted.
    C) Chronic exposure may cause asthmatic-like bronchitis. Erythema, drying, and defatting of the skin may occur following dermal exposure to the liquid.
    0.2.20) REPRODUCTIVE
    A) At the time of this review, no reproductive studies were found for mesitylene in humans or experimental animals.
    0.2.21) CARCINOGENICITY
    A) At the time of this review, no data were available to assess the potential carcinogenic activity of mesitylene in humans.

Laboratory Monitoring

    A) A number of chemicals produce abnormalities of the hematopoietic system, liver, and kidneys. Monitoring complete blood count, urinalysis, and liver and kidney function tests is suggested for patients with significant exposure.
    B) If respiratory tract irritation or respiratory depression is evident, monitor arterial blood gases, chest x-ray, and pulmonary function tests.
    C) Pulse oximetry can be used to monitor patients for adequate oxygenation.

Treatment Overview

    0.4.2) ORAL/PARENTERAL EXPOSURE
    A) Because of this agent's irritant and CNS depressant properties, DO NOT INDUCE EMESIS.
    B) GASTRIC LAVAGE: Consider after ingestion of a potentially life-threatening amount of poison if it can be performed soon after ingestion (generally within 1 hour). Protect airway by placement in the head down left lateral decubitus position or by endotracheal intubation. Control any seizures first.
    1) CONTRAINDICATIONS: Loss of airway protective reflexes or decreased level of consciousness in unintubated patients; following ingestion of corrosives; hydrocarbons (high aspiration potential); patients at risk of hemorrhage or gastrointestinal perforation; and trivial or non-toxic ingestion.
    C) ACTIVATED CHARCOAL: Administer charcoal as a slurry (240 mL water/30 g charcoal). Usual dose: 25 to 100 g in adults/adolescents, 25 to 50 g in children (1 to 12 years), and 1 g/kg in infants less than 1 year old.
    D) Ensure airway patency and adequacy of ventilation and oxygenation. Endotracheal intubation, supplemental oxygenation, and assisted ventilation may be required.
    E) Monitor complete blood count and clotting parameters. If severe anemia or bleeding disorders occur, transfusion therapy with whole blood or packed red blood cells and fresh frozen plasma could be required. Vitamin K therapy could be required for correction of clotting abnormalities.
    F) Observe patients with ingestion carefully for the possible development of esophageal or gastrointestinal tract irritation or burns. If signs or symptoms of esophageal irritation or burns are present, consider endoscopy to determine the extent of injury.
    0.4.3) INHALATION EXPOSURE
    A) INHALATION: Move patient to fresh air. Monitor for respiratory distress. If cough or difficulty breathing develops, evaluate for respiratory tract irritation, bronchitis, or pneumonitis. Administer oxygen and assist ventilation as required. Treat bronchospasm with an inhaled beta2-adrenergic agonist. Consider systemic corticosteroids in patients with significant bronchospasm.
    B) If bronchospasm and wheezing occur, consider treatment with inhaled sympathomimetic agents.
    C) ACUTE LUNG INJURY: Maintain ventilation and oxygenation and evaluate with frequent arterial blood gases and/or pulse oximetry monitoring. Early use of PEEP and mechanical ventilation may be needed.
    0.4.4) EYE EXPOSURE
    A) DECONTAMINATION: Remove contact lenses and irrigate exposed eyes with copious amounts of room temperature 0.9% saline or water for at least 15 minutes. If irritation, pain, swelling, lacrimation, or photophobia persist after 15 minutes of irrigation, the patient should be seen in a healthcare facility.
    0.4.5) DERMAL EXPOSURE
    A) OVERVIEW
    1) DECONTAMINATION: Remove contaminated clothing and jewelry and place them in plastic bags. Wash exposed areas with soap and water for 10 to 15 minutes with gentle sponging to avoid skin breakdown. A physician may need to examine the area if irritation or pain persists (Burgess et al, 1999).
    2) Treat dermal irritation or burns with standard topical therapy. Patients developing dermal hypersensitivity reactions may require treatment with systemic or topical corticosteroids or antihistamines.

Range Of Toxicity

    A) 4 of 10 rats died following inhalation exposure to an airborne concentration of 2400 ppm for 24 hours. An oral dose of 5 mL/kg caused death in 1 of 10 rats. The TCLo for humans is 10 ppm, with somnolence and respiratory tract irritation noted.

Summary Of Exposure

    A) Mesitylene is irritating to the eyes, skin, and mucous membranes. Mesitylene can cause CNS depression. Fatigue, drowsiness, headache, dizziness, confusion, incoordination, nervousness, and anxiety may be noted. Pulmonary aspiration may result in chemical pneumonitis with acute lung injury and hemorrhage.
    B) Thrombocytopenia, leukopenia, mild anemia, and coagulation disorders may also occur. Elevated liver function tests have been noted.
    C) Chronic exposure may cause asthmatic-like bronchitis. Erythema, drying, and defatting of the skin may occur following dermal exposure to the liquid.

Heent

    3.4.3) EYES
    A) CONJUNCTIVITIS - Eye irritation may occur with either vapor exposure or direct conjunctival contact with the liquid (Plunkett, 1976) RTECS, 1999).
    3.4.5) NOSE
    A) IRRITATION - of the mucosa of the nose and throat may be seen (Plunkett, 1976) ITI, 1995).
    3.4.6) THROAT
    A) IRRITATION - of the mucosa of the nose and throat may be seen (Plunkett, 1976) ITI, 1995).

Respiratory

    3.6.2) CLINICAL EFFECTS
    A) IRRITATION SYMPTOM
    1) Respiratory tract irritation with bronchitis may develop (Plunkett, 1976) ITI, 1995). Chronic asthmatic-like bronchitis may be a delayed or chronic health hazard (EPA, 1985; (Laham, 1987; Anon, 1992).
    a) EXPERIMENTAL ANIMALS - Respiratory tract irritant effects have demonstrated in exposed mice (Korsak et al, 1997).
    B) PNEUMONITIS
    1) Chemical pneumonitis may occur with vapor inhalation (EPA, 1985).
    C) SUFFOCATING
    1) Pulmonary aspiration of mesitylene can result in chemical pneumonitis, noncardiogenic pulmonary edema, and hemorrhage (Laham, 1987; ACGIH, 1991).

Neurologic

    3.7.2) CLINICAL EFFECTS
    A) HEADACHE
    1) Headache and fatigue may be noted (Plunkett, 1976) ITI, 1995; (Laham, 1987).
    B) ANXIETY
    1) Nervousness and anxiety may occur (Plunkett, 1976) ITI, 1995; (Laham, 1987).
    C) CENTRAL NERVOUS SYSTEM DEFICIT
    1) CNS depression and narcosis with drowsiness and somnolence may result from exposure (Plunkett, 1976) ITI, 1995; (Finkel, 1983; Lewis, 1996; Anon, 1992).

Gastrointestinal

    3.8.2) CLINICAL EFFECTS
    A) NAUSEA
    1) Nausea may develop (Plunkett, 1976) ITI, 1995).

Hepatic

    3.9.3) ANIMAL EFFECTS
    A) ANIMAL STUDIES
    a) Elevated alkaline phosphatase and SGOT (AST) have been noted in chronic experimental animal inhalation studies (Clayton & Clayton, 1994). These effects have not been reported in exposed humans.

Hematologic

    3.13.3) ANIMAL EFFECTS
    A) ANIMAL STUDIES
    a) Thrombocytosis and thrombocytopenia were noted in rabbits (Clayton & Clayton, 1994).

Dermatologic

    3.14.2) CLINICAL EFFECTS
    A) DERMATITIS
    1) Dermal irritation may occur with direct skin contact (Plunkett, 1976) EPA, 1985; (Anon, 1992). Erythema, drying, and skin defatting may be seen with direct dermal exposure (Laham, 1987).
    B) SKIN ABSORPTION
    1) Absorption through intact skin occurs only poorly; systemic intoxication by this exposure route is unlikely (Laham, 1987).

Reproductive

    3.20.1) SUMMARY
    A) At the time of this review, no reproductive studies were found for mesitylene in humans or experimental animals.
    3.20.2) TERATOGENICITY
    A) LACK OF INFORMATION
    1) At the time of this review, no data were available to assess the teratogenic potential of this agent.
    3.20.3) EFFECTS IN PREGNANCY
    A) PLACENTAL BARRIER
    1) Although not specifically demonstrated with mesitylene, trimethylbenzene compounds have been shown to cross the placental barrier (Clayton & Clayton, 1994).

Carcinogenicity

    3.21.1) IARC CATEGORY
    A) IARC Carcinogenicity Ratings for CAS108-67-8 (International Agency for Research on Cancer (IARC), 2016; International Agency for Research on Cancer, 2015; IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, 2010; IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, 2010a; IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, 2008; IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, 2007; IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, 2006; IARC, 2004):
    1) Not Listed
    3.21.2) SUMMARY/HUMAN
    A) At the time of this review, no data were available to assess the potential carcinogenic activity of mesitylene in humans.

Monitoring Parameters Levels

    4.1.1) SUMMARY
    A) A number of chemicals produce abnormalities of the hematopoietic system, liver, and kidneys. Monitoring complete blood count, urinalysis, and liver and kidney function tests is suggested for patients with significant exposure.
    B) If respiratory tract irritation or respiratory depression is evident, monitor arterial blood gases, chest x-ray, and pulmonary function tests.
    C) Pulse oximetry can be used to monitor patients for adequate oxygenation.
    4.1.2) SERUM/BLOOD
    A) BLOOD/SERUM CHEMISTRY
    1) A number of chemicals produce abnormalities of the hematopoietic system, liver, and kidneys. Monitoring complete blood count and liver and kidney function tests is suggested for patients with significant exposure.
    4.1.3) URINE
    A) URINALYSIS
    1) A number of chemicals produce abnormalities of the hematopoietic system, liver, and kidneys. Monitoring urinalysis is suggested for patients with significant exposure.
    4.1.4) OTHER
    A) OTHER
    1) MONITORING
    a) If respiratory tract irritation is present, monitor arterial blood gases and chest x-ray.
    2) PULMONARY FUNCTION TESTS
    a) If respiratory tract irritation is present, it may be useful to monitor pulmonary function tests.
    3) PULSE OXIMETRY
    a) Pulse oximetry can be used to monitor patients for adequate oxygenation.

Radiographic Studies

    A) CHEST RADIOGRAPH
    1) If respiratory tract irritation is present, monitor chest x-ray.

Methods

    A) CHROMATOGRAPHY
    1) Mesitylene can be measured in blood or tissue with a direct chromatographic analysis. In the urine, metabolites can be measured by UV or chromatographic analysis of extracts, following separation by thin-layer plate or column separation (Laham, 1987). It is not likely that these measurements would be clinically useful in the evaluation of patients with acute exposure.
    a) Trimethylbenzenes such as mesitylene can be measured in blood, urine, and exhaled air by gas chromatography (Jarnberg et al, 1996; Kostrzewski et al, 1997).
    2) Purified acidic urinary metabolites of mesitylene in rabbits were identified after ethyl acetate extraction and column chromatography. Identification methods include microanalysis, thin-layer chromatography, ultraviolet and infrared spectroscopy, and gas chromatography/mass spectrometry (Laham & Potvin, 1989).
    B) OTHER
    1) A biologic microdetermination method for the mesitylenic acid (3,5-dimethylbenzoic acid) metabolite of mesitylene has been developed (Clayton & Clayton, 1994). It is not likely that measurement of this metabolite would be clinically useful in the evaluation of patients with acute exposure.

Life Support

    A) Support respiratory and cardiovascular function.

Patient Disposition

    6.3.1) DISPOSITION/ORAL EXPOSURE
    6.3.1.5) OBSERVATION CRITERIA/ORAL
    A) Patients symptomatic following exposure should be observed in a controlled setting until all signs and symptoms have fully resolved.

Monitoring

    A) A number of chemicals produce abnormalities of the hematopoietic system, liver, and kidneys. Monitoring complete blood count, urinalysis, and liver and kidney function tests is suggested for patients with significant exposure.
    B) If respiratory tract irritation or respiratory depression is evident, monitor arterial blood gases, chest x-ray, and pulmonary function tests.
    C) Pulse oximetry can be used to monitor patients for adequate oxygenation.

Oral Exposure

    6.5.2) PREVENTION OF ABSORPTION
    A) EMESIS/NOT RECOMMENDED
    1) Due to the irritant properties of this material and its propensity to cause CNS depression with a risk of aspiration and subsequent chemical pneumonitis, DO NOT INDUCE EMESIS.
    B) GASTRIC LAVAGE
    1) INDICATIONS: Consider gastric lavage with a large-bore orogastric tube (ADULT: 36 to 40 French or 30 English gauge tube {external diameter 12 to 13.3 mm}; CHILD: 24 to 28 French {diameter 7.8 to 9.3 mm}) after a potentially life threatening ingestion if it can be performed soon after ingestion (generally within 60 minutes).
    a) Consider lavage more than 60 minutes after ingestion of sustained-release formulations and substances known to form bezoars or concretions.
    2) PRECAUTIONS:
    a) SEIZURE CONTROL: Is mandatory prior to gastric lavage.
    b) AIRWAY PROTECTION: Place patients in the head down left lateral decubitus position, with suction available. Patients with depressed mental status should be intubated with a cuffed endotracheal tube prior to lavage.
    3) LAVAGE FLUID:
    a) Use small aliquots of liquid. Lavage with 200 to 300 milliliters warm tap water (preferably 38 degrees Celsius) or saline per wash (in older children or adults) and 10 milliliters/kilogram body weight of normal saline in young children(Vale et al, 2004) and repeat until lavage return is clear.
    b) The volume of lavage return should approximate amount of fluid given to avoid fluid-electrolyte imbalance.
    c) CAUTION: Water should be avoided in young children because of the risk of electrolyte imbalance and water intoxication. Warm fluids avoid the risk of hypothermia in very young children and the elderly.
    4) COMPLICATIONS:
    a) Complications of gastric lavage have included: aspiration pneumonia, hypoxia, hypercapnia, mechanical injury to the throat, esophagus, or stomach, fluid and electrolyte imbalance (Vale, 1997). Combative patients may be at greater risk for complications (Caravati et al, 2001).
    b) Gastric lavage can cause significant morbidity; it should NOT be performed routinely in all poisoned patients (Vale, 1997).
    5) CONTRAINDICATIONS:
    a) Loss of airway protective reflexes or decreased level of consciousness if patient is not intubated, following ingestion of corrosive substances, hydrocarbons (high aspiration potential), patients at risk of hemorrhage or gastrointestinal perforation, or trivial or non-toxic ingestion.
    C) ACTIVATED CHARCOAL
    1) CHARCOAL ADMINISTRATION
    a) Consider administration of activated charcoal after a potentially toxic ingestion (Chyka et al, 2005). Administer charcoal as an aqueous slurry; most effective when administered within one hour of ingestion.
    2) CHARCOAL DOSE
    a) Use a minimum of 240 milliliters of water per 30 grams charcoal (FDA, 1985). Optimum dose not established; usual dose is 25 to 100 grams in adults and adolescents; 25 to 50 grams in children aged 1 to 12 years (or 0.5 to 1 gram/kilogram body weight) ; and 0.5 to 1 gram/kilogram in infants up to 1 year old (Chyka et al, 2005).
    1) Routine use of a cathartic with activated charcoal is NOT recommended as there is no evidence that cathartics reduce drug absorption and cathartics are known to cause adverse effects such as nausea, vomiting, abdominal cramps, electrolyte imbalances and occasionally hypotension (None Listed, 2004).
    b) ADVERSE EFFECTS/CONTRAINDICATIONS
    1) Complications: emesis, aspiration (Chyka et al, 2005). Aspiration may be complicated by acute respiratory failure, ARDS, bronchiolitis obliterans or chronic lung disease (Golej et al, 2001; Graff et al, 2002; Pollack et al, 1981; Harris & Filandrinos, 1993; Elliot et al, 1989; Rau et al, 1988; Golej et al, 2001; Graff et al, 2002). Refer to the ACTIVATED CHARCOAL/TREATMENT management for further information.
    2) Contraindications: unprotected airway (increases risk/severity of aspiration) , nonfunctioning gastrointestinal tract, uncontrolled vomiting, and ingestion of most hydrocarbons (Chyka et al, 2005).
    6.5.3) TREATMENT
    A) AIRWAY MANAGEMENT
    1) If CNS depression is present, airway compromise and inadequate ventilation may occur. Ensure airway patency and adequacy of ventilation and oxygenation.
    2) Endotracheal intubation, supplemental oxygenation, and assisted ventilation may be required.
    B) HEMORRHAGE
    1) BLEEDING/ANEMIA - monitor complete blood count and clotting parameters.
    2) If severe anemia or bleeding disorders occur, transfusion of whole blood or packed red blood cells and fresh frozen plasma could be required.
    3) Vitamin K therapy could be required for correction of clotting abnormalities.
    C) IRRITATION SYMPTOM
    1) Observe patients with ingestion carefully for the possible development of esophageal or gastrointestinal tract irritation or burns. If signs or symptoms of esophageal irritation or burns are present, consider endoscopy to determine the extent of injury.
    D) MONITORING OF PATIENT
    1) LIVER FUNCTION TESTS - Monitor liver function tests.
    E) OBSERVATION REGIMES
    1) Carefully observe patients with ingestion exposure for the development of any systemic signs or symptoms and administer symptomatic treatment as necessary.

Inhalation Exposure

    6.7.1) DECONTAMINATION
    A) Move patient from the toxic environment to fresh air. Monitor for respiratory distress. If cough or difficulty in breathing develops, evaluate for hypoxia, respiratory tract irritation, bronchitis, or pneumonitis.
    B) OBSERVATION: Carefully observe patients with inhalation exposure for the development of any systemic signs or symptoms and administer symptomatic treatment as necessary.
    C) INITIAL TREATMENT: Administer 100% humidified supplemental oxygen, perform endotracheal intubation and provide assisted ventilation as required. Administer inhaled beta-2 adrenergic agonists, if bronchospasm develops. Consider systemic corticosteroids in patients with significant bronchospasm (National Heart,Lung,and Blood Institute, 2007). Exposed skin and eyes should be flushed with copious amounts of water.
    6.7.2) TREATMENT
    A) AIRWAY MANAGEMENT
    1) If CNS depression is present, airway compromise and inadequate ventilation may occur. Ensure airway patency and adequacy of ventilation and oxygenation.
    2) Endotracheal intubation, supplemental oxygenation, and assisted ventilation could be required.
    B) IRRITATION SYMPTOM
    1) Respiratory tract irritation, if severe, can progress to noncardiogenic pulmonary edema which may be delayed in onset up to 24 to 72 hours after exposure in some cases.
    2) There are no controlled studies indicating that early administration of corticosteroids can prevent the development of noncardiogenic pulmonary edema in patients with inhalation exposure to respiratory irritant substances, and long-term use may cause adverse effects (Boysen & Modell, 1989).
    a) However, based on anecdotal experience, some clinicians do recommend early administration of corticosteroids (such as methylprednisolone 1 gram intravenously as a single dose) in an attempt to prevent the later development of pulmonary edema.
    1) Anecdotal experience with dimethyl sulfate inhalation showed possible benefit of methylprednisolone in the TREATMENT of noncardiogenic pulmonary edema (Ip et al, 1989).
    3) Anecdotal experience also indicated that systemic corticosteroids may have possible efficacy in the TREATMENT of drug-induced noncardiogenic pulmonary edema (Zitnik & Cooper, 1990; Stentoft, 1990; Chudnofsky & Otten, 1989) or noncardiogenic pulmonary edema developing after cardiopulmonary bypass (Maggart & Stewart, 1987).
    4) It is not clear from the published literature that administration of systemic corticosteroids early following inhalation exposure to respiratory irritant substances can PREVENT the development of noncardiogenic pulmonary edema. The decision to administer or withhold corticosteroids in this setting must currently be made on clinical grounds.
    C) ACUTE LUNG INJURY
    1) ONSET: Onset of acute lung injury after toxic exposure may be delayed up to 24 to 72 hours after exposure in some cases.
    2) NON-PHARMACOLOGIC TREATMENT: The treatment of acute lung injury is primarily supportive (Cataletto, 2012). Maintain adequate ventilation and oxygenation with frequent monitoring of arterial blood gases and/or pulse oximetry. If a high FIO2 is required to maintain adequate oxygenation, mechanical ventilation and positive-end-expiratory pressure (PEEP) may be required; ventilation with small tidal volumes (6 mL/kg) is preferred if ARDS develops (Haas, 2011; Stolbach & Hoffman, 2011).
    a) To minimize barotrauma and other complications, use the lowest amount of PEEP possible while maintaining adequate oxygenation. Use of smaller tidal volumes (6 mL/kg) and lower plateau pressures (30 cm water or less) has been associated with decreased mortality and more rapid weaning from mechanical ventilation in patients with ARDS (Brower et al, 2000). More treatment information may be obtained from ARDS Clinical Network website, NIH NHLBI ARDS Clinical Network Mechanical Ventilation Protocol Summary, http://www.ardsnet.org/node/77791 (NHLBI ARDS Network, 2008)
    3) FLUIDS: Crystalloid solutions must be administered judiciously. Pulmonary artery monitoring may help. In general the pulmonary artery wedge pressure should be kept relatively low while still maintaining adequate cardiac output, blood pressure and urine output (Stolbach & Hoffman, 2011).
    4) ANTIBIOTICS: Indicated only when there is evidence of infection (Artigas et al, 1998).
    5) EXPERIMENTAL THERAPY: Partial liquid ventilation has shown promise in preliminary studies (Kollef & Schuster, 1995).
    6) CALFACTANT: In a multicenter, randomized, blinded trial, endotracheal instillation of 2 doses of 80 mL/m(2) calfactant (35 mg/mL of phospholipid suspension in saline) in infants, children, and adolescents with acute lung injury resulted in acute improvement in oxygenation and lower mortality; however, no significant decrease in the course of respiratory failure measured by duration of ventilator therapy, intensive care unit, or hospital stay was noted. Adverse effects (transient hypoxia and hypotension) were more frequent in calfactant patients, but these effects were mild and did not require withdrawal from the study (Wilson et al, 2005).
    7) However, in a multicenter, randomized, controlled, and masked trial, endotracheal instillation of up to 3 doses of calfactant (30 mg) in adults only with acute lung injury/ARDS due to direct lung injury was not associated with improved oxygenation and longer term benefits compared to the placebo group. It was also associated with significant increases in hypoxia and hypotension (Willson et al, 2015).
    D) BRONCHOSPASM
    1) If bronchospasm and wheezing occur, consider treatment with inhaled sympathomimetic agents.
    E) OBSERVATION REGIMES
    1) Carefully observe patients with inhalation exposure for the development of any systemic signs or symptoms and administer symptomatic treatment as necessary.
    F) Treatment should include recommendations listed in the ORAL EXPOSURE section when appropriate.

Eye Exposure

    6.8.1) DECONTAMINATION
    A) EYE IRRIGATION, ROUTINE: Remove contact lenses and irrigate exposed eyes with copious amounts of room temperature 0.9% saline or water for at least 15 minutes. If irritation, pain, swelling, lacrimation, or photophobia persist after 15 minutes of irrigation, an ophthalmologic examination should be performed (Peate, 2007; Naradzay & Barish, 2006).

Dermal Exposure

    6.9.1) DECONTAMINATION
    A) DERMAL DECONTAMINATION
    1) DECONTAMINATION: Remove contaminated clothing and wash exposed area thoroughly with soap and water for 10 to 15 minutes. A physician may need to examine the area if irritation or pain persists (Burgess et al, 1999).
    6.9.2) TREATMENT
    A) IRRITATION SYMPTOM
    1) Treat dermal irritation or burns with standard topical therapy. Patients developing dermal hypersensitivity reactions may require treatment with systemic or topical corticosteroids or antihistamines.
    B) SKIN ABSORPTION
    1) Absorption through intact skin occurs only poorly; systemic intoxication by this route is unlikely (Laham, 1987).
    C) Treatment should include recommendations listed in the ORAL EXPOSURE section when appropriate.

Enhanced Elimination

    A) EFFICACY
    1) No studies have addressed the utilization of extracorporeal elimination techniques in poisoning with this agent.

Summary

    A) 4 of 10 rats died following inhalation exposure to an airborne concentration of 2400 ppm for 24 hours. An oral dose of 5 mL/kg caused death in 1 of 10 rats. The TCLo for humans is 10 ppm, with somnolence and respiratory tract irritation noted.

Minimum Lethal Exposure

    A) ADULT
    1) The minimum lethal human dose to this agent has not been delineated.
    B) ANIMAL DATA
    1) In experiments with rats, 4 of 10 animals died following inhalation exposure to an airborne concentration of 2400 ppm for 24 hours. An oral dose of 5 mL/kg caused death in 1 of 10 rats (Laham, 1987).
    2) Minimum lethal intraperitoneal doses were 1.5 to 2.0 mL/kg in rats and 1.13 to 12 mL/kg in guinea pigs (Laham, 1987).

Maximum Tolerated Exposure

    A) ADULT
    1) 10 ppm is the lowest toxic concentration reported in humans. At this concentration, central nervous system effects with somnolence and respiratory tract irritation are observed (EPA, 1985; (RTECS , 2002).
    2) A variety of effects on the central nervous system (CNS), respiratory system, and hematopoietic system were observed in a group of workers with chronic exposure to a solvent mixture containing 30 percent mesitylene (Laham, 1987).
    a) Levels of total hydrocarbon vapors present in the breathing atmosphere of these workers ranged from 10 to 60 ppm (Laham, 1987).
    3) Mesitylene inhalation at airborne concentrations of 1.5, 3.0, and 6.0 mg/L for 6 hours caused dose-related changes in white blood cell counts in rats (Clayton & Clayton, 1994).
    a) No significant effects on the complete blood count were noted with 6 hours per day exposure for 5 weeks, but elevations of alkaline phosphatase and SGOT (AST) were observed (Clayton & Clayton, 1994).
    4) CNS depression and ataxia were noted in rats exposed to airborne concentrations of 5100 to 9180 ppm for 2 hours (Laham, 1987).

Workplace Standards

    A) ACGIH TLV Values for CAS108-67-8 (American Conference of Governmental Industrial Hygienists, 2010):
    1) Not Listed

    B) NIOSH REL and IDLH Values for CAS108-67-8 (National Institute for Occupational Safety and Health, 2007):
    1) Listed as: 1,3,5-Trimethylbenzene
    2) REL:
    a) TWA: 25 ppm (125 mg/m(3))
    b) STEL:
    c) Ceiling:
    d) Carcinogen Listing: (Not Listed) Not Listed
    e) Skin Designation: Not Listed
    f) Note(s):
    3) IDLH: Not Listed

    C) Carcinogenicity Ratings for CAS108-67-8 :
    1) ACGIH (American Conference of Governmental Industrial Hygienists, 2010): Not Listed
    2) EPA (U.S. Environmental Protection Agency, 2011): Not Listed
    3) IARC (International Agency for Research on Cancer (IARC), 2016; International Agency for Research on Cancer, 2015; IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, 2010; IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, 2010a; IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, 2008; IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, 2007; IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, 2006; IARC, 2004): Not Listed
    4) NIOSH (National Institute for Occupational Safety and Health, 2007): Not Listed ; Listed as: 1,3,5-Trimethylbenzene
    5) MAK (DFG, 2002): Not Listed
    6) NTP (U.S. Department of Health and Human Services, Public Health Service, National Toxicology Project ): Not Listed

    D) OSHA PEL Values for CAS108-67-8 (U.S. Occupational Safety, and Health Administration (OSHA), 2010):
    1) Not Listed

Toxicity Information

    7.7.1) TOXICITY VALUES
    A) References: Bingham et al, 2001 ITI, 1995; RTECS, 2002
    1) TCLo- (INHALATION)HUMAN:
    a) 10 ppm - sensory changes involving the peripheral nerve; somnolence; structural or functional change in trachea or bronchi
    2) TCLo- (INHALATION)RAT:
    a) 20 mg/m(3) for 24H/17W - intermittent -- changes in urine composition; catalases

Toxicologic Mechanism

    A) Mesitylene is a primary irritant of the eyes, skin, and respiratory tract (Laham, 1987; Anon, 1992). It causes CNS depression in a fashion similar to that of other hydrocarbon solvents (Laham, 1987).
    B) Hematopoietic effects noted in a group of workers exposed to a mixture of solvents containing 30 percent mesitylene may have been due to the mesitylene itself, one of the other known components of the solvent mixture, or to unknown contaminants (Laham, 1987). One source attributes the hematologic effects to the benzene contaminant (Gerarde, 1960).

Physical Characteristics

    A) Mesitylene is a clear, colorless liquid at room temperature; its odor has been characterized as being peculiar, distinctive, aromatic, and sweet (Budavari, 2000; HSDB , 2002; NIOSH , 2002).

Molecular Weight

    A) 120.19

Other

    A) ODOR THRESHOLD
    1) 0.027 mg/L (range of 0.00024-0.062 mg/L) (Verschueren, 2000)

General Bibliography

    1) 40 CFR 372.28: Environmental Protection Agency - Toxic Chemical Release Reporting, Community Right-To-Know, Lower thresholds for chemicals of special concern. National Archives and Records Administration (NARA) and the Government Printing Office (GPO). Washington, DC. Final rules current as of Apr 3, 2006.
    2) 40 CFR 372.65: Environmental Protection Agency - Toxic Chemical Release Reporting, Community Right-To-Know, Chemicals and Chemical Categories to which this part applies. National Archives and Records Association (NARA) and the Government Printing Office (GPO), Washington, DC. Final rules current as of Apr 3, 2006.
    3) 49 CFR 172.101 - App. B: Department of Transportation - Table of Hazardous Materials, Appendix B: List of Marine Pollutants. National Archives and Records Administration (NARA) and the Government Printing Office (GPO), Washington, DC. Final rules current as of Aug 29, 2005.
    4) 49 CFR 172.101: Department of Transportation - Table of Hazardous Materials. National Archives and Records Administration (NARA) and the Government Printing Office (GPO), Washington, DC. Final rules current as of Aug 11, 2005.
    5) 62 FR 58840: Notice of the National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances - Proposed AEGL Values, Environmental Protection Agency, NAC/AEGL Committee. National Archives and Records Administration (NARA) and the Government Publishing Office (GPO), Washington, DC, 1997.
    6) 65 FR 14186: Notice of the National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances - Proposed AEGL Values, Environmental Protection Agency, NAC/AEGL Committee. National Archives and Records Administration (NARA) and the Government Publishing Office (GPO), Washington, DC, 2000.
    7) 65 FR 39264: Notice of the National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances - Proposed AEGL Values, Environmental Protection Agency, NAC/AEGL Committee. National Archives and Records Administration (NARA) and the Government Publishing Office (GPO), Washington, DC, 2000.
    8) 65 FR 77866: Notice of the National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances - Proposed AEGL Values, Environmental Protection Agency, NAC/AEGL Committee. National Archives and Records Administration (NARA) and the Government Publishing Office (GPO), Washington, DC, 2000.
    9) 66 FR 21940: Notice of the National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances - Proposed AEGL Values, Environmental Protection Agency, NAC/AEGL Committee. National Archives and Records Administration (NARA) and the Government Publishing Office (GPO), Washington, DC, 2001.
    10) 67 FR 7164: Notice of the National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances - Proposed AEGL Values, Environmental Protection Agency, NAC/AEGL Committee. National Archives and Records Administration (NARA) and the Government Publishing Office (GPO), Washington, DC, 2002.
    11) 68 FR 42710: Notice of the National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances - Proposed AEGL Values, Environmental Protection Agency, NAC/AEGL Committee. National Archives and Records Administration (NARA) and the Government Publishing Office (GPO), Washington, DC, 2003.
    12) 69 FR 54144: Notice of the National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances - Proposed AEGL Values, Environmental Protection Agency, NAC/AEGL Committee. National Archives and Records Administration (NARA) and the Government Publishing Office (GPO), Washington, DC, 2004.
    13) AAR: Emergency Handling of Hazardous Materials in Surface Transportation, Bureau of Explosives, Association of American Railroads, Washington, DC, 1998.
    14) ACGIH: Documentation of the Threshold Limit Values andBiological Exposure Indices, 6th ed, Am Conference of Govt Ind Hyg, Inc, Cincinnati, OH, 1991, pp 1648-1649.
    15) AIHA: 2006 Emergency Response Planning Guidelines and Workplace Environmental Exposure Level Guides Handbook, American Industrial Hygiene Association, Fairfax, VA, 2006.
    16) Alaspaa AO, Kuisma MJ, Hoppu K, et al: Out-of-hospital administration of activated charcoal by emergency medical services. Ann Emerg Med 2005; 45:207-12.
    17) American Conference of Governmental Industrial Hygienists : ACGIH 2010 Threshold Limit Values (TLVs(R)) for Chemical Substances and Physical Agents and Biological Exposure Indices (BEIs(R)), American Conference of Governmental Industrial Hygienists, Cincinnati, OH, 2010.
    18) Anon: 1,3,5-Trimethylbenzene (German). Beratergremium fuer umweltrelevante Altstoffe (BUA) 1992; 46:62.
    19) Artigas A, Bernard GR, Carlet J, et al: The American-European consensus conference on ARDS, part 2: ventilatory, pharmacologic, supportive therapy, study design strategies, and issues related to recovery and remodeling.. Am J Respir Crit Care Med 1998; 157:1332-1347.
    20) Ashford R: Ashford's Dictionary of Industrial Chemicals, 2nd ed, Wavelength Publications Ltd, London, England, 2001.
    21) Battig K, Grandjean E, & Turrian V: Health damage after continuous exposure to trimethyl benzene in a painting workshop. Z Prev Med 1956; 1:389-401.
    22) Bingham E, Cohrssen B, & Powell CH: Patty's Toxicology, Vol 4.. 5th ed, John Wiley & Sons, New York, NY, 2001.
    23) Boysen PG & Modell JH: Pulmonary edema, in: Textbook of Critical Care Medicine, 2nd ed. Shoemaker WC, Ayres S, Grenvik A et al (Eds), WB Saunders Company, Philadelphia, PA, 1989, pp 515-518.
    24) Brower RG, Matthay AM, & Morris A: Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Eng J Med 2000; 342:1301-1308.
    25) Budavari S: The Merck Index, 12th ed. on CD-ROM. Version 12:3a. Chapman & Hall/CRCnetBASE. Whitehouse Station, NJ. 2000.
    26) Burgess JL, Kirk M, Borron SW, et al: Emergency department hazardous materials protocol for contaminated patients. Ann Emerg Med 1999; 34(2):205-212.
    27) Caravati EM, Knight HH, & Linscott MS: Esophageal laceration and charcoal mediastinum complicating gastric lavage. J Emerg Med 2001; 20:273-276.
    28) Cataletto M: Respiratory Distress Syndrome, Acute(ARDS). In: Domino FJ, ed. The 5-Minute Clinical Consult 2012, 20th ed. Lippincott Williams & Wilkins, Philadelphia, PA, 2012.
    29) Chemsoft(R) : Electronic EPA, NIOSH, & OSHA Methods(TM). Windowchem(TM) Software. Fairfield, CA. 2000.
    30) Chudnofsky CR & Otten EJ: Acute pulmonary toxicity to nitrofurantoin. J Emerg Med 1989; 7:15-19.
    31) Chyka PA, Seger D, Krenzelok EP, et al: Position paper: Single-dose activated charcoal. Clin Toxicol (Phila) 2005; 43(2):61-87.
    32) Clayton GD & Clayton FE: Patty's Industrial Hygiene and Toxicology, Vol 2B, Toxicology, 4th ed, John Wiley & Sons, New York, NY, 1994, pp 1306.
    33) DFG: List of MAK and BAT Values 2002, Report No. 38, Deutsche Forschungsgemeinschaft, Commission for the Investigation of Health Hazards of Chemical Compounds in the Work Area, Wiley-VCH, Weinheim, Federal Republic of Germany, 2002.
    34) Dagnone D, Matsui D, & Rieder MJ: Assessment of the palatability of vehicles for activated charcoal in pediatric volunteers. Pediatr Emerg Care 2002; 18:19-21.
    35) EPA: Search results for Toxic Substances Control Act (TSCA) Inventory Chemicals. US Environmental Protection Agency, Substance Registry System, U.S. EPA's Office of Pollution Prevention and Toxics. Washington, DC. 2005. Available from URL: http://www.epa.gov/srs/.
    36) ERG: Emergency Response Guidebook. A Guidebook for First Responders During the Initial Phase of a Dangerous Goods/Hazardous Materials Incident, U.S. Department of Transportation, Research and Special Programs Administration, Washington, DC, 2004.
    37) Elliot CG, Colby TV, & Kelly TM: Charcoal lung. Bronchiolitis obliterans after aspiration of activated charcoal. Chest 1989; 96:672-674.
    38) FDA: Poison treatment drug product for over-the-counter human use; tentative final monograph. FDA: Fed Register 1985; 50:2244-2262.
    39) Finkel AJ: Hamilton and Hardy's Industrial Toxicology, 4th ed, John Wright, PSG Inc, Boston, MA, 1983, pp 252.
    40) Gerarde HW: Toxicology and biochemistry of aliphatic hydrocarbons, Elsevier Publishing Co, New York, NY, 1960, pp 160-199.
    41) Golej J, Boigner H, Burda G, et al: Severe respiratory failure following charcoal application in a toddler. Resuscitation 2001; 49:315-318.
    42) Graff GR, Stark J, & Berkenbosch JW: Chronic lung disease after activated charcoal aspiration. Pediatrics 2002; 109:959-961.
    43) Guenther Skokan E, Junkins EP, & Corneli HM: Taste test: children rate flavoring agents used with activated charcoal. Arch Pediatr Adolesc Med 2001; 155:683-686.
    44) HSDB : Hazardous Substances Data Bank. National Library of Medicine. Bethesda, MD (Internet Version). Edition expires 1999; provided by Truven Health Analytics Inc., Greenwood Village, CO.
    45) HSDB : Hazardous Substances Data Bank. National Library of Medicine. Bethesda, MD (Internet Version). Edition expires 2002; provided by Truven Health Analytics Inc., Greenwood Village, CO.
    46) Haas CF: Mechanical ventilation with lung protective strategies: what works?. Crit Care Clin 2011; 27(3):469-486.
    47) Harris CR & Filandrinos D: Accidental administration of activated charcoal into the lung: aspiration by proxy. Ann Emerg Med 1993; 22:1470-1473.
    48) Hathaway GJ, Proctor NH, & Hughes JP: Chemical Hazards of the Workplace, 4th ed, Van Nostrand Reinhold Company, New York, NY, 1996.
    49) IARC Working Group on the Evaluation of Carcinogenic Risks to Humans : IARC Monographs on the Evaluation of Carcinogenic Risks to Humans: 1,3-Butadiene, Ethylene Oxide and Vinyl Halides (Vinyl Fluoride, Vinyl Chloride and Vinyl Bromide), 97, International Agency for Research on Cancer, Lyon, France, 2008.
    50) IARC Working Group on the Evaluation of Carcinogenic Risks to Humans : IARC Monographs on the Evaluation of Carcinogenic Risks to Humans: Formaldehyde, 2-Butoxyethanol and 1-tert-Butoxypropan-2-ol, 88, International Agency for Research on Cancer, Lyon, France, 2006.
    51) IARC Working Group on the Evaluation of Carcinogenic Risks to Humans : IARC Monographs on the Evaluation of Carcinogenic Risks to Humans: Household Use of Solid Fuels and High-temperature Frying, 95, International Agency for Research on Cancer, Lyon, France, 2010a.
    52) IARC Working Group on the Evaluation of Carcinogenic Risks to Humans : IARC Monographs on the Evaluation of Carcinogenic Risks to Humans: Smokeless Tobacco and Some Tobacco-specific N-Nitrosamines, 89, International Agency for Research on Cancer, Lyon, France, 2007.
    53) IARC Working Group on the Evaluation of Carcinogenic Risks to Humans : IARC Monographs on the Evaluation of Carcinogenic Risks to Humans: Some Non-heterocyclic Polycyclic Aromatic Hydrocarbons and Some Related Exposures, 92, International Agency for Research on Cancer, Lyon, France, 2010.
    54) IARC: List of all agents, mixtures and exposures evaluated to date - IARC Monographs: Overall Evaluations of Carcinogenicity to Humans, Volumes 1-88, 1972-PRESENT. World Health Organization, International Agency for Research on Cancer. Lyon, FranceAvailable from URL: http://monographs.iarc.fr/monoeval/crthall.html. As accessed Oct 07, 2004.
    55) ICAO: Technical Instructions for the Safe Transport of Dangerous Goods by Air, 2003-2004. International Civil Aviation Organization, Montreal, Quebec, Canada, 2002.
    56) ITI: Toxic and Hazardous Industrial Chemicals Safety Manual, The International Technical Information Institute, Tokyo, Japan, 1985, pp 315-316.
    57) International Agency for Research on Cancer (IARC): IARC monographs on the evaluation of carcinogenic risks to humans: list of classifications, volumes 1-116. International Agency for Research on Cancer (IARC). Lyon, France. 2016. Available from URL: http://monographs.iarc.fr/ENG/Classification/latest_classif.php. As accessed 2016-08-24.
    58) International Agency for Research on Cancer: IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. World Health Organization. Geneva, Switzerland. 2015. Available from URL: http://monographs.iarc.fr/ENG/Classification/. As accessed 2015-08-06.
    59) Ip M, Wong K-L, & Wong K-F: Lung injury in dimethyl sulfate poisoning. J Occup Med 1989; 31:141-143.
    60) Janik-Spiechowicz E, Wyszynska K, & Dziubaltowska E: Genotoxicity evaluation of trimethylbenzenes. Mutat Res 1998; 412:299-305.
    61) Jarnberg J, Johanson G, & Lof A: Toxicokinetics of inhaled trimethylbenzenes in man. Toxicol Appl Pharmacol 1996; 140:281-288.
    62) Jarnberg J, Stahlbom B, & Johanson G: Urinary excretion of dimethylhippuric acids in humans after exposure to trimethylbenzenes. Internat Arch Occup Environ Health 1997; 69:491-497.
    63) Kollef MH & Schuster DP: The acute respiratory distress syndrome. N Engl J Med 1995; 332:27-37.
    64) Korsak Z, Rydzynski K, & Jajte J: Respiratory irritative effects of trimethylbenzenes: an experimental study. Internat J Occup Med Environ Health 1997; 10:303-311.
    65) Kostrewski P & Wiaderna-Brycht A: Kinetics of elimination of mesitylene and 3,5-dimethylbenzoic acid after experimental human exposure. Toxicol Lett 1995; 77:259-264.
    66) Kostrzewski P, Wiaderna-Brycht A, & Czerski B: Biological monitoring of experimental exposure to trimethylbenzene. Sci Total Environ 1997; 199:73-81.
    67) Laham S & Potvin M: Identification and determination of mesitylene acidic metabolites in rabbit urine. Toxicol Environ Chem 1989; 24:57-69.
    68) Laham S: Mesitylene, in: Snyder R (Ed), Ethyl Browning's Toxicity and Metabolism of Industrial Solvents, 2nd ed, Elsevier, New York, NY, 1987, pp 121-128.
    69) Lewis RJ: Hawley's Condensed Chemical Dictionary, 13th ed, Van Nstrand Reinhold Co, New York, NY, 2001.
    70) Lewis RJ: Sax's Dangerous Properties of Industrial Materials, 10th ed, Van Nostrand Reinhold Company, New York, NY, 2000.
    71) Lewis RJ: Sax's Dangerous Properties of Industrial Materials, 9th ed, Van Nostrand Reinhold Co, New York, NY, 1996.
    72) Maggart M & Stewart S: The mechanisms and management of noncardiogenic pulmonary edema following cardiopulmonary bypass. Ann Thorac Surg 1987; 43:231-236.
    73) NFPA: Fire Protection Guide to Hazardous Materials, 13th ed, National Fire Protection Association, Quincy, MA, 2002a.
    74) NFPA: Fire Protection Guide to Hazardous Materials, 13th ed., National Fire Protection Association, Quincy, MA, 2002.
    75) NHLBI ARDS Network: Mechanical ventilation protocol summary. Massachusetts General Hospital. Boston, MA. 2008. Available from URL: http://www.ardsnet.org/system/files/6mlcardsmall_2008update_final_JULY2008.pdf. As accessed 2013-08-07.
    76) NIOSH : Pocket Guide to Chemical Hazards. National Institute for Occupational Safety and Health. Cincinnati, OH (Internet Version). Edition expires 2002; provided by Truven Health Analytics Inc., Greenwood Village, CO.
    77) NRC: Acute Exposure Guideline Levels for Selected Airborne Chemicals - Volume 1, Subcommittee on Acute Exposure Guideline Levels, Committee on Toxicology, Board on Environmental Studies and Toxicology, Commission of Life Sciences, National Research Council. National Academy Press, Washington, DC, 2001.
    78) NRC: Acute Exposure Guideline Levels for Selected Airborne Chemicals - Volume 2, Subcommittee on Acute Exposure Guideline Levels, Committee on Toxicology, Board on Environmental Studies and Toxicology, Commission of Life Sciences, National Research Council. National Academy Press, Washington, DC, 2002.
    79) NRC: Acute Exposure Guideline Levels for Selected Airborne Chemicals - Volume 3, Subcommittee on Acute Exposure Guideline Levels, Committee on Toxicology, Board on Environmental Studies and Toxicology, Commission of Life Sciences, National Research Council. National Academy Press, Washington, DC, 2003.
    80) NRC: Acute Exposure Guideline Levels for Selected Airborne Chemicals - Volume 4, Subcommittee on Acute Exposure Guideline Levels, Committee on Toxicology, Board on Environmental Studies and Toxicology, Commission of Life Sciences, National Research Council. National Academy Press, Washington, DC, 2004.
    81) Naradzay J & Barish RA: Approach to ophthalmologic emergencies. Med Clin North Am 2006; 90(2):305-328.
    82) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for 1,2,3-Trimethylbenzene (Proposed). United States Environmental Protection Agency. Washington, DC. 2006k. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d68a&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    83) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for 1,2,4-Trimethylbenzene (Proposed). United States Environmental Protection Agency. Washington, DC. 2006m. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d68a&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    84) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for 1,2-Butylene Oxide (Proposed). United States Environmental Protection Agency. Washington, DC. 2008d. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648083cdbb&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    85) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for 1,2-Dibromoethane (Proposed). United States Environmental Protection Agency. Washington, DC. 2007g. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064802796db&disposition=attachment&contentType=pdf. As accessed 2010-08-18.
    86) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for 1,3,5-Trimethylbenzene (Proposed). United States Environmental Protection Agency. Washington, DC. 2006l. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d68a&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    87) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for 2-Ethylhexyl Chloroformate (Proposed). United States Environmental Protection Agency. Washington, DC. 2007b. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648037904e&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    88) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Acrylonitrile (Proposed). United States Environmental Protection Agency. Washington, DC. 2007c. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648028e6a3&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    89) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Adamsite (Proposed). United States Environmental Protection Agency. Washington, DC. 2007h. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020fd29&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    90) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Agent BZ (3-quinuclidinyl benzilate) (Proposed). United States Environmental Protection Agency. Washington, DC. 2007f. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064803ad507&disposition=attachment&contentType=pdf. As accessed 2010-08-18.
    91) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Allyl Chloride (Proposed). United States Environmental Protection Agency. Washington, DC. 2008. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648039d9ee&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    92) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Aluminum Phosphide (Proposed). United States Environmental Protection Agency. Washington, DC. 2005b. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c5ed&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    93) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Arsenic Trioxide (Proposed). United States Environmental Protection Agency. Washington, DC. 2007m. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480220305&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    94) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Automotive Gasoline Unleaded (Proposed). United States Environmental Protection Agency. Washington, DC. 2009a. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a7cc17&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    95) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Biphenyl (Proposed). United States Environmental Protection Agency. Washington, DC. 2005j. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064801ea1b7&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    96) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Bis-Chloromethyl Ether (BCME) (Proposed). United States Environmental Protection Agency. Washington, DC. 2006n. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648022db11&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    97) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Boron Tribromide (Proposed). United States Environmental Protection Agency. Washington, DC. 2008a. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064803ae1d3&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    98) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Bromine Chloride (Proposed). United States Environmental Protection Agency. Washington, DC. 2007d. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648039732a&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    99) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Bromoacetone (Proposed). United States Environmental Protection Agency. Washington, DC. 2008e. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064809187bf&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    100) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Calcium Phosphide (Proposed). United States Environmental Protection Agency. Washington, DC. 2005d. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c5ed&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    101) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Carbonyl Fluoride (Proposed). United States Environmental Protection Agency. Washington, DC. 2008b. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064803ae328&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    102) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Carbonyl Sulfide (Proposed). United States Environmental Protection Agency. Washington, DC. 2007e. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648037ff26&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    103) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Chlorobenzene (Proposed). United States Environmental Protection Agency. Washington, DC. 2008c. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064803a52bb&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    104) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Cyanogen (Proposed). United States Environmental Protection Agency. Washington, DC. 2008f. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064809187fe&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    105) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Dimethyl Phosphite (Proposed). United States Environmental Protection Agency. Washington, DC. 2009. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a7cbf3&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    106) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Diphenylchloroarsine (Proposed). United States Environmental Protection Agency. Washington, DC. 2007l. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020fd29&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    107) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Ethyl Isocyanate (Proposed). United States Environmental Protection Agency. Washington, DC. 2008h. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648091884e&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    108) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Ethyl Phosphorodichloridate (Proposed). United States Environmental Protection Agency. Washington, DC. 2008i. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480920347&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    109) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Ethylbenzene (Proposed). United States Environmental Protection Agency. Washington, DC. 2008g. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064809203e7&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    110) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Ethyldichloroarsine (Proposed). United States Environmental Protection Agency. Washington, DC. 2007j. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020fd29&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    111) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Germane (Proposed). United States Environmental Protection Agency. Washington, DC. 2008j. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480963906&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    112) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Hexafluoropropylene (Proposed). United States Environmental Protection Agency. Washington, DC. 2006. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064801ea1f5&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    113) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Ketene (Proposed). United States Environmental Protection Agency. Washington, DC. 2007. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020ee7c&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    114) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Magnesium Aluminum Phosphide (Proposed). United States Environmental Protection Agency. Washington, DC. 2005h. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c5ed&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    115) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Magnesium Phosphide (Proposed). United States Environmental Protection Agency. Washington, DC. 2005g. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c5ed&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    116) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Malathion (Proposed). United States Environmental Protection Agency. Washington, DC. 2009k. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064809639df&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    117) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Mercury Vapor (Proposed). United States Environmental Protection Agency. Washington, DC. 2009b. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a8a087&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    118) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Methyl Isothiocyanate (Proposed). United States Environmental Protection Agency. Washington, DC. 2008k. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480963a03&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    119) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Methyl Parathion (Proposed). United States Environmental Protection Agency. Washington, DC. 2008l. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480963a57&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    120) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Methyl tertiary-butyl ether (Proposed). United States Environmental Protection Agency. Washington, DC. 2007a. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064802a4985&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    121) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Methylchlorosilane (Proposed). United States Environmental Protection Agency. Washington, DC. 2005. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c5f4&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    122) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Methyldichloroarsine (Proposed). United States Environmental Protection Agency. Washington, DC. 2007i. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020fd29&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    123) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Methyldichlorosilane (Proposed). United States Environmental Protection Agency. Washington, DC. 2005a. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c646&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    124) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Nitrogen Mustard (HN1 CAS Reg. No. 538-07-8) (Proposed). United States Environmental Protection Agency. Washington, DC. 2006a. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d6cb&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    125) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Nitrogen Mustard (HN2 CAS Reg. No. 51-75-2) (Proposed). United States Environmental Protection Agency. Washington, DC. 2006b. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d6cb&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    126) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Nitrogen Mustard (HN3 CAS Reg. No. 555-77-1) (Proposed). United States Environmental Protection Agency. Washington, DC. 2006c. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d6cb&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    127) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Nitrogen Tetroxide (Proposed). United States Environmental Protection Agency. Washington, DC. 2008n. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648091855b&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    128) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Nitrogen Trifluoride (Proposed). United States Environmental Protection Agency. Washington, DC. 2009l. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480963e0c&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    129) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Parathion (Proposed). United States Environmental Protection Agency. Washington, DC. 2008o. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480963e32&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    130) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Perchloryl Fluoride (Proposed). United States Environmental Protection Agency. Washington, DC. 2009c. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a7e268&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    131) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Perfluoroisobutylene (Proposed). United States Environmental Protection Agency. Washington, DC. 2009d. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a7e26a&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    132) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Phenyl Isocyanate (Proposed). United States Environmental Protection Agency. Washington, DC. 2008p. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648096dd58&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    133) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Phenyl Mercaptan (Proposed). United States Environmental Protection Agency. Washington, DC. 2006d. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020cc0c&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    134) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Phenyldichloroarsine (Proposed). United States Environmental Protection Agency. Washington, DC. 2007k. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020fd29&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    135) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Phorate (Proposed). United States Environmental Protection Agency. Washington, DC. 2008q. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648096dcc8&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    136) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Phosgene (Draft-Revised). United States Environmental Protection Agency. Washington, DC. 2009e. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a8a08a&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    137) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Phosgene Oxime (Proposed). United States Environmental Protection Agency. Washington, DC. 2009f. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a7e26d&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    138) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Potassium Cyanide (Proposed). United States Environmental Protection Agency. Washington, DC. 2009g. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a7cbb9&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    139) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Potassium Phosphide (Proposed). United States Environmental Protection Agency. Washington, DC. 2005c. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c5ed&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    140) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Propargyl Alcohol (Proposed). United States Environmental Protection Agency. Washington, DC. 2006e. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020ec91&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    141) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Selenium Hexafluoride (Proposed). United States Environmental Protection Agency. Washington, DC. 2006f. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020ec55&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    142) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Silane (Proposed). United States Environmental Protection Agency. Washington, DC. 2006g. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d523&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    143) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Sodium Cyanide (Proposed). United States Environmental Protection Agency. Washington, DC. 2009h. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a7cbb9&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    144) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Sodium Phosphide (Proposed). United States Environmental Protection Agency. Washington, DC. 2005i. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c5ed&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    145) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Strontium Phosphide (Proposed). United States Environmental Protection Agency. Washington, DC. 2005f. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c5ed&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    146) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Sulfuryl Chloride (Proposed). United States Environmental Protection Agency. Washington, DC. 2006h. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020ec7a&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    147) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Tear Gas (Proposed). United States Environmental Protection Agency. Washington, DC. 2008s. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648096e551&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    148) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Tellurium Hexafluoride (Proposed). United States Environmental Protection Agency. Washington, DC. 2009i. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a7e2a1&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    149) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Tert-Octyl Mercaptan (Proposed). United States Environmental Protection Agency. Washington, DC. 2008r. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648096e5c7&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    150) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Tetramethoxysilane (Proposed). United States Environmental Protection Agency. Washington, DC. 2006j. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d632&disposition=attachment&contentType=pdf. As accessed 2010-08-17.
    151) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Trimethoxysilane (Proposed). United States Environmental Protection Agency. Washington, DC. 2006i. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d632&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    152) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Trimethyl Phosphite (Proposed). United States Environmental Protection Agency. Washington, DC. 2009j. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a7d608&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    153) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Trimethylacetyl Chloride (Proposed). United States Environmental Protection Agency. Washington, DC. 2008t. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648096e5cc&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    154) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Zinc Phosphide (Proposed). United States Environmental Protection Agency. Washington, DC. 2005e. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c5ed&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    155) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for n-Butyl Isocyanate (Proposed). United States Environmental Protection Agency. Washington, DC. 2008m. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064808f9591&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    156) National Heart,Lung,and Blood Institute: Expert panel report 3: guidelines for the diagnosis and management of asthma. National Heart,Lung,and Blood Institute. Bethesda, MD. 2007. Available from URL: http://www.nhlbi.nih.gov/guidelines/asthma/asthgdln.pdf.
    157) National Institute for Occupational Safety and Health: NIOSH Pocket Guide to Chemical Hazards, U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, Cincinnati, OH, 2007.
    158) National Research Council : Acute exposure guideline levels for selected airborne chemicals, 5, National Academies Press, Washington, DC, 2007.
    159) National Research Council: Acute exposure guideline levels for selected airborne chemicals, 6, National Academies Press, Washington, DC, 2008.
    160) National Research Council: Acute exposure guideline levels for selected airborne chemicals, 7, National Academies Press, Washington, DC, 2009.
    161) National Research Council: Acute exposure guideline levels for selected airborne chemicals, 8, National Academies Press, Washington, DC, 2010.
    162) None Listed: Position paper: cathartics. J Toxicol Clin Toxicol 2004; 42(3):243-253.
    163) Peate WF: Work-related eye injuries and illnesses. Am Fam Physician 2007; 75(7):1017-1022.
    164) Plunkett ER: Handbook of Industrial Toxicology, Chemical Publishing Co, Inc, New York, NY, 1976, pp 423-424.
    165) Pohanish RP & Greene SA: Rapid Guide to Chemical Incompatibilities, Van Nostrand Reinhold Company, New York, NY, 1997.
    166) Pohanish RP: Sittig's Handbook of Toxic and Hazardous Chemicals and Carcinogens, 4th ed, Noyes Publications/William Andrew Publishing, Norwich, NY, 2002.
    167) Pollack MM, Dunbar BS, & Holbrook PR: Aspiration of activated charcoal and gastric contents. Ann Emerg Med 1981; 10:528-529.
    168) RTECS : Registry of Toxic Effects of Chemical Substances. National Institute for Occupational Safety and Health. Cincinnati, OH (Internet Version). Edition expires 2002; provided by Truven Health Analytics Inc., Greenwood Village, CO.
    169) Rau NR, Nagaraj MV, Prakash PS, et al: Fatal pulmonary aspiration of oral activated charcoal. Br Med J 1988; 297:918-919.
    170) Sittig M: Handbook of Toxic and Hazardous Chemicals and Carcinogens, 3rd ed, Noyes Publications, Park Ridge, NJ, 1991.
    171) Spiller HA & Rogers GC: Evaluation of administration of activated charcoal in the home. Pediatrics 2002; 108:E100.
    172) Stahlbom B, Jarnberg J, & Soderkvist P: Determination of dimethylhippuric acid isomers in urine by high performance liquid chromatography. Internat Arch Occup Environ Health 1997; 69:147-150.
    173) Stentoft J: The toxicity of cytarabine. Drug Saf 1990; 5:7-27.
    174) Stolbach A & Hoffman RS: Respiratory Principles. In: Nelson LS, Hoffman RS, Lewin NA, et al, eds. Goldfrank's Toxicologic Emergencies, 9th ed. McGraw Hill Medical, New York, NY, 2011.
    175) Thakore S & Murphy N: The potential role of prehospital administration of activated charcoal. Emerg Med J 2002; 19:63-65.
    176) U.S. Department of Energy, Office of Emergency Management: Protective Action Criteria (PAC) with AEGLs, ERPGs, & TEELs: Rev. 26 for chemicals of concern. U.S. Department of Energy, Office of Emergency Management. Washington, DC. 2010. Available from URL: http://www.hss.doe.gov/HealthSafety/WSHP/Chem_Safety/teel.html. As accessed 2011-06-27.
    177) U.S. Department of Health and Human Services, Public Health Service, National Toxicology Project : 11th Report on Carcinogens. U.S. Department of Health and Human Services, Public Health Service, National Toxicology Program. Washington, DC. 2005. Available from URL: http://ntp.niehs.nih.gov/INDEXA5E1.HTM?objectid=32BA9724-F1F6-975E-7FCE50709CB4C932. As accessed 2011-06-27.
    178) U.S. Environmental Protection Agency: Discarded commercial chemical products, off-specification species, container residues, and spill residues thereof. Environmental Protection Agency's (EPA) Resource Conservation and Recovery Act (RCRA); List of hazardous substances and reportable quantities 2010b; 40CFR(261.33, e-f):77-.
    179) U.S. Environmental Protection Agency: Integrated Risk Information System (IRIS). U.S. Environmental Protection Agency. Washington, DC. 2011. Available from URL: http://cfpub.epa.gov/ncea/iris/index.cfm?fuseaction=iris.showSubstanceList&list_type=date. As accessed 2011-06-21.
    180) U.S. Environmental Protection Agency: List of Radionuclides. U.S. Environmental Protection Agency. Washington, DC. 2010a. Available from URL: http://www.gpo.gov/fdsys/pkg/CFR-2010-title40-vol27/pdf/CFR-2010-title40-vol27-sec302-4.pdf. As accessed 2011-06-17.
    181) U.S. Environmental Protection Agency: List of hazardous substances and reportable quantities. U.S. Environmental Protection Agency. Washington, DC. 2010. Available from URL: http://www.gpo.gov/fdsys/pkg/CFR-2010-title40-vol27/pdf/CFR-2010-title40-vol27-sec302-4.pdf. As accessed 2011-06-17.
    182) U.S. Environmental Protection Agency: The list of extremely hazardous substances and their threshold planning quantities (CAS Number Order). U.S. Environmental Protection Agency. Washington, DC. 2010c. Available from URL: http://www.gpo.gov/fdsys/pkg/CFR-2010-title40-vol27/pdf/CFR-2010-title40-vol27-part355.pdf. As accessed 2011-06-17.
    183) U.S. Occupational Safety and Health Administration: Part 1910 - Occupational safety and health standards (continued) Occupational Safety, and Health Administration's (OSHA) list of highly hazardous chemicals, toxics and reactives. Subpart Z - toxic and hazardous substances. CFR 2010 2010; Vol6(SEC1910):7-.
    184) U.S. Occupational Safety, and Health Administration (OSHA): Process safety management of highly hazardous chemicals. 29 CFR 2010 2010; 29(1910.119):348-.
    185) United States Environmental Protection Agency Office of Pollution Prevention and Toxics: Acute Exposure Guideline Levels (AEGLs) for Vinyl Acetate (Proposed). United States Environmental Protection Agency. Washington, DC. 2006. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d6af&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    186) Vale JA, Kulig K, American Academy of Clinical Toxicology, et al: Position paper: Gastric lavage. J Toxicol Clin Toxicol 2004; 42:933-943.
    187) Vale JA: Position Statement: gastric lavage. American Academy of Clinical Toxicology; European Association of Poisons Centres and Clinical Toxicologists. J Toxicol Clin Toxicol 1997; 35:711-719.
    188) Willson DF, Truwit JD, Conaway MR, et al: The adult calfactant in acute respiratory distress syndrome (CARDS) trial. Chest 2015; 148(2):356-364.
    189) Wilson DF, Thomas NJ, Markovitz BP, et al: Effect of exogenous surfactant (calfactant) in pediatric acute lung injury. A randomized controlled trial. JAMA 2005; 293:470-476.
    190) Zitnik RJ & Cooper JA: Pulmonary disease due to antirheumatic agents. Clin Chest Med 1990; 11:139-150.