MOBILE VIEW  | 

ALISKIREN

Classification   |    Detailed evidence-based information

Therapeutic Toxic Class

    A) Aliskiren is a nonpeptide, potent renin inhibitor.

Specific Substances

    1) Aliskirene
    2) Aliskireno
    3) Aliskirenum
    4) SPP-100
    5) Aliskiren hemifumarate
    6) CAS 173334-57-1
    1.2.1) MOLECULAR FORMULA
    1) C30-H53-N3-O6.0.5C4-H4-O4 (Prod Info VALTURNA(R) oral tablets, 2009; Prod Info TEKTURNA(R) oral tablets, 2007)

Available Forms Sources

    A) FORMS
    1) Aliskiren is available in the US as a light-pink, biconvex unscored round tablet containing 150 mg of aliskiren, and as a light-red biconvex ovaloid tablet containing 300 mg of aliskiren (Prod Info TEKTURNA(R) oral tablets, 2007).
    B) USES
    1) Aliskiren is used alone or in combination with other agents to treat hypertension (Prod Info TEKTURNA(R) oral tablets, 2007).

Life Support

    A) This overview assumes that basic life support measures have been instituted.

Clinical Effects

    0.2.1) SUMMARY OF EXPOSURE
    A) USES: Aliskiren is used alone or in combination with other agents to treat hypertension.
    B) PHARMACOLOGY: Aliskiren directly inhibits renin which decreases plasma renin activity (PRA) and inhibits the conversion of angiotensinogen to angiotensin I (Ang I). Unlike angiotensin converting enzyme (ACE) inhibitors and angiotensin II receptor blockers (ARBs) which indirectly increase levels of PRA, aliskiren reduces PRA, Ang I, and Angiotensin II (Ang II) by directly inhibiting renin. These reductions occur whether or not aliskiren is used as monotherapy or concomitantly with other antihypertensive agents. It is unknown if aliskiren has an effect on other renin-angiotensin-aldosterone system (RAAS) components.
    C) EPIDEMIOLOGY: Overdose is rare.
    D) WITH THERAPEUTIC USE
    1) Aliskiren is generally well tolerated by most patients. Adverse effects reported with aliskiren therapy include hypotension (rare), diarrhea, abdominal pain, dyspepsia, gastrointestinal reflux disease, dizziness, headache, and decreased hemoglobin and hematocrit. Most symptoms were dose-related, mild, and rarely led to discontinuation of therapy.
    E) WITH POISONING/EXPOSURE
    1) Overdose effects are anticipated to be an extension of adverse effects following therapeutic doses. The main effect expected with aliskiren overdose would be hypotension.
    0.2.20) REPRODUCTIVE
    A) Aliskiren, aliskiren/amlodipine, aliskiren/amlodipine/hydrochlorothiazide, and aliskiren/hydrochlorothiazide are classified as FDA pregnancy category D. Drugs acting directly on the renin-angiotensin system can cause fetal or neonatal injury or death when used during the second or third trimesters of pregnancy. Oligohydramnios can also occur and may be associated with fetal lung hypoplasia and skeletal deformations. Potential fetal effects include skull hypoplasia, anuria, hypotension, renal failure, and death. Aliskiren is excreted into the milk of lactating rats.

Laboratory Monitoring

    A) Plasma concentrations are not readily available or clinically useful in the management of overdose.
    B) Monitor vital signs after significant overdose.
    C) Monitor serum electrolytes in patients with significant vomiting and/or diarrhea.

Treatment Overview

    0.4.2) ORAL/PARENTERAL EXPOSURE
    A) MANAGEMENT OF MILD TO MODERATE TOXICITY
    1) Treatment is symptomatic and supportive. Manage mild hypotension with IV fluids.
    B) MANAGEMENT OF SEVERE TOXICITY
    1) Treatment is symptomatic and supportive. Treat severe hypotension with IV 0.9% NaCl at 10 to 20 mL/kg. Add dopamine or norepinephrine if unresponsive to fluids. Correct any significant serum electrolyte abnormalities in patients with severe vomiting and/or diarrhea.
    C) DECONTAMINATION
    1) PREHOSPITAL: Consider activated charcoal if the overdose is recent, the patient is not vomiting, and is able to maintain airway.
    2) HOSPITAL: Consider activated charcoal if the overdose is recent, the patient is not vomiting, and is able to maintain airway.
    D) AIRWAY MANAGEMENT
    1) Airway management is very unlikely to be necessary unless more toxic agents are involved. Ensure adequate ventilation and perform endotracheal intubation early in patients with hemodynamic instability.
    E) ANTIDOTE
    1) None.
    F) ENHANCED ELIMINATION
    1) Aliskiren is moderately bound to plasma proteins (49.5%) and has a volume of distribution of 135 L. Hemodialysis is unlikely to be useful in overdose.
    G) PATIENT DISPOSITION
    1) HOME CRITERIA: A patient with an inadvertent exposure, that remains asymptomatic can be managed at home.
    2) OBSERVATION CRITERIA: Patients who are symptomatic and patients with deliberate overdose should be observed with frequent monitoring of vital signs. Patients that remain asymptomatic can be discharged.
    3) ADMISSION CRITERIA: Patients who remain symptomatic despite treatment should be admitted.
    4) CONSULT CRITERIA: Consult a local poison center or medical toxicologist for assistance in managing patients with severe toxicity or in whom the diagnosis is not clear.
    H) PITFALLS
    1) When managing a suspected overdose, the possibility of multidrug involvement should be considered. Symptoms of overdose are similar to reported side effects of the medication.
    I) PHARMACOKINETICS
    1) Tmax: Within 1 to 3 hours. Aliskiren is poorly absorbed. Bioavailability is about 2.5%. Protein binding: 49.5%. Vd: 135 liters. Renal excretion: Approximately 25% of the absorbed dose appears unchanged in the urine. Elimination half-life: Between 20 and 45 hours.
    J) DIFFERENTIAL DIAGNOSIS
    1) Includes other agents that may cause hypotension.

Range Of Toxicity

    A) TOXICITY: A toxic dose has not been established. Doses up to 600 mg/day have been used in adults in therapeutic trials with minimal adverse effects. An accidental ingestion of a single 300 mg aliskiren tablet by a 12-year-old boy (77.2 kg) resulted in a significant drop in systolic and diastolic pressure with the nadir occurring approximately 7 hours post-ingestion; his blood pressure gradually improved.
    B) THERAPEUTIC DOSE: ADULT: Initial, 150 mg orally once daily; may be increased to 300 mg orally once daily if BP is not adequately controlled.

Summary Of Exposure

    A) USES: Aliskiren is used alone or in combination with other agents to treat hypertension.
    B) PHARMACOLOGY: Aliskiren directly inhibits renin which decreases plasma renin activity (PRA) and inhibits the conversion of angiotensinogen to angiotensin I (Ang I). Unlike angiotensin converting enzyme (ACE) inhibitors and angiotensin II receptor blockers (ARBs) which indirectly increase levels of PRA, aliskiren reduces PRA, Ang I, and Angiotensin II (Ang II) by directly inhibiting renin. These reductions occur whether or not aliskiren is used as monotherapy or concomitantly with other antihypertensive agents. It is unknown if aliskiren has an effect on other renin-angiotensin-aldosterone system (RAAS) components.
    C) EPIDEMIOLOGY: Overdose is rare.
    D) WITH THERAPEUTIC USE
    1) Aliskiren is generally well tolerated by most patients. Adverse effects reported with aliskiren therapy include hypotension (rare), diarrhea, abdominal pain, dyspepsia, gastrointestinal reflux disease, dizziness, headache, and decreased hemoglobin and hematocrit. Most symptoms were dose-related, mild, and rarely led to discontinuation of therapy.
    E) WITH POISONING/EXPOSURE
    1) Overdose effects are anticipated to be an extension of adverse effects following therapeutic doses. The main effect expected with aliskiren overdose would be hypotension.

Cardiovascular

    3.5.2) CLINICAL EFFECTS
    A) LOW BLOOD PRESSURE
    1) WITH THERAPEUTIC USE
    a) Aliskiren, alone or in combination with other antihypertensive agents, rarely resulted in an excessive fall in blood pressure in patients with uncomplicated hypertension (0.1% and less than 1%, respectively) (Prod Info Tekturna(R) oral tablets, 2014).
    2) WITH POISONING/EXPOSURE
    a) The main effect expected with aliskiren overdose would be hypotension (Prod Info Tekturna(R) oral tablets, 2014).
    b) CASE REPORT - An accidental ingestion of a single 300 mg aliskiren tablet by a 12-year-old boy (77.2 kg) resulted in a significant drop in systolic and diastolic pressure with the nadir occurring approximately 7 hours post-ingestion (77/47 mm Hg; greater than 45% drop). No symptoms associated with hypotension (dizziness, mental status change, light-headednesss) were reported, and his blood pressure gradually improved (Spiller, 2008).

Respiratory

    3.6.2) CLINICAL EFFECTS
    A) COUGH
    1) WITH THERAPEUTIC USE
    a) Aliskiren was associated with a slight increase in the rate of cough in placebo controlled studies (1.1% vs 0.6% for placebo) (Prod Info Tekturna(R) oral tablets, 2014).
    B) ANGIOEDEMA
    1) WITH THERAPEUTIC USE
    a) Angioedema has been reported with aliskiren use, although the incidence (0.4% to 0.6%) is similar to placebo (Prod Info Tekturna(R) oral tablets, 2014).

Neurologic

    3.7.2) CLINICAL EFFECTS
    A) DIZZINESS
    1) WITH THERAPEUTIC USE
    a) Dizziness was one of the most common adverse effects reported in an 8-week randomized, multicenter, double-blind, placebo-controlled, active-comparator trial (n=652) in patients with mild-to-moderate hypertension treated with aliskiren, irbesartan, or placebo (Gradman et al, 2005).
    B) HEADACHE
    1) WITH THERAPEUTIC USE
    a) Headache was common in both drug (2.4%, 6.2%, and 4.6% for aliskiren 150 mg, 300 mg, and 600 mg, respectively) and placebo (5.3%) groups in an 8-week randomized, multicenter, double-blind, placebo-controlled, active-comparator trial (n=652) in patients with mild-to-moderate hypertension (Gradman et al, 2005).

Gastrointestinal

    3.8.2) CLINICAL EFFECTS
    A) DIARRHEA
    1) WITH THERAPEUTIC USE
    a) In placebo-controlled clinical trials, diarrhea occurred in 2.3% of patients treated with aliskiren 300 mg compared to 1.2% of placebo patients. In women and elderly patients (aged 65 years or greater), increased rates of diarrhea were noted at a dose of 150 mg/day and these rates were comparable to those observed in men and younger patients at doses of 300 mg/day. Overall, diarrhea and other gastrointestinal symptoms were dose-related, mild, and rarely led to discontinuation of therapy (Prod Info Tekturna(R) oral tablets, 2014).
    b) Diarrhea was one of the most common adverse effects reported in an 8-week randomized, multicenter, double-blind, placebo-controlled, active-comparator trial (n=652) in patients with mild-to-moderate hypertension treated with aliskiren, irbesartan, or placebo (Gradman et al, 2005).
    B) ABDOMINAL PAIN
    1) WITH THERAPEUTIC USE
    a) In placebo-controlled clinical trials, abdominal pain occurred in patients treated with aliskiren. However, incidences higher than placebo occurred only at the 600 mg/day dose. Overall, most gastrointestinal symptoms were dose-related, mild, and rarely led to discontinuation of therapy (Prod Info Tekturna(R) oral tablets, 2014).
    C) INDIGESTION
    1) WITH THERAPEUTIC USE
    a) In placebo-controlled clinical trials, dyspepsia occurred in patients treated with aliskiren. However, incidences higher than placebo occurred only at the 600 mg/day dose. Overall, most gastrointestinal symptoms were dose-related, mild, and rarely led to discontinuation of therapy (Prod Info Tekturna(R) oral tablets, 2014).
    D) GASTROESOPHAGEAL REFLUX DISEASE
    1) WITH THERAPEUTIC USE
    a) In placebo-controlled clinical trials, gastroesophageal reflux disease occurred in patients treated with aliskiren. However, most gastrointestinal symptoms were dose-related, mild, and rarely led to discontinuation of therapy (Prod Info Tekturna(R) oral tablets, 2014).

Hematologic

    3.13.2) CLINICAL EFFECTS
    A) DECREASED HEMOGLOBIN
    1) WITH THERAPEUTIC USE
    a) Mean decreases of 0.08 g/dL and 0.16 volume percent in hemoglobin and hematocrit, respectively, occurred with aliskiren therapy. Reductions were dose-related and for the aliskiren 600 mg dose, mean decreases were 0.24 g/dL and 0.79 volume percent for hemoglobin and hematocrit, respectively (Prod Info Tekturna(R) oral tablets, 2014).

Musculoskeletal

    3.15.2) CLINICAL EFFECTS
    A) MUSCULOSKELETAL FINDING
    1) WITH THERAPEUTIC USE
    a) Musculoskeletal findings (not further defined) occurred with aliskiren (6.3%, 9.2%, and 7.7% for aliskiren 150 mg, 300 mg, and 600 mg, respectively) and placebo (3.1%) groups in an 8-week randomized, multicenter, double-blind, placebo-controlled, active-comparator trial (n=652) in patients with mild-to-moderate hypertension (Gradman et al, 2005).
    B) FINDING OF CREATINE KINASE LEVEL
    1) WITH THERAPEUTIC USE
    a) In placebo-controlled clinical trials, increased creatine kinase (greater than 300%) was reported in about 1% of patients treated with aliskiren compared to 0.5% in placebo patients. Three cases led to discontinuation, 1 was diagnosed as subclinical rhabdomyolysis and 1 case as myositis. Renal dysfunction was not observed in any of these cases (Prod Info Tekturna(R) oral tablets, 2014).

Reproductive

    3.20.1) SUMMARY
    A) Aliskiren, aliskiren/amlodipine, aliskiren/amlodipine/hydrochlorothiazide, and aliskiren/hydrochlorothiazide are classified as FDA pregnancy category D. Drugs acting directly on the renin-angiotensin system can cause fetal or neonatal injury or death when used during the second or third trimesters of pregnancy. Oligohydramnios can also occur and may be associated with fetal lung hypoplasia and skeletal deformations. Potential fetal effects include skull hypoplasia, anuria, hypotension, renal failure, and death. Aliskiren is excreted into the milk of lactating rats.
    3.20.2) TERATOGENICITY
    A) ANIMAL STUDIES
    1) RATS AND RABBITS: No teratogenic effects were observed in rats and rabbits administered oral 600 mg/kg/day and 100 mg/kg/day doses (20 and 7 times the maximum recommended human dose, based on body surface area), respectively, during organogenesis. Aliskiren was present in the placenta, amniotic fluid, and fetuses of pregnant rabbits (Prod Info Amturnide(TM) oral tablets, 2014; Prod Info Tekamlo(TM) oral tablets, 2014; Prod Info Tekturna HCT(R) oral tablets, 2014).
    3.20.3) EFFECTS IN PREGNANCY
    A) PREGNANCY CATEGORY
    1) The manufacturer has classified aliskiren as FDA pregnancy category D (Prod Info Tekturna(R) oral tablets, 2014).
    2) The manufacturer has classified aliskiren/amlodipine as FDA pregnancy category D (Prod Info Tekamlo(TM) oral tablets, 2014).
    3) The manufacturer has classified aliskiren/amlodipine/hydrochlorothiazide as FDA pregnancy category D (Prod Info Amturnide(TM) oral tablets, 2014).
    4) The manufacturer has classified aliskiren/hydrochlorothiazide as FDA pregnancy category D (Prod Info Tekturna HCT(R) oral tablets, 2014).
    B) FETAL INJURY
    1) Drugs acting directly on the renin-angiotensin system can cause fetal or neonatal injury or death when used during the second or third trimesters of pregnancy. Oligohydramnios can also occur and may be associated with fetal lung hypoplasia and skeletal deformations. Potential fetal effects include skull hypoplasia, anuria, hypotension, renal failure, and death (Prod Info Tekturna(R) oral tablets, 2014; Prod Info Tekamlo(TM) oral tablets, 2014; Prod Info Amturnide(TM) oral tablets, 2014; Prod Info Tekturna HCT(R) oral tablets, 2014).
    C) ANIMAL STUDIES
    1) RATS AND RABBITS: Decreased fetal birth weight was observed in rabbits administered 50 mg/kg/day doses (3.2 times the maximum recommended human dose, based on body surface area). Aliskiren was present in the placenta, amniotic fluid, and fetuses of pregnant rabbits (Prod Info Amturnide(TM) oral tablets, 2014; Prod Info Tekamlo(TM) oral tablets, 2014; Prod Info Tekturna HCT(R) oral tablets, 2014).
    3.20.4) EFFECTS DURING BREAST-FEEDING
    A) ANIMAL STUDIES
    1) RATS: Aliskiren has been shown to be excreted in the milk of lactating rats (Prod Info Amturnide(TM) oral tablets, 2014; Prod Info Tekamlo(TM) oral tablets, 2014; Prod Info Tekturna HCT(R) oral tablets, 2014; Prod Info Tekturna(R) oral tablets, 2014).
    3.20.5) FERTILITY
    A) ANIMAL STUDIES
    1) RATS: There was no effect on the fertility of male or female rats following doses of up to 250 mg/kg/day (8 times the maximum recommended human dose of 300 mg/60 kg on a mg/m(2) basis) (Prod Info Amturnide(TM) oral tablets, 2014; Prod Info Tekamlo(TM) oral tablets, 2014; Prod Info Tekturna HCT(R) oral tablets, 2014; Prod Info Tekturna(R) oral tablets, 2014).

Carcinogenicity

    3.21.1) IARC CATEGORY
    A) IARC Carcinogenicity Ratings for CAS173334-57-1 (International Agency for Research on Cancer (IARC), 2016; International Agency for Research on Cancer, 2015; IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, 2010; IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, 2010a; IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, 2008; IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, 2007; IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, 2006; IARC, 2004):
    1) Not Listed
    3.21.4) ANIMAL STUDIES
    A) TUMOR INCIDENCE
    1) In a 2-year rat study and a 6-month transgenic (rasH2) mouse study, there were no statistically significant increases in tumor incidence associated with exposure to aliskiren at oral doses of up to 1500 mg aliskiren/kg/day. In rats this dose is about 4 times and in mice about 1.5 times the maximum recommended human dose of 300 mg aliskiren/day. Following doses of 750 or greater mg/kg/day in both species, mucosal epithelial hyperplasia (with or without erosion/ulceration) was observed in the lower gastrointestinal tract, with a colonic adenoma observed in one rat and a cecal adenocarcinoma observed in another. Following oral doses of 250 mg/kg/day (the lowest tested dose), as well as at higher doses in 4- and 13-week studies, mucosal hyperplasia in the cecum or colon of rats was also identified (Prod Info TEKTURNA(R) oral tablets, 2007).

Genotoxicity

    A) There was no evidence of genotoxicity in the Ames reverse mutation assay with S. typhimurium and E. coli, the in vitro Chinese hamster ovary cell chromosomal aberration assay, the in vitro Chinese hamster V79 cell gene mutation test and the in vivo mouse bone marrow micronucleus assay (Prod Info TEKTURNA(R) oral tablets, 2007).

Monitoring Parameters Levels

    4.1.1) SUMMARY
    A) Plasma concentrations are not readily available or clinically useful in the management of overdose.
    B) Monitor vital signs after significant overdose.
    C) Monitor serum electrolytes in patients with significant vomiting and/or diarrhea.

Life Support

    A) Support respiratory and cardiovascular function.

Patient Disposition

    6.3.1) DISPOSITION/ORAL EXPOSURE
    6.3.1.1) ADMISSION CRITERIA/ORAL
    A) Patients who remain symptomatic despite treatment should be admitted.
    6.3.1.2) HOME CRITERIA/ORAL
    A) A patient with an inadvertent exposure, that remains asymptomatic can be managed at home.
    6.3.1.3) CONSULT CRITERIA/ORAL
    A) Consult a local poison center or medical toxicologist for assistance in managing patients with severe toxicity or in whom the diagnosis is not clear.
    6.3.1.5) OBSERVATION CRITERIA/ORAL
    A) Patients who are symptomatic and patients with deliberate overdose should be observed with frequent monitoring of vital signs. Patients that remain asymptomatic can be discharged.

Monitoring

    A) Plasma concentrations are not readily available or clinically useful in the management of overdose.
    B) Monitor vital signs after significant overdose.
    C) Monitor serum electrolytes in patients with significant vomiting and/or diarrhea.

Oral Exposure

    6.5.1) PREVENTION OF ABSORPTION/PREHOSPITAL
    A) ACTIVATED CHARCOAL
    1) PREHOSPITAL ACTIVATED CHARCOAL ADMINISTRATION
    a) Consider prehospital administration of activated charcoal as an aqueous slurry in patients with a potentially toxic ingestion who are awake and able to protect their airway. Activated charcoal is most effective when administered within one hour of ingestion. Administration in the prehospital setting has the potential to significantly decrease the time from toxin ingestion to activated charcoal administration, although it has not been shown to affect outcome (Alaspaa et al, 2005; Thakore & Murphy, 2002; Spiller & Rogers, 2002).
    1) In patients who are at risk for the abrupt onset of seizures or mental status depression, activated charcoal should not be administered in the prehospital setting, due to the risk of aspiration in the event of spontaneous emesis.
    2) The addition of flavoring agents (cola drinks, chocolate milk, cherry syrup) to activated charcoal improves the palatability for children and may facilitate successful administration (Guenther Skokan et al, 2001; Dagnone et al, 2002).
    2) CHARCOAL DOSE
    a) Use a minimum of 240 milliliters of water per 30 grams charcoal (FDA, 1985). Optimum dose not established; usual dose is 25 to 100 grams in adults and adolescents; 25 to 50 grams in children aged 1 to 12 years (or 0.5 to 1 gram/kilogram body weight) ; and 0.5 to 1 gram/kilogram in infants up to 1 year old (Chyka et al, 2005).
    1) Routine use of a cathartic with activated charcoal is NOT recommended as there is no evidence that cathartics reduce drug absorption and cathartics are known to cause adverse effects such as nausea, vomiting, abdominal cramps, electrolyte imbalances and occasionally hypotension (None Listed, 2004).
    b) ADVERSE EFFECTS/CONTRAINDICATIONS
    1) Complications: emesis, aspiration (Chyka et al, 2005). Aspiration may be complicated by acute respiratory failure, ARDS, bronchiolitis obliterans or chronic lung disease (Golej et al, 2001; Graff et al, 2002; Pollack et al, 1981; Harris & Filandrinos, 1993; Elliot et al, 1989; Rau et al, 1988; Golej et al, 2001; Graff et al, 2002). Refer to the ACTIVATED CHARCOAL/TREATMENT management for further information.
    2) Contraindications: unprotected airway (increases risk/severity of aspiration) , nonfunctioning gastrointestinal tract, uncontrolled vomiting, and ingestion of most hydrocarbons (Chyka et al, 2005).
    6.5.2) PREVENTION OF ABSORPTION
    A) ACTIVATED CHARCOAL
    1) CHARCOAL ADMINISTRATION
    a) Consider administration of activated charcoal after a potentially toxic ingestion (Chyka et al, 2005). Administer charcoal as an aqueous slurry; most effective when administered within one hour of ingestion.
    2) CHARCOAL DOSE
    a) Use a minimum of 240 milliliters of water per 30 grams charcoal (FDA, 1985). Optimum dose not established; usual dose is 25 to 100 grams in adults and adolescents; 25 to 50 grams in children aged 1 to 12 years (or 0.5 to 1 gram/kilogram body weight) ; and 0.5 to 1 gram/kilogram in infants up to 1 year old (Chyka et al, 2005).
    1) Routine use of a cathartic with activated charcoal is NOT recommended as there is no evidence that cathartics reduce drug absorption and cathartics are known to cause adverse effects such as nausea, vomiting, abdominal cramps, electrolyte imbalances and occasionally hypotension (None Listed, 2004).
    b) ADVERSE EFFECTS/CONTRAINDICATIONS
    1) Complications: emesis, aspiration (Chyka et al, 2005). Aspiration may be complicated by acute respiratory failure, ARDS, bronchiolitis obliterans or chronic lung disease (Golej et al, 2001; Graff et al, 2002; Pollack et al, 1981; Harris & Filandrinos, 1993; Elliot et al, 1989; Rau et al, 1988; Golej et al, 2001; Graff et al, 2002). Refer to the ACTIVATED CHARCOAL/TREATMENT management for further information.
    2) Contraindications: unprotected airway (increases risk/severity of aspiration) , nonfunctioning gastrointestinal tract, uncontrolled vomiting, and ingestion of most hydrocarbons (Chyka et al, 2005).
    6.5.3) TREATMENT
    A) SUPPORT
    1) MANAGEMENT OF MILD TO MODERATE TOXICITY
    a) Treatment is symptomatic and supportive. Manage mild hypotension with IV fluids.
    2) MANAGEMENT OF SEVERE TOXICITY
    a) Treatment is symptomatic and supportive. Treat severe hypotension with IV 0.9% NaCl at 10 to 20 mL/kg. Add dopamine or norepinephrine if unresponsive to fluids. Correct any significant serum electrolyte abnormalities in patients with severe vomiting and/or diarrhea.
    B) MONITORING OF PATIENT
    1) Plasma concentrations are not readily available or clinically useful in the management of overdose.
    2) Monitor vital signs after significant overdose.
    3) Monitor serum electrolytes in patients with significant vomiting and/or diarrhea.
    C) HYPOTENSIVE EPISODE
    1) SUMMARY
    a) Infuse 10 to 20 milliliters/kilogram of isotonic fluid and keep the patient supine. If hypotension persists, administer dopamine or norepinephrine. Consider central venous pressure monitoring to guide further fluid therapy.
    2) DOPAMINE
    a) DOSE: Begin at 5 micrograms per kilogram per minute progressing in 5 micrograms per kilogram per minute increments as needed (Prod Info dopamine hcl, 5% dextrose IV injection, 2004). If hypotension persists, dopamine may need to be discontinued and a more potent vasoconstrictor (eg, norepinephrine) should be considered (Prod Info dopamine hcl, 5% dextrose IV injection, 2004).
    b) CAUTION: If ventricular dysrhythmias occur, decrease rate of administration (Prod Info dopamine hcl, 5% dextrose IV injection, 2004). Extravasation may cause local tissue necrosis, administration through a central venous catheter is preferred (Prod Info dopamine hcl, 5% dextrose IV injection, 2004).
    3) NOREPINEPHRINE
    a) PREPARATION: 4 milligrams (1 amp) added to 1000 milliliters of diluent provides a concentration of 4 micrograms/milliliter of norepinephrine base. Norepinephrine bitartrate should be mixed in dextrose solutions (dextrose 5% in water, dextrose 5% in saline) since dextrose-containing solutions protect against excessive oxidation and subsequent potency loss. Administration in saline alone is not recommended (Prod Info norepinephrine bitartrate injection, 2005).
    b) DOSE
    1) ADULT: Dose range: 0.1 to 0.5 microgram/kilogram/minute (eg, 70 kg adult 7 to 35 mcg/min); titrate to maintain adequate blood pressure (Peberdy et al, 2010).
    2) CHILD: Dose range: 0.1 to 2 micrograms/kilogram/minute; titrate to maintain adequate blood pressure (Kleinman et al, 2010).
    3) CAUTION: Extravasation may cause local tissue ischemia, administration by central venous catheter is advised (Peberdy et al, 2010).

Enhanced Elimination

    A) HEMODIALYSIS
    1) There is no information regarding the effectiveness of hemodialysis or hemoperfusion for the removal of aliskiren from plasma. Aliskiren is moderately bound to plasma proteins (49.5%) and has a volume of distribution of 135 L. Hemodialysis is unlikely to be useful after overdose.

Summary

    A) TOXICITY: A toxic dose has not been established. Doses up to 600 mg/day have been used in adults in therapeutic trials with minimal adverse effects. An accidental ingestion of a single 300 mg aliskiren tablet by a 12-year-old boy (77.2 kg) resulted in a significant drop in systolic and diastolic pressure with the nadir occurring approximately 7 hours post-ingestion; his blood pressure gradually improved.
    B) THERAPEUTIC DOSE: ADULT: Initial, 150 mg orally once daily; may be increased to 300 mg orally once daily if BP is not adequately controlled.

Therapeutic Dose

    7.2.1) ADULT
    A) The usual recommended starting dose of aliskiren in the treatment of hypertension is 150 milligrams (mg) orally once daily. The dose may be increased to 300 mg once daily if the blood pressure is not adequately controlled (Prod Info TEKTURNA(R) oral tablets, 2007).
    7.2.2) PEDIATRIC
    A) The safety and efficacy of aliskiren have not been established in pediatric patients (Prod Info TEKTURNA(R) oral tablets, 2007).

Maximum Tolerated Exposure

    A) A toxic dose has not been established. Doses up to 600 mg/day have been used in adults in therapeutic trials with minimal adverse effects (Prod Info Tekturna(R) oral tablets, 2014).
    B) CHILDREN: An accidental ingestion of a single 300 mg aliskiren tablet by a 12-year-old boy (77.2 kg) resulted in a significant drop in systolic and diastolic pressure with the nadir occurring approximately 7 hours post-ingestion (77/47 mm Hg; greater than 45% drop). No symptoms associated with hypotension (dizziness, mental status change, light-headednesss) were reported, and his blood pressure gradually improved (Spiller, 2008).

Serum Plasma Blood Concentrations

    7.5.1) THERAPEUTIC CONCENTRATIONS
    A) THERAPEUTIC CONCENTRATION LEVELS
    1) Steady state blood levels are reached within approximately 7 to 8 days after oral administration (Prod Info TEKTURNA(R) oral tablets, 2007).

Workplace Standards

    A) ACGIH TLV Values for CAS173334-57-1 (American Conference of Governmental Industrial Hygienists, 2010):
    1) Not Listed

    B) NIOSH REL and IDLH Values for CAS173334-57-1 (National Institute for Occupational Safety and Health, 2007):
    1) Not Listed

    C) Carcinogenicity Ratings for CAS173334-57-1 :
    1) ACGIH (American Conference of Governmental Industrial Hygienists, 2010): Not Listed
    2) EPA (U.S. Environmental Protection Agency, 2011): Not Listed
    3) IARC (International Agency for Research on Cancer (IARC), 2016; International Agency for Research on Cancer, 2015; IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, 2010; IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, 2010a; IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, 2008; IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, 2007; IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, 2006; IARC, 2004): Not Listed
    4) NIOSH (National Institute for Occupational Safety and Health, 2007): Not Listed
    5) MAK (DFG, 2002): Not Listed
    6) NTP (U.S. Department of Health and Human Services, Public Health Service, National Toxicology Project ): Not Listed

    D) OSHA PEL Values for CAS173334-57-1 (U.S. Occupational Safety, and Health Administration (OSHA), 2010):
    1) Not Listed

Pharmacologic Mechanism

    A) Aliskiren directly inhibits renin which decreases plasma renin activity (PRA) and inhibits the conversion of angiotensinogen to angiotensin I (Ang I). Unlike angiotensin converting enzyme (ACE) inhibitors and angiotensin II receptor blockers (ARBs) which indirectly increase levels of PRA, aliskiren reduces PRA, Ang I, and Angiotensin II (Ang II) by directly inhibiting renin. These reductions occur whether or not aliskiren is used as monotherapy or concomitantly with other antihypertensive agents. It is unknown if aliskiren has an effect on other renin-angiotensin-aldosterone system (RAAS) components (Prod Info TEKTURNA(R) oral tablets, 2007).

Physical Characteristics

    A) Aliskiren hemifumarate is a white to slightly yellowish crystalline powder, which is highly soluble in water, and soluble in phosphate buffer and n-octanol (Prod Info VALTURNA(R) oral tablets, 2009; Prod Info TEKTURNA(R) oral tablets, 2007).

Molecular Weight

    A) 609.8 (free base - 551.8) (Prod Info VALTURNA(R) oral tablets, 2009; Prod Info TEKTURNA(R) oral tablets, 2007)

General Bibliography

    1) 40 CFR 372.28: Environmental Protection Agency - Toxic Chemical Release Reporting, Community Right-To-Know, Lower thresholds for chemicals of special concern. National Archives and Records Administration (NARA) and the Government Printing Office (GPO). Washington, DC. Final rules current as of Apr 3, 2006.
    2) 40 CFR 372.65: Environmental Protection Agency - Toxic Chemical Release Reporting, Community Right-To-Know, Chemicals and Chemical Categories to which this part applies. National Archives and Records Association (NARA) and the Government Printing Office (GPO), Washington, DC. Final rules current as of Apr 3, 2006.
    3) 49 CFR 172.101 - App. B: Department of Transportation - Table of Hazardous Materials, Appendix B: List of Marine Pollutants. National Archives and Records Administration (NARA) and the Government Printing Office (GPO), Washington, DC. Final rules current as of Aug 29, 2005.
    4) 62 FR 58840: Notice of the National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances - Proposed AEGL Values, Environmental Protection Agency, NAC/AEGL Committee. National Archives and Records Administration (NARA) and the Government Publishing Office (GPO), Washington, DC, 1997.
    5) 65 FR 14186: Notice of the National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances - Proposed AEGL Values, Environmental Protection Agency, NAC/AEGL Committee. National Archives and Records Administration (NARA) and the Government Publishing Office (GPO), Washington, DC, 2000.
    6) 65 FR 39264: Notice of the National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances - Proposed AEGL Values, Environmental Protection Agency, NAC/AEGL Committee. National Archives and Records Administration (NARA) and the Government Publishing Office (GPO), Washington, DC, 2000.
    7) 65 FR 77866: Notice of the National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances - Proposed AEGL Values, Environmental Protection Agency, NAC/AEGL Committee. National Archives and Records Administration (NARA) and the Government Publishing Office (GPO), Washington, DC, 2000.
    8) 66 FR 21940: Notice of the National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances - Proposed AEGL Values, Environmental Protection Agency, NAC/AEGL Committee. National Archives and Records Administration (NARA) and the Government Publishing Office (GPO), Washington, DC, 2001.
    9) 67 FR 7164: Notice of the National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances - Proposed AEGL Values, Environmental Protection Agency, NAC/AEGL Committee. National Archives and Records Administration (NARA) and the Government Publishing Office (GPO), Washington, DC, 2002.
    10) 68 FR 42710: Notice of the National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances - Proposed AEGL Values, Environmental Protection Agency, NAC/AEGL Committee. National Archives and Records Administration (NARA) and the Government Publishing Office (GPO), Washington, DC, 2003.
    11) 69 FR 54144: Notice of the National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances - Proposed AEGL Values, Environmental Protection Agency, NAC/AEGL Committee. National Archives and Records Administration (NARA) and the Government Publishing Office (GPO), Washington, DC, 2004.
    12) AIHA: 2006 Emergency Response Planning Guidelines and Workplace Environmental Exposure Level Guides Handbook, American Industrial Hygiene Association, Fairfax, VA, 2006.
    13) Alaspaa AO, Kuisma MJ, Hoppu K, et al: Out-of-hospital administration of activated charcoal by emergency medical services. Ann Emerg Med 2005; 45:207-12.
    14) Allikmets K: Aliskiren (Speedel). Curr Opin Investig Drugs 2002; 3(10):1479-1482.
    15) American Conference of Governmental Industrial Hygienists : ACGIH 2010 Threshold Limit Values (TLVs(R)) for Chemical Substances and Physical Agents and Biological Exposure Indices (BEIs(R)), American Conference of Governmental Industrial Hygienists, Cincinnati, OH, 2010.
    16) Azizi M, Menard J, Bissery A, et al: Pharmacologic demonstration of the synergistic effects of a combination of the renin inhibitor aliskiren and the AT1 receptor antagonist valsartan on the angiotensin II-renin feedback interruption. J Am Soc Nephrol 2004; 15(12):3126-3133.
    17) Azizi M, Webb R, Nussberger J, et al: Renin inhibition with aliskiren: where are we now, and where are we going?. J Hypertens 2006; 24(2):243-256.
    18) Chyka PA, Seger D, Krenzelok EP, et al: Position paper: Single-dose activated charcoal. Clin Toxicol (Phila) 2005; 43(2):61-87.
    19) DFG: List of MAK and BAT Values 2002, Report No. 38, Deutsche Forschungsgemeinschaft, Commission for the Investigation of Health Hazards of Chemical Compounds in the Work Area, Wiley-VCH, Weinheim, Federal Republic of Germany, 2002.
    20) Dagnone D, Matsui D, & Rieder MJ: Assessment of the palatability of vehicles for activated charcoal in pediatric volunteers. Pediatr Emerg Care 2002; 18:19-21.
    21) Dieterle W, Corynen S, Vaidyanathan S, et al: Pharmacokinetic interactions of the oral renin inhibitor aliskiren with lovastatin, atenolol, celecoxib and cimetidine. Int J Clin Pharmacol Ther 2005; 43(11):527-535.
    22) EPA: Search results for Toxic Substances Control Act (TSCA) Inventory Chemicals. US Environmental Protection Agency, Substance Registry System, U.S. EPA's Office of Pollution Prevention and Toxics. Washington, DC. 2005. Available from URL: http://www.epa.gov/srs/.
    23) Elliot CG, Colby TV, & Kelly TM: Charcoal lung. Bronchiolitis obliterans after aspiration of activated charcoal. Chest 1989; 96:672-674.
    24) FDA: Poison treatment drug product for over-the-counter human use; tentative final monograph. FDA: Fed Register 1985; 50:2244-2262.
    25) Golej J, Boigner H, Burda G, et al: Severe respiratory failure following charcoal application in a toddler. Resuscitation 2001; 49:315-318.
    26) Gradman AH, Schmieder RE, Lins RL, et al: Aliskiren, a novel orally effective renin inhibitor, provides dose-dependent antihypertensive efficacy and placebo-like tolerability in hypertensive patients. Circulation 2005; 111:1012-1018.
    27) Graff GR, Stark J, & Berkenbosch JW: Chronic lung disease after activated charcoal aspiration. Pediatrics 2002; 109:959-961.
    28) Guenther Skokan E, Junkins EP, & Corneli HM: Taste test: children rate flavoring agents used with activated charcoal. Arch Pediatr Adolesc Med 2001; 155:683-686.
    29) Harris CR & Filandrinos D: Accidental administration of activated charcoal into the lung: aspiration by proxy. Ann Emerg Med 1993; 22:1470-1473.
    30) IARC Working Group on the Evaluation of Carcinogenic Risks to Humans : IARC Monographs on the Evaluation of Carcinogenic Risks to Humans: 1,3-Butadiene, Ethylene Oxide and Vinyl Halides (Vinyl Fluoride, Vinyl Chloride and Vinyl Bromide), 97, International Agency for Research on Cancer, Lyon, France, 2008.
    31) IARC Working Group on the Evaluation of Carcinogenic Risks to Humans : IARC Monographs on the Evaluation of Carcinogenic Risks to Humans: Formaldehyde, 2-Butoxyethanol and 1-tert-Butoxypropan-2-ol, 88, International Agency for Research on Cancer, Lyon, France, 2006.
    32) IARC Working Group on the Evaluation of Carcinogenic Risks to Humans : IARC Monographs on the Evaluation of Carcinogenic Risks to Humans: Household Use of Solid Fuels and High-temperature Frying, 95, International Agency for Research on Cancer, Lyon, France, 2010a.
    33) IARC Working Group on the Evaluation of Carcinogenic Risks to Humans : IARC Monographs on the Evaluation of Carcinogenic Risks to Humans: Smokeless Tobacco and Some Tobacco-specific N-Nitrosamines, 89, International Agency for Research on Cancer, Lyon, France, 2007.
    34) IARC Working Group on the Evaluation of Carcinogenic Risks to Humans : IARC Monographs on the Evaluation of Carcinogenic Risks to Humans: Some Non-heterocyclic Polycyclic Aromatic Hydrocarbons and Some Related Exposures, 92, International Agency for Research on Cancer, Lyon, France, 2010.
    35) IARC: List of all agents, mixtures and exposures evaluated to date - IARC Monographs: Overall Evaluations of Carcinogenicity to Humans, Volumes 1-88, 1972-PRESENT. World Health Organization, International Agency for Research on Cancer. Lyon, FranceAvailable from URL: http://monographs.iarc.fr/monoeval/crthall.html. As accessed Oct 07, 2004.
    36) International Agency for Research on Cancer (IARC): IARC monographs on the evaluation of carcinogenic risks to humans: list of classifications, volumes 1-116. International Agency for Research on Cancer (IARC). Lyon, France. 2016. Available from URL: http://monographs.iarc.fr/ENG/Classification/latest_classif.php. As accessed 2016-08-24.
    37) International Agency for Research on Cancer: IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. World Health Organization. Geneva, Switzerland. 2015. Available from URL: http://monographs.iarc.fr/ENG/Classification/. As accessed 2015-08-06.
    38) Kleinman ME, Chameides L, Schexnayder SM, et al: 2010 American Heart Association guidelines for cardiopulmonary resuscitation and emergency cardiovascular care. Part 14: pediatric advanced life support. Circulation 2010; 122(18 Suppl.3):S876-S908.
    39) NFPA: Fire Protection Guide to Hazardous Materials, 13th ed., National Fire Protection Association, Quincy, MA, 2002.
    40) NRC: Acute Exposure Guideline Levels for Selected Airborne Chemicals - Volume 1, Subcommittee on Acute Exposure Guideline Levels, Committee on Toxicology, Board on Environmental Studies and Toxicology, Commission of Life Sciences, National Research Council. National Academy Press, Washington, DC, 2001.
    41) NRC: Acute Exposure Guideline Levels for Selected Airborne Chemicals - Volume 2, Subcommittee on Acute Exposure Guideline Levels, Committee on Toxicology, Board on Environmental Studies and Toxicology, Commission of Life Sciences, National Research Council. National Academy Press, Washington, DC, 2002.
    42) NRC: Acute Exposure Guideline Levels for Selected Airborne Chemicals - Volume 3, Subcommittee on Acute Exposure Guideline Levels, Committee on Toxicology, Board on Environmental Studies and Toxicology, Commission of Life Sciences, National Research Council. National Academy Press, Washington, DC, 2003.
    43) NRC: Acute Exposure Guideline Levels for Selected Airborne Chemicals - Volume 4, Subcommittee on Acute Exposure Guideline Levels, Committee on Toxicology, Board on Environmental Studies and Toxicology, Commission of Life Sciences, National Research Council. National Academy Press, Washington, DC, 2004.
    44) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for 1,2,3-Trimethylbenzene (Proposed). United States Environmental Protection Agency. Washington, DC. 2006k. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d68a&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    45) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for 1,2,4-Trimethylbenzene (Proposed). United States Environmental Protection Agency. Washington, DC. 2006m. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d68a&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    46) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for 1,2-Butylene Oxide (Proposed). United States Environmental Protection Agency. Washington, DC. 2008d. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648083cdbb&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    47) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for 1,2-Dibromoethane (Proposed). United States Environmental Protection Agency. Washington, DC. 2007g. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064802796db&disposition=attachment&contentType=pdf. As accessed 2010-08-18.
    48) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for 1,3,5-Trimethylbenzene (Proposed). United States Environmental Protection Agency. Washington, DC. 2006l. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d68a&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    49) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for 2-Ethylhexyl Chloroformate (Proposed). United States Environmental Protection Agency. Washington, DC. 2007b. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648037904e&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    50) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Acrylonitrile (Proposed). United States Environmental Protection Agency. Washington, DC. 2007c. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648028e6a3&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    51) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Adamsite (Proposed). United States Environmental Protection Agency. Washington, DC. 2007h. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020fd29&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    52) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Agent BZ (3-quinuclidinyl benzilate) (Proposed). United States Environmental Protection Agency. Washington, DC. 2007f. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064803ad507&disposition=attachment&contentType=pdf. As accessed 2010-08-18.
    53) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Allyl Chloride (Proposed). United States Environmental Protection Agency. Washington, DC. 2008. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648039d9ee&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    54) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Aluminum Phosphide (Proposed). United States Environmental Protection Agency. Washington, DC. 2005b. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c5ed&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    55) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Arsenic Trioxide (Proposed). United States Environmental Protection Agency. Washington, DC. 2007m. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480220305&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    56) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Automotive Gasoline Unleaded (Proposed). United States Environmental Protection Agency. Washington, DC. 2009a. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a7cc17&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    57) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Biphenyl (Proposed). United States Environmental Protection Agency. Washington, DC. 2005j. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064801ea1b7&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    58) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Bis-Chloromethyl Ether (BCME) (Proposed). United States Environmental Protection Agency. Washington, DC. 2006n. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648022db11&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    59) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Boron Tribromide (Proposed). United States Environmental Protection Agency. Washington, DC. 2008a. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064803ae1d3&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    60) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Bromine Chloride (Proposed). United States Environmental Protection Agency. Washington, DC. 2007d. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648039732a&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    61) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Bromoacetone (Proposed). United States Environmental Protection Agency. Washington, DC. 2008e. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064809187bf&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    62) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Calcium Phosphide (Proposed). United States Environmental Protection Agency. Washington, DC. 2005d. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c5ed&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    63) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Carbonyl Fluoride (Proposed). United States Environmental Protection Agency. Washington, DC. 2008b. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064803ae328&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    64) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Carbonyl Sulfide (Proposed). United States Environmental Protection Agency. Washington, DC. 2007e. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648037ff26&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    65) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Chlorobenzene (Proposed). United States Environmental Protection Agency. Washington, DC. 2008c. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064803a52bb&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    66) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Cyanogen (Proposed). United States Environmental Protection Agency. Washington, DC. 2008f. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064809187fe&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    67) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Dimethyl Phosphite (Proposed). United States Environmental Protection Agency. Washington, DC. 2009. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a7cbf3&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    68) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Diphenylchloroarsine (Proposed). United States Environmental Protection Agency. Washington, DC. 2007l. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020fd29&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    69) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Ethyl Isocyanate (Proposed). United States Environmental Protection Agency. Washington, DC. 2008h. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648091884e&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    70) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Ethyl Phosphorodichloridate (Proposed). United States Environmental Protection Agency. Washington, DC. 2008i. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480920347&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    71) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Ethylbenzene (Proposed). United States Environmental Protection Agency. Washington, DC. 2008g. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064809203e7&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    72) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Ethyldichloroarsine (Proposed). United States Environmental Protection Agency. Washington, DC. 2007j. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020fd29&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    73) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Germane (Proposed). United States Environmental Protection Agency. Washington, DC. 2008j. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480963906&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    74) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Hexafluoropropylene (Proposed). United States Environmental Protection Agency. Washington, DC. 2006. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064801ea1f5&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    75) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Ketene (Proposed). United States Environmental Protection Agency. Washington, DC. 2007. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020ee7c&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    76) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Magnesium Aluminum Phosphide (Proposed). United States Environmental Protection Agency. Washington, DC. 2005h. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c5ed&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    77) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Magnesium Phosphide (Proposed). United States Environmental Protection Agency. Washington, DC. 2005g. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c5ed&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    78) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Malathion (Proposed). United States Environmental Protection Agency. Washington, DC. 2009k. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064809639df&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    79) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Mercury Vapor (Proposed). United States Environmental Protection Agency. Washington, DC. 2009b. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a8a087&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    80) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Methyl Isothiocyanate (Proposed). United States Environmental Protection Agency. Washington, DC. 2008k. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480963a03&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    81) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Methyl Parathion (Proposed). United States Environmental Protection Agency. Washington, DC. 2008l. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480963a57&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    82) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Methyl tertiary-butyl ether (Proposed). United States Environmental Protection Agency. Washington, DC. 2007a. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064802a4985&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    83) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Methylchlorosilane (Proposed). United States Environmental Protection Agency. Washington, DC. 2005. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c5f4&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    84) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Methyldichloroarsine (Proposed). United States Environmental Protection Agency. Washington, DC. 2007i. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020fd29&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    85) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Methyldichlorosilane (Proposed). United States Environmental Protection Agency. Washington, DC. 2005a. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c646&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    86) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Nitrogen Mustard (HN1 CAS Reg. No. 538-07-8) (Proposed). United States Environmental Protection Agency. Washington, DC. 2006a. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d6cb&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    87) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Nitrogen Mustard (HN2 CAS Reg. No. 51-75-2) (Proposed). United States Environmental Protection Agency. Washington, DC. 2006b. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d6cb&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    88) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Nitrogen Mustard (HN3 CAS Reg. No. 555-77-1) (Proposed). United States Environmental Protection Agency. Washington, DC. 2006c. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d6cb&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    89) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Nitrogen Tetroxide (Proposed). United States Environmental Protection Agency. Washington, DC. 2008n. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648091855b&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    90) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Nitrogen Trifluoride (Proposed). United States Environmental Protection Agency. Washington, DC. 2009l. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480963e0c&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    91) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Parathion (Proposed). United States Environmental Protection Agency. Washington, DC. 2008o. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480963e32&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    92) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Perchloryl Fluoride (Proposed). United States Environmental Protection Agency. Washington, DC. 2009c. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a7e268&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    93) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Perfluoroisobutylene (Proposed). United States Environmental Protection Agency. Washington, DC. 2009d. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a7e26a&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    94) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Phenyl Isocyanate (Proposed). United States Environmental Protection Agency. Washington, DC. 2008p. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648096dd58&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    95) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Phenyl Mercaptan (Proposed). United States Environmental Protection Agency. Washington, DC. 2006d. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020cc0c&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    96) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Phenyldichloroarsine (Proposed). United States Environmental Protection Agency. Washington, DC. 2007k. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020fd29&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    97) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Phorate (Proposed). United States Environmental Protection Agency. Washington, DC. 2008q. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648096dcc8&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    98) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Phosgene (Draft-Revised). United States Environmental Protection Agency. Washington, DC. 2009e. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a8a08a&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    99) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Phosgene Oxime (Proposed). United States Environmental Protection Agency. Washington, DC. 2009f. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a7e26d&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    100) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Potassium Cyanide (Proposed). United States Environmental Protection Agency. Washington, DC. 2009g. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a7cbb9&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    101) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Potassium Phosphide (Proposed). United States Environmental Protection Agency. Washington, DC. 2005c. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c5ed&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    102) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Propargyl Alcohol (Proposed). United States Environmental Protection Agency. Washington, DC. 2006e. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020ec91&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    103) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Selenium Hexafluoride (Proposed). United States Environmental Protection Agency. Washington, DC. 2006f. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020ec55&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    104) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Silane (Proposed). United States Environmental Protection Agency. Washington, DC. 2006g. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d523&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    105) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Sodium Cyanide (Proposed). United States Environmental Protection Agency. Washington, DC. 2009h. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a7cbb9&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    106) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Sodium Phosphide (Proposed). United States Environmental Protection Agency. Washington, DC. 2005i. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c5ed&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    107) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Strontium Phosphide (Proposed). United States Environmental Protection Agency. Washington, DC. 2005f. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c5ed&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    108) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Sulfuryl Chloride (Proposed). United States Environmental Protection Agency. Washington, DC. 2006h. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020ec7a&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    109) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Tear Gas (Proposed). United States Environmental Protection Agency. Washington, DC. 2008s. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648096e551&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    110) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Tellurium Hexafluoride (Proposed). United States Environmental Protection Agency. Washington, DC. 2009i. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a7e2a1&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    111) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Tert-Octyl Mercaptan (Proposed). United States Environmental Protection Agency. Washington, DC. 2008r. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648096e5c7&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    112) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Tetramethoxysilane (Proposed). United States Environmental Protection Agency. Washington, DC. 2006j. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d632&disposition=attachment&contentType=pdf. As accessed 2010-08-17.
    113) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Trimethoxysilane (Proposed). United States Environmental Protection Agency. Washington, DC. 2006i. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d632&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    114) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Trimethyl Phosphite (Proposed). United States Environmental Protection Agency. Washington, DC. 2009j. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a7d608&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    115) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Trimethylacetyl Chloride (Proposed). United States Environmental Protection Agency. Washington, DC. 2008t. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648096e5cc&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    116) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Zinc Phosphide (Proposed). United States Environmental Protection Agency. Washington, DC. 2005e. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c5ed&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    117) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for n-Butyl Isocyanate (Proposed). United States Environmental Protection Agency. Washington, DC. 2008m. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064808f9591&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    118) National Institute for Occupational Safety and Health: NIOSH Pocket Guide to Chemical Hazards, U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, Cincinnati, OH, 2007.
    119) National Research Council : Acute exposure guideline levels for selected airborne chemicals, 5, National Academies Press, Washington, DC, 2007.
    120) National Research Council: Acute exposure guideline levels for selected airborne chemicals, 6, National Academies Press, Washington, DC, 2008.
    121) National Research Council: Acute exposure guideline levels for selected airborne chemicals, 7, National Academies Press, Washington, DC, 2009.
    122) National Research Council: Acute exposure guideline levels for selected airborne chemicals, 8, National Academies Press, Washington, DC, 2010.
    123) None Listed: Position paper: cathartics. J Toxicol Clin Toxicol 2004; 42(3):243-253.
    124) Peberdy MA , Callaway CW , Neumar RW , et al: 2010 American Heart Association guidelines for cardiopulmonary resuscitation and emergency cardiovascular care science. Part 9: post–cardiac arrest care. Circulation 2010; 122(18 Suppl 3):S768-S786.
    125) Pollack MM, Dunbar BS, & Holbrook PR: Aspiration of activated charcoal and gastric contents. Ann Emerg Med 1981; 10:528-529.
    126) Product Information: Amturnide(TM) oral tablets, aliskiren amlodipine hydrochlorothiazide oral tablets. Novartis Pharmaceuticals Corporation (per FDA), East Hanover, NJ, 2014.
    127) Product Information: TEKTURNA(R) oral tablets, aliskiren oral tablets. Novartis Pharmaceuticals Corporation, East Hanover, NJ, 2007.
    128) Product Information: Tekamlo(TM) oral tablets, aliskiren amlodipine oral tablets. Novartis Pharmaceuticals Corporation (per FDA), East Hanover, NJ, 2014.
    129) Product Information: Tekturna HCT(R) oral tablets, aliskiren hydrochlorothiazide oral tablets. Novartis Pharmaceuticals Corporation (per FDA), East Hanover, NJ, 2014.
    130) Product Information: Tekturna(R) oral tablets, aliskiren oral tablets. Novartis Pharmaceuticals Corporation (per FDA), East Hanover, NJ, 2014.
    131) Product Information: VALTURNA(R) oral tablets, aliskiren and valsartan oral tablets. Novartis Pharmaceuticals Corporation, 2009.
    132) Product Information: dopamine hcl, 5% dextrose IV injection, dopamine hcl, 5% dextrose IV injection. Hospira,Inc, Lake Forest, IL, 2004.
    133) Product Information: norepinephrine bitartrate injection, norepinephrine bitartrate injection. Sicor Pharmaceuticals,Inc, Irvine, CA, 2005.
    134) Rau NR, Nagaraj MV, Prakash PS, et al: Fatal pulmonary aspiration of oral activated charcoal. Br Med J 1988; 297:918-919.
    135) Spiller HA & Rogers GC: Evaluation of administration of activated charcoal in the home. Pediatrics 2002; 108:E100.
    136) Spiller HA: Hypotension after ingestion of Aliskiren. Clin Toxicol (Phila) 2008; 46(9):916-917.
    137) Thakore S & Murphy N: The potential role of prehospital administration of activated charcoal. Emerg Med J 2002; 19:63-65.
    138) U.S. Department of Energy, Office of Emergency Management: Protective Action Criteria (PAC) with AEGLs, ERPGs, & TEELs: Rev. 26 for chemicals of concern. U.S. Department of Energy, Office of Emergency Management. Washington, DC. 2010. Available from URL: http://www.hss.doe.gov/HealthSafety/WSHP/Chem_Safety/teel.html. As accessed 2011-06-27.
    139) U.S. Department of Health and Human Services, Public Health Service, National Toxicology Project : 11th Report on Carcinogens. U.S. Department of Health and Human Services, Public Health Service, National Toxicology Program. Washington, DC. 2005. Available from URL: http://ntp.niehs.nih.gov/INDEXA5E1.HTM?objectid=32BA9724-F1F6-975E-7FCE50709CB4C932. As accessed 2011-06-27.
    140) U.S. Environmental Protection Agency: Discarded commercial chemical products, off-specification species, container residues, and spill residues thereof. Environmental Protection Agency's (EPA) Resource Conservation and Recovery Act (RCRA); List of hazardous substances and reportable quantities 2010b; 40CFR(261.33, e-f):77-.
    141) U.S. Environmental Protection Agency: Integrated Risk Information System (IRIS). U.S. Environmental Protection Agency. Washington, DC. 2011. Available from URL: http://cfpub.epa.gov/ncea/iris/index.cfm?fuseaction=iris.showSubstanceList&list_type=date. As accessed 2011-06-21.
    142) U.S. Environmental Protection Agency: List of Radionuclides. U.S. Environmental Protection Agency. Washington, DC. 2010a. Available from URL: http://www.gpo.gov/fdsys/pkg/CFR-2010-title40-vol27/pdf/CFR-2010-title40-vol27-sec302-4.pdf. As accessed 2011-06-17.
    143) U.S. Environmental Protection Agency: List of hazardous substances and reportable quantities. U.S. Environmental Protection Agency. Washington, DC. 2010. Available from URL: http://www.gpo.gov/fdsys/pkg/CFR-2010-title40-vol27/pdf/CFR-2010-title40-vol27-sec302-4.pdf. As accessed 2011-06-17.
    144) U.S. Environmental Protection Agency: The list of extremely hazardous substances and their threshold planning quantities (CAS Number Order). U.S. Environmental Protection Agency. Washington, DC. 2010c. Available from URL: http://www.gpo.gov/fdsys/pkg/CFR-2010-title40-vol27/pdf/CFR-2010-title40-vol27-part355.pdf. As accessed 2011-06-17.
    145) U.S. Occupational Safety and Health Administration: Part 1910 - Occupational safety and health standards (continued) Occupational Safety, and Health Administration's (OSHA) list of highly hazardous chemicals, toxics and reactives. Subpart Z - toxic and hazardous substances. CFR 2010 2010; Vol6(SEC1910):7-.
    146) U.S. Occupational Safety, and Health Administration (OSHA): Process safety management of highly hazardous chemicals. 29 CFR 2010 2010; 29(1910.119):348-.
    147) United States Environmental Protection Agency Office of Pollution Prevention and Toxics: Acute Exposure Guideline Levels (AEGLs) for Vinyl Acetate (Proposed). United States Environmental Protection Agency. Washington, DC. 2006. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d6af&disposition=attachment&contentType=pdf. As accessed 2010-08-16.