MOBILE VIEW  | 

AIDS ANTIVIRAL CCR5 RECEPTOR ANTAGONISTS

Classification   |    Detailed evidence-based information

Therapeutic Toxic Class

    A) Maraviroc and vicriviroc are chemokine receptor antagonists. They prevent HIV infection of CD4 T-cells by blocking the CCR5 receptor.

Specific Substances

    A) GENERAL TERMS
    1) Antiviral CCR5 receptor antagonists, AIDS
    2) CCR5 receptor antagonists
    3) HIV, AIDS antiviral CCR5 receptor antagonists
    MARAVIROC
    1) UK 427857
    2) CAS 376348-65-1
    VICRIVIROC
    1) SCH 417690
    2) Schering D

    1.2.1) MOLECULAR FORMULA
    1) MARAVIROC - C29-H41-F2-N5-O (Prod Info SELZENTRY(R) oral tablets, 2007)

Available Forms Sources

    A) FORMS
    1) Maraviroc is available as 150 mg and 300 mg film-coated tablets (Prod Info SELZENTRY(R) oral tablets, 2007).
    B) USES
    1) Maraviroc is FDA-approved as treatment, in combination with other antiretroviral agents, in treatment-experienced adults infected with only CCR5-tropic HIV-1 detectable strain and who have evidence of viral replication and HIV-1 strains that are resistant to multiple antiretroviral agents (Prod Info SELZENTRY(R) oral tablets, 2007).
    2) At the time of this review, vicriviroc is an investigational CCR5 inhibitor undergoing phase II clinical trials (Gulick et al, 2007).

Life Support

    A) This overview assumes that basic life support measures have been instituted.

Clinical Effects

    0.2.1) SUMMARY OF EXPOSURE
    A) USES: Maraviroc, a CCR5 receptor antagonist, is used in combination with other antiretroviral agents in the treatment of adults infected with CCR5-tropic HIV-1 virus.
    B) PHARMACOLOGY: Maraviroc is a chemokine receptor antagonist that prevents HIV infection of CD4 T-cells by blocking the CCR5 receptor. Specifically, maraviroc prevents the membrane fusion events necessary for viral entry by blocking the binding of viral envelope, glycoprotein (gp) 120, to CCR5. Maraviroc is inactive against isolates that utilize CXCR4 as a co-receptor; therefore, the antiviral mechanism of action of maraviroc is exclusively CCR5-mediated.
    C) EPIDEMIOLOGY: Overdose is rare.
    D) WITH THERAPEUTIC USE
    1) COMMON: The most common adverse effects following therapeutic administration of maraviroc, occurring at an incidence greater than 8%, include cough, pyrexia, upper respiratory tract infections, rash, abdominal pain, and dizziness. The dose-limiting toxicity, observed following oral administration of 600 mg, is postural hypotension.
    2) INFREQUENT: Other adverse effects that have occurred less frequently include myocardial infarction, myocardial ischemia, pruritus, constipation, hepatotoxicity, including elevated liver enzymes and hepatitis, myalgia, arthralgia, paresthesias and dysesthesias, and insomnia.
    3) DOSE-LIMITING: The dose-limiting toxicity, observed following oral administration of 600 mg maraviroc, is postural hypotension.
    E) WITH POISONING/EXPOSURE
    1) At the time of this review, there are no acute overdose data available. Overdose effects are anticipated to be an extension of adverse effects observed following therapeutic doses.
    0.2.20) REPRODUCTIVE
    A) Maraviroc is classified as FDA pregnancy category B.

Laboratory Monitoring

    A) Monitor vital signs and hepatic enzymes after significant overdose.
    B) Obtain and ECG to evaluate for QTc prolongation after significant overdose. Monitor for dysrhythmias.

Treatment Overview

    0.4.2) ORAL/PARENTERAL EXPOSURE
    A) MANAGEMENT OF MILD TO MODERATE TOXICITY
    1) Treatment is symptomatic and supportive. Manage mild hypotension with IV fluids; add dopamine or norepinephrine if unresponsive to fluids. As these agents are typically given in conjunction with other antiretroviral agents, monitor for overdoses from these agents as well.
    B) MANAGEMENT OF SEVERE TOXICITY
    1) Treatment is symptomatic and supportive. Severe toxicity is not expected following overdose.
    C) DECONTAMINATION
    1) PREHOSPITAL: Consider activated charcoal after a potentially toxic ingestion and if the patient is able to maintain airway or if airway is protected.
    2) HOSPITAL: Consider activated charcoal if the overdose is recent, the patient is not vomiting, and is able to maintain airway.
    D) AIRWAY MANAGEMENT
    1) Airway management is very unlikely to be necessary unless other toxic agents have been administered concurrently.
    E) ANTIDOTE
    1) None
    F) HYPOTENSIVE EPISODE
    1) Keep the patient supine, administer 0.9% saline 10 to 20 ml/kg. If hypotension persists, administer dopamine or norepinephrine.
    G) ENHANCED ELIMINATION PROCEDURE
    1) Maraviroc is moderately bound (approximately 76%) to plasma proteins and has a moderately large volume of distribution (194 L). Hemodialysis and hemoperfusion are likely to have limited ability to enhance elimination.
    H) PATIENT DISPOSITION
    1) HOME CRITERIA: An adult with an inadvertent small exposure, that remains asymptomatic can be managed at home There is no data to support a safe dose for home management in pediatric exposures.
    2) OBSERVATION CRITERIA: Patients with a deliberate overdose, and those who are symptomatic should be observed with frequent monitoring of vital signs. Patients that remain asymptomatic can be discharged.
    3) ADMISSION CRITERIA: Patients with worsening vital signs, ECG abnormalities, evidence of hepatic dysfunction, and respiratory distress should be admitted.
    4) CONSULT CRITERIA: Consult a Poison Center or medical toxicologist for assistance in managing patients with severe toxicity or for whom diagnosis is unclear.
    I) PITFALLS
    1) When managing a suspected overdose, the possibility of multidrug involvement should be considered. Symptoms of overdose are similar to reported side effects of the medication.
    J) PHARMACOKINETICS
    1) Absolute bioavailability following a single 100-mg dose of maraviroc is 23%. Protein binding is approximately 76% and volume of distribution is approximately 194 L. Maraviroc is primarily metabolized via cytochrome P450 enzyme system, with in vitro studies indicating that CYP3A as the major enzyme responsible for metabolism. The terminal half-life of maraviroc was between 14 and 18 hours, following oral dosing to steady state in healthy subjects.
    K) DIFFERENTIAL DIAGNOSIS
    1) Other AIDS agents; symptoms from AIDS.

Range Of Toxicity

    A) TOXICITY: A specific toxic dose of maraviroc has not been established. Postural hypotension was observed at 600 mg and is considered to be the dose-limiting toxicity. Doses up to 1200 mg have been used in clinical trials

Summary Of Exposure

    A) USES: Maraviroc, a CCR5 receptor antagonist, is used in combination with other antiretroviral agents in the treatment of adults infected with CCR5-tropic HIV-1 virus.
    B) PHARMACOLOGY: Maraviroc is a chemokine receptor antagonist that prevents HIV infection of CD4 T-cells by blocking the CCR5 receptor. Specifically, maraviroc prevents the membrane fusion events necessary for viral entry by blocking the binding of viral envelope, glycoprotein (gp) 120, to CCR5. Maraviroc is inactive against isolates that utilize CXCR4 as a co-receptor; therefore, the antiviral mechanism of action of maraviroc is exclusively CCR5-mediated.
    C) EPIDEMIOLOGY: Overdose is rare.
    D) WITH THERAPEUTIC USE
    1) COMMON: The most common adverse effects following therapeutic administration of maraviroc, occurring at an incidence greater than 8%, include cough, pyrexia, upper respiratory tract infections, rash, abdominal pain, and dizziness. The dose-limiting toxicity, observed following oral administration of 600 mg, is postural hypotension.
    2) INFREQUENT: Other adverse effects that have occurred less frequently include myocardial infarction, myocardial ischemia, pruritus, constipation, hepatotoxicity, including elevated liver enzymes and hepatitis, myalgia, arthralgia, paresthesias and dysesthesias, and insomnia.
    3) DOSE-LIMITING: The dose-limiting toxicity, observed following oral administration of 600 mg maraviroc, is postural hypotension.
    E) WITH POISONING/EXPOSURE
    1) At the time of this review, there are no acute overdose data available. Overdose effects are anticipated to be an extension of adverse effects observed following therapeutic doses.

Vital Signs

    3.3.3) TEMPERATURE
    A) WITH THERAPEUTIC USE
    1) FEVER occurred in 13% of patients receiving maraviroc (n=426) compared to 9% of patients receiving placebo (n=209) in clinical trials (Prod Info SELZENTRY(R) oral tablets, 2013).

Cardiovascular

    3.5.2) CLINICAL EFFECTS
    A) HYPOTENSIVE EPISODE
    1) WITH THERAPEUTIC USE
    a) Postural hypotension has occurred following ingestion of 600 mg of maraviroc, and is reported to be the dose-limiting toxicity (Prod Info SELZENTRY(R) oral tablets, 2013).
    B) MYOCARDIAL INFARCTION
    1) WITH THERAPEUTIC USE
    a) Myocardial infarction has been reported in less than 2% of patients receiving maraviroc in clinical trials. In Phase 3 studies, cardiovascular events, including myocardial ischemia and/or infarction, occurred in 1.3% of patients treated with maraviroc (n=426); however no cardiac events were reported in patients who received placebo (n=209) (Prod Info SELZENTRY(R) oral tablets, 2013).
    C) MYOCARDIAL ISCHEMIA
    1) WITH THERAPEUTIC USE
    a) Myocardial ischemia has been reported in less than 2% of patients receiving maraviroc in clinical trials. In Phase 3 studies, cardiovascular events, including myocardial ischemia and/or infarction, occurred in 1.3% of patients treated with maraviroc (n=426); however no cardiac events were reported in patients who received placebo (n=209) (Prod Info SELZENTRY(R) oral tablets, 2013).
    3.5.3) ANIMAL EFFECTS
    A) ANIMAL STUDIES
    1) QT INTERVAL PROLONGATION
    a) QT interval prolongation occurred in dogs and monkeys at maraviroc plasma concentrations 6 and 12 times, respectively, what would be expected in humans at a dose of 300 mg twice daily (Prod Info SELZENTRY(R) oral tablets, 2013).

Respiratory

    3.6.2) CLINICAL EFFECTS
    A) COUGH
    1) WITH THERAPEUTIC USE
    a) Cough and associated symptoms occurred in 14% of patients receiving maraviroc (n=426) compared to 5% of patients receiving placebo (n=209) in clinical trials (Prod Info SELZENTRY(R) oral tablets, 2013).
    B) UPPER RESPIRATORY INFECTION
    1) WITH THERAPEUTIC USE
    a) Upper respiratory tract infections occurred in 23% of patients receiving maraviroc (n=426) compared to 13% of patients receiving placebo (n=209) in clinical trials (Prod Info SELZENTRY(R) oral tablets, 2013).

Neurologic

    3.7.2) CLINICAL EFFECTS
    A) DIZZINESS
    1) WITH THERAPEUTIC USE
    a) Dizziness and postural dizziness occurred in 9% of patients receiving maraviroc (n=426) compared to 8% of patients receiving placebo (n=209) in clinical trials (Prod Info SELZENTRY(R) oral tablets, 2013).
    B) PARESTHESIA
    1) WITH THERAPEUTIC USE
    a) Paresthesias and dysesthesias were reported in 5% of patients receiving maraviroc (n=426) compared to 3% of patients receiving placebo (n=209) during clinical trials (Prod Info SELZENTRY(R) oral tablets, 2013).
    C) INSOMNIA
    1) WITH THERAPEUTIC USE
    a) Insomnia was reported in 8% of patients receiving maraviroc (n=426) compared to 5% of patients receiving placebo (n=209) during clinical trials (Prod Info SELZENTRY(R) oral tablets, 2013).

Gastrointestinal

    3.8.2) CLINICAL EFFECTS
    A) ABDOMINAL PAIN
    1) WITH THERAPEUTIC USE
    a) Abdominal pains occurred in 8.2% of patients receiving maraviroc (n=426) compared to 7.7% of patients receiving placebo (n=209) in clinical trials (Prod Info SELZENTRY(R) oral tablets, 2007).
    B) CONSTIPATION
    1) WITH THERAPEUTIC USE
    a) Constipation occurred in 6% of patients receiving maraviroc (n=426) compared to 3% of patients receiving placebo (n=209) in clinical trials (Prod Info SELZENTRY(R) oral tablets, 2013).

Hepatic

    3.9.2) CLINICAL EFFECTS
    A) LIVER ENZYMES ABNORMAL
    1) WITH THERAPEUTIC USE
    a) Increased aspartate aminotransferase levels (greater than 5 times the upper limit of normal) were reported in 4.8% of patients receiving maraviroc (n=421) compared to 2.9% of patients receiving placebo (n=207) in clinical trials (Prod Info SELZENTRY(R) oral tablets, 2013).
    B) INJURY OF LIVER
    1) WITH THERAPEUTIC USE
    a) Hepatic cirrhosis, hepatic failure, and cholestatic jaundice have been reported in less than 2% of patients receiving maraviroc during clinical trials (Prod Info SELZENTRY(R) oral tablets, 2013).

Dermatologic

    3.14.2) CLINICAL EFFECTS
    A) ERUPTION
    1) WITH THERAPEUTIC USE
    a) Rash occurred in 11% of patients receiving maraviroc (n=426) compared to 5% of patients receiving placebo (n=209) in clinical trials. Pruritic rash may precede the development of hepatotoxicity; therefore, patients with signs or symptoms of an allergic reaction (rash, eosinophilia, elevated IgE) should be evaluated for evidence of hepatotoxicity (Prod Info SELZENTRY(R) oral tablets, 2013).
    B) ITCHING OF SKIN
    1) WITH THERAPEUTIC USE
    a) Pruritus occurred in 4% of patients receiving maraviroc (n=426) compared to 2% of patients receiving placebo (n=209) in clinical trials. Pruritic rash may precede the development of hepatotoxicity; therefore, patients with signs or symptoms of an allergic reaction (rash, eosinophilia, elevated IgE) should be evaluated for evidence of hepatotoxicity (Prod Info SELZENTRY(R) oral tablets, 2013).

Musculoskeletal

    3.15.2) CLINICAL EFFECTS
    A) MUSCLE PAIN
    1) WITH THERAPEUTIC USE
    a) Myalgias were reported in 3% of patients receiving maraviroc (n=426) compared to 0.5% of patients receiving placebo (n=209) in clinical trials (Prod Info SELZENTRY(R) oral tablets, 2013).
    B) JOINT PAIN
    1) WITH THERAPEUTIC USE
    a) Joint related signs and symptoms occurred in 7% of patients receiving maraviroc (n=426) compared to 3% of patients receiving placebo (n=209) in clinical trials (Prod Info SELZENTRY(R) oral tablets, 2013).

Reproductive

    3.20.1) SUMMARY
    A) Maraviroc is classified as FDA pregnancy category B.
    3.20.2) TERATOGENICITY
    A) ANIMAL STUDIES
    1) Fetal variations and fetal malformations were not affected by maternal administration of maraviroc in animals. In embryofetal toxicity studies, maraviroc was administered to rats and rabbits at doses that were 20-fold higher and 5-fold higher, respectively, than the recommended daily dose in humans (up to 1000 mg/kg/day and 75 mg/kg/day, respectively) (Prod Info SELZENTRY oral tablets, 2010).
    3.20.3) EFFECTS IN PREGNANCY
    A) PREGNANCY CATEGORY
    1) MARAVIROC - The manufacturer has classified maraviroc as FDA pregnancy category B (Prod Info SELZENTRY oral tablets, 2010). There is insufficient clinical experience with maraviroc to recommend its use in antiretroviral therapy (ART)-naive, pregnant women. In general, women who are receiving combination ART for HIV infection when pregnancy is discovered should continue their regimen while being monitored for complications and toxicities (Panel on Treatment of HIV-Infected Pregnant Women and Prevention of Perinatal Transmission, 2012).
    3.20.4) EFFECTS DURING BREAST-FEEDING
    A) BREAST MILK
    1) It is not known whether maraviroc is excreted into human breast milk, and the potential for adverse effects in the nursing infant from exposure to the drug are unknown. Maraviroc is extensively excreted into the milk of lactating rats (Prod Info SELZENTRY oral tablets, 2010). Due to the risk of postnatal transmission of HIV, the Centers for Disease Control and Prevention does not recommend breastfeeding for HIV-infected mothers, including those who are receiving combination antiretroviral therapy or prophylaxis (Panel on Treatment of HIV-Infected Pregnant Women and Prevention of Perinatal Transmission, 2012).

Carcinogenicity

    3.21.1) IARC CATEGORY
    A) IARC Carcinogenicity Ratings for CAS376348-65-1 (International Agency for Research on Cancer (IARC), 2016; International Agency for Research on Cancer, 2015; IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, 2010; IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, 2010a; IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, 2008; IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, 2007; IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, 2006; IARC, 2004):
    1) Not Listed
    3.21.4) ANIMAL STUDIES
    A) LACK OF EFFECT
    1) There was no evidence of an increased tumor incidence in mice that were given maraviroc orally at 1500 mg/kg/day or in male and female rats that were given maraviroc orally at 900 mg/kg/day. In rats, the highest exposures were approximately 11 times greater than in humans at the therapeutic dose of 300 mg twice daily (Prod Info SELZENTRY(R) oral tablets, 2007).

Genotoxicity

    A) There was no evidence of genotoxicity with maraviroc according to a reverse mutation bacterial test (Ames test in Salmonella and E. coli), a chromosome aberration test in human lymphocytes, and in the rat bone marrow micronucleus test (Prod Info SELZENTRY(R) oral tablets, 2007).

Monitoring Parameters Levels

    4.1.1) SUMMARY
    A) Monitor vital signs and hepatic enzymes after significant overdose.
    B) Obtain and ECG to evaluate for QTc prolongation after significant overdose. Monitor for dysrhythmias.
    4.1.2) SERUM/BLOOD
    A) Hepatotoxicity, including elevated liver enzyme levels and hepatic failure, has been reported. Monitor hepatic enzymes after significant overdose.
    4.1.4) OTHER
    A) OTHER
    1) ECG
    a) Monitor ECG in patients with significant exposures, in particular those with pre-existing cardiac dysfunction, for QTc prolongation or dysrhythmias.
    2) VITAL SIGNS
    a) Postural hypotension and fever have occurred. Monitor vital signs after significant overdose.

Life Support

    A) Support respiratory and cardiovascular function.

Patient Disposition

    6.3.1) DISPOSITION/ORAL EXPOSURE
    6.3.1.1) ADMISSION CRITERIA/ORAL
    A) Patients with worsening vital signs, ECG abnormalities, evidence of hepatic dysfunction, and respiratory distress should be admitted.
    6.3.1.2) HOME CRITERIA/ORAL
    A) An adult with an inadvertent small exposure, that remains asymptomatic can be managed at home There is no data to support a safe dose for home management in pediatric exposures.
    6.3.1.3) CONSULT CRITERIA/ORAL
    A) Consult a Poison Center or medical toxicologist for assistance in managing patients with severe toxicity or for whom diagnosis is unclear.
    6.3.1.5) OBSERVATION CRITERIA/ORAL
    A) Patients with a deliberate overdose, and those who are symptomatic should be observed with frequent monitoring of vital signs. Patients that remain asymptomatic can be discharged.

Monitoring

    A) Monitor vital signs and hepatic enzymes after significant overdose.
    B) Obtain and ECG to evaluate for QTc prolongation after significant overdose. Monitor for dysrhythmias.

Oral Exposure

    6.5.1) PREVENTION OF ABSORPTION/PREHOSPITAL
    A) ACTIVATED CHARCOAL
    1) Consider activated charcoal if the overdose is recent, the patient is not vomiting, and is able to maintain airway.
    2) PREHOSPITAL ACTIVATED CHARCOAL ADMINISTRATION
    a) Consider prehospital administration of activated charcoal as an aqueous slurry in patients with a potentially toxic ingestion who are awake and able to protect their airway. Activated charcoal is most effective when administered within one hour of ingestion. Administration in the prehospital setting has the potential to significantly decrease the time from toxin ingestion to activated charcoal administration, although it has not been shown to affect outcome (Alaspaa et al, 2005; Thakore & Murphy, 2002; Spiller & Rogers, 2002).
    1) In patients who are at risk for the abrupt onset of seizures or mental status depression, activated charcoal should not be administered in the prehospital setting, due to the risk of aspiration in the event of spontaneous emesis.
    2) The addition of flavoring agents (cola drinks, chocolate milk, cherry syrup) to activated charcoal improves the palatability for children and may facilitate successful administration (Guenther Skokan et al, 2001; Dagnone et al, 2002).
    3) CHARCOAL DOSE
    a) Use a minimum of 240 milliliters of water per 30 grams charcoal (FDA, 1985). Optimum dose not established; usual dose is 25 to 100 grams in adults and adolescents; 25 to 50 grams in children aged 1 to 12 years (or 0.5 to 1 gram/kilogram body weight) ; and 0.5 to 1 gram/kilogram in infants up to 1 year old (Chyka et al, 2005).
    1) Routine use of a cathartic with activated charcoal is NOT recommended as there is no evidence that cathartics reduce drug absorption and cathartics are known to cause adverse effects such as nausea, vomiting, abdominal cramps, electrolyte imbalances and occasionally hypotension (None Listed, 2004).
    b) ADVERSE EFFECTS/CONTRAINDICATIONS
    1) Complications: emesis, aspiration (Chyka et al, 2005). Aspiration may be complicated by acute respiratory failure, ARDS, bronchiolitis obliterans or chronic lung disease (Golej et al, 2001; Graff et al, 2002; Pollack et al, 1981; Harris & Filandrinos, 1993; Elliot et al, 1989; Rau et al, 1988; Golej et al, 2001; Graff et al, 2002). Refer to the ACTIVATED CHARCOAL/TREATMENT management for further information.
    2) Contraindications: unprotected airway (increases risk/severity of aspiration) , nonfunctioning gastrointestinal tract, uncontrolled vomiting, and ingestion of most hydrocarbons (Chyka et al, 2005).
    6.5.2) PREVENTION OF ABSORPTION
    A) ACTIVATED CHARCOAL
    1) CHARCOAL ADMINISTRATION
    a) Consider administration of activated charcoal after a potentially toxic ingestion (Chyka et al, 2005). Administer charcoal as an aqueous slurry; most effective when administered within one hour of ingestion.
    2) CHARCOAL DOSE
    a) Use a minimum of 240 milliliters of water per 30 grams charcoal (FDA, 1985). Optimum dose not established; usual dose is 25 to 100 grams in adults and adolescents; 25 to 50 grams in children aged 1 to 12 years (or 0.5 to 1 gram/kilogram body weight) ; and 0.5 to 1 gram/kilogram in infants up to 1 year old (Chyka et al, 2005).
    1) Routine use of a cathartic with activated charcoal is NOT recommended as there is no evidence that cathartics reduce drug absorption and cathartics are known to cause adverse effects such as nausea, vomiting, abdominal cramps, electrolyte imbalances and occasionally hypotension (None Listed, 2004).
    b) ADVERSE EFFECTS/CONTRAINDICATIONS
    1) Complications: emesis, aspiration (Chyka et al, 2005). Aspiration may be complicated by acute respiratory failure, ARDS, bronchiolitis obliterans or chronic lung disease (Golej et al, 2001; Graff et al, 2002; Pollack et al, 1981; Harris & Filandrinos, 1993; Elliot et al, 1989; Rau et al, 1988; Golej et al, 2001; Graff et al, 2002). Refer to the ACTIVATED CHARCOAL/TREATMENT management for further information.
    2) Contraindications: unprotected airway (increases risk/severity of aspiration) , nonfunctioning gastrointestinal tract, uncontrolled vomiting, and ingestion of most hydrocarbons (Chyka et al, 2005).
    6.5.3) TREATMENT
    A) SUPPORT
    1) Treatment is symptomatic and supportive. There is no antidote available. As these agents are generally given in conjunction with other HIV antiretroviral agents, such as amprenavir, delavirdine, efavirenz and others, it would be advisable to monitor for overdoses from these agents as well, particularly if the overdose involves a combination of drugs.
    B) MONITORING OF PATIENT
    1) Monitor vital signs and hepatic enzymes after significant overdose.
    2) Obtain and ECG to evaluate for QTc prolongation after significant overdose. Monitor for dysrhythmias.
    C) HYPOTENSIVE EPISODE
    1) SUMMARY
    a) Infuse 10 to 20 milliliters/kilogram of isotonic fluid and keep the patient supine. If hypotension persists, administer dopamine or norepinephrine. Consider central venous pressure monitoring to guide further fluid therapy.
    2) DOPAMINE
    a) DOSE: Begin at 5 micrograms per kilogram per minute progressing in 5 micrograms per kilogram per minute increments as needed (Prod Info dopamine hcl, 5% dextrose IV injection, 2004). If hypotension persists, dopamine may need to be discontinued and a more potent vasoconstrictor (eg, norepinephrine) should be considered (Prod Info dopamine hcl, 5% dextrose IV injection, 2004).
    b) CAUTION: If ventricular dysrhythmias occur, decrease rate of administration (Prod Info dopamine hcl, 5% dextrose IV injection, 2004). Extravasation may cause local tissue necrosis, administration through a central venous catheter is preferred (Prod Info dopamine hcl, 5% dextrose IV injection, 2004).
    3) NOREPINEPHRINE
    a) PREPARATION: 4 milligrams (1 amp) added to 1000 milliliters of diluent provides a concentration of 4 micrograms/milliliter of norepinephrine base. Norepinephrine bitartrate should be mixed in dextrose solutions (dextrose 5% in water, dextrose 5% in saline) since dextrose-containing solutions protect against excessive oxidation and subsequent potency loss. Administration in saline alone is not recommended (Prod Info norepinephrine bitartrate injection, 2005).
    b) DOSE
    1) ADULT: Dose range: 0.1 to 0.5 microgram/kilogram/minute (eg, 70 kg adult 7 to 35 mcg/min); titrate to maintain adequate blood pressure (Peberdy et al, 2010).
    2) CHILD: Dose range: 0.1 to 2 micrograms/kilogram/minute; titrate to maintain adequate blood pressure (Kleinman et al, 2010).
    3) CAUTION: Extravasation may cause local tissue ischemia, administration by central venous catheter is advised (Peberdy et al, 2010).

Enhanced Elimination

    A) HEMODIALYSIS
    1) Maraviroc is moderately bound (approximately 76%) to plasma proteins and has a moderately large volume of distribution (194 L) (Prod Info SELZENTRY(R) oral tablets, 2013). Hemodialysis and hemoperfusion are likely to have limited ability to enhance elimination.

Summary

    A) TOXICITY: A specific toxic dose of maraviroc has not been established. Postural hypotension was observed at 600 mg and is considered to be the dose-limiting toxicity. Doses up to 1200 mg have been used in clinical trials

Therapeutic Dose

    7.2.1) ADULT
    A) MARAVIROC - In treatment-experienced adult patients infected with only cellular chemokine receptor (CCR)5-tropic HIV-1 detectable and who have evidence of viral replication and HIV-1 strains resistant to multiple antiretroviral agents, when used in combination with other antiretroviral agents, the recommended oral dose of maraviroc is 150 milligrams (mg), 300 mg, or 600 mg twice daily depending on concomitant medications. The recommended doses are below (Prod Info SELZENTRY(R) oral tablets, 2007):
    CYP3 Inhibition or InductionExamples of Concomitant MedicationsMaraviroc Dose
    Strong CYP3A inhibitors (with or without a CYP3A inducer)Protease inhibitors (except tipranavir/ritonavir), delavirdine, ketoconazole, itraconzaole, clarithromycin, nefazadone, telithromycin150 mg twice daily
    Weak CYP3A inhibitor or inducer or neutralTipranavir/ritonavir, nevirapine, all nucleoside reverse transcriptase inhibitors (NRTI), enfuvirtide300 mg twice daily
    CYP3A inducer (without a strong CYP3A inhibitor)Efavirenz, rifampin, carbamazepine, phenobarbital, phenytoin600 mg twice daily
    7.2.2) PEDIATRIC
    A) MARAVIROC - Safety and efficacy in pediatric patients less than 16 years of age have not been established (Prod Info SELZENTRY(R) oral tablets, 2007).

Maximum Tolerated Exposure

    A) MARAVIROC: A specific toxic dose has not been established. Postural hypotension was observed following oral administration of 600 mg during clinical trials, and is reported to be the dose-limiting toxicity. Doses up to 1200 mg have been used in clinical trials (Prod Info SELZENTRY(R) oral tablets, 2013).

Workplace Standards

    A) ACGIH TLV Values for CAS376348-65-1 (American Conference of Governmental Industrial Hygienists, 2010):
    1) Not Listed

    B) NIOSH REL and IDLH Values for CAS376348-65-1 (National Institute for Occupational Safety and Health, 2007):
    1) Not Listed

    C) Carcinogenicity Ratings for CAS376348-65-1 :
    1) ACGIH (American Conference of Governmental Industrial Hygienists, 2010): Not Listed
    2) EPA (U.S. Environmental Protection Agency, 2011): Not Listed
    3) IARC (International Agency for Research on Cancer (IARC), 2016; International Agency for Research on Cancer, 2015; IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, 2010; IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, 2010a; IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, 2008; IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, 2007; IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, 2006; IARC, 2004): Not Listed
    4) NIOSH (National Institute for Occupational Safety and Health, 2007): Not Listed
    5) MAK (DFG, 2002): Not Listed
    6) NTP (U.S. Department of Health and Human Services, Public Health Service, National Toxicology Project ): Not Listed

    D) OSHA PEL Values for CAS376348-65-1 (U.S. Occupational Safety, and Health Administration (OSHA), 2010):
    1) Not Listed

Pharmacologic Mechanism

    A) Maraviroc and vicriviroc are chemokine receptor antagonists. They prevent HIV infection of CD4 T-cells by blocking the CCR5 receptor. Specifically, maraviroc and vicriviroc prevent the membrane fusion events necessary for viral entry by blocking the binding of viral envelope, glycoprotein (gp) 120, to CCR5. Maraviroc is inactive against isolates that utilize CXCR4 as a co-receptor; therefore, the antiviral mechanism of action of maraviroc is exclusively CCR5-mediated (Prod Info SELZENTRY(R) oral tablets, 2007; Schurmann et al, 2007).

Physical Characteristics

    A) Maraviroc is a white to pale-colored powder and is highly soluble across the physiological pH range (pH 1 to 7.5) (Prod Info SELZENTRY(R) oral tablets, 2007).

Molecular Weight

    A) MARAVIROC - 513.67 (Prod Info SELZENTRY(R) oral tablets, 2007)

General Bibliography

    1) 40 CFR 372.28: Environmental Protection Agency - Toxic Chemical Release Reporting, Community Right-To-Know, Lower thresholds for chemicals of special concern. National Archives and Records Administration (NARA) and the Government Printing Office (GPO). Washington, DC. Final rules current as of Apr 3, 2006.
    2) 40 CFR 372.65: Environmental Protection Agency - Toxic Chemical Release Reporting, Community Right-To-Know, Chemicals and Chemical Categories to which this part applies. National Archives and Records Association (NARA) and the Government Printing Office (GPO), Washington, DC. Final rules current as of Apr 3, 2006.
    3) 49 CFR 172.101 - App. B: Department of Transportation - Table of Hazardous Materials, Appendix B: List of Marine Pollutants. National Archives and Records Administration (NARA) and the Government Printing Office (GPO), Washington, DC. Final rules current as of Aug 29, 2005.
    4) 62 FR 58840: Notice of the National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances - Proposed AEGL Values, Environmental Protection Agency, NAC/AEGL Committee. National Archives and Records Administration (NARA) and the Government Publishing Office (GPO), Washington, DC, 1997.
    5) 65 FR 14186: Notice of the National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances - Proposed AEGL Values, Environmental Protection Agency, NAC/AEGL Committee. National Archives and Records Administration (NARA) and the Government Publishing Office (GPO), Washington, DC, 2000.
    6) 65 FR 39264: Notice of the National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances - Proposed AEGL Values, Environmental Protection Agency, NAC/AEGL Committee. National Archives and Records Administration (NARA) and the Government Publishing Office (GPO), Washington, DC, 2000.
    7) 65 FR 77866: Notice of the National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances - Proposed AEGL Values, Environmental Protection Agency, NAC/AEGL Committee. National Archives and Records Administration (NARA) and the Government Publishing Office (GPO), Washington, DC, 2000.
    8) 66 FR 21940: Notice of the National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances - Proposed AEGL Values, Environmental Protection Agency, NAC/AEGL Committee. National Archives and Records Administration (NARA) and the Government Publishing Office (GPO), Washington, DC, 2001.
    9) 67 FR 7164: Notice of the National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances - Proposed AEGL Values, Environmental Protection Agency, NAC/AEGL Committee. National Archives and Records Administration (NARA) and the Government Publishing Office (GPO), Washington, DC, 2002.
    10) 68 FR 42710: Notice of the National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances - Proposed AEGL Values, Environmental Protection Agency, NAC/AEGL Committee. National Archives and Records Administration (NARA) and the Government Publishing Office (GPO), Washington, DC, 2003.
    11) 69 FR 54144: Notice of the National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances - Proposed AEGL Values, Environmental Protection Agency, NAC/AEGL Committee. National Archives and Records Administration (NARA) and the Government Publishing Office (GPO), Washington, DC, 2004.
    12) AIHA: 2006 Emergency Response Planning Guidelines and Workplace Environmental Exposure Level Guides Handbook, American Industrial Hygiene Association, Fairfax, VA, 2006.
    13) Alaspaa AO, Kuisma MJ, Hoppu K, et al: Out-of-hospital administration of activated charcoal by emergency medical services. Ann Emerg Med 2005; 45:207-12.
    14) American Conference of Governmental Industrial Hygienists : ACGIH 2010 Threshold Limit Values (TLVs(R)) for Chemical Substances and Physical Agents and Biological Exposure Indices (BEIs(R)), American Conference of Governmental Industrial Hygienists, Cincinnati, OH, 2010.
    15) Chyka PA, Seger D, Krenzelok EP, et al: Position paper: Single-dose activated charcoal. Clin Toxicol (Phila) 2005; 43(2):61-87.
    16) DFG: List of MAK and BAT Values 2002, Report No. 38, Deutsche Forschungsgemeinschaft, Commission for the Investigation of Health Hazards of Chemical Compounds in the Work Area, Wiley-VCH, Weinheim, Federal Republic of Germany, 2002.
    17) Dagnone D, Matsui D, & Rieder MJ: Assessment of the palatability of vehicles for activated charcoal in pediatric volunteers. Pediatr Emerg Care 2002; 18:19-21.
    18) Dorr P, Westby M, Dobbs S, et al: Maraviroc (UK-427,857), a potent, orally bioavailable, and selective small-molecule inhibitor of chemokine receptor CCR5 with broad-spectrum anti-human immunodeficiency virus type 1 activity. Antimicrob Agents Chemother 2005; 49(11):4721-4732.
    19) EPA: Search results for Toxic Substances Control Act (TSCA) Inventory Chemicals. US Environmental Protection Agency, Substance Registry System, U.S. EPA's Office of Pollution Prevention and Toxics. Washington, DC. 2005. Available from URL: http://www.epa.gov/srs/.
    20) Elliot CG, Colby TV, & Kelly TM: Charcoal lung. Bronchiolitis obliterans after aspiration of activated charcoal. Chest 1989; 96:672-674.
    21) FDA: Poison treatment drug product for over-the-counter human use; tentative final monograph. FDA: Fed Register 1985; 50:2244-2262.
    22) Golej J, Boigner H, Burda G, et al: Severe respiratory failure following charcoal application in a toddler. Resuscitation 2001; 49:315-318.
    23) Graff GR, Stark J, & Berkenbosch JW: Chronic lung disease after activated charcoal aspiration. Pediatrics 2002; 109:959-961.
    24) Guenther Skokan E, Junkins EP, & Corneli HM: Taste test: children rate flavoring agents used with activated charcoal. Arch Pediatr Adolesc Med 2001; 155:683-686.
    25) Gulick R.M., Su Z., Flexner C., et al: Phase 2 study of the safety and efficacy of vicriviroc, a CCR5 inhibitor, in HIV-1-Infected, treatment-experienced patients: AIDS clinical trials group 5211. J Infect Dis 2007; 196(2):304-312.
    26) Harris CR & Filandrinos D: Accidental administration of activated charcoal into the lung: aspiration by proxy. Ann Emerg Med 1993; 22:1470-1473.
    27) IARC Working Group on the Evaluation of Carcinogenic Risks to Humans : IARC Monographs on the Evaluation of Carcinogenic Risks to Humans: 1,3-Butadiene, Ethylene Oxide and Vinyl Halides (Vinyl Fluoride, Vinyl Chloride and Vinyl Bromide), 97, International Agency for Research on Cancer, Lyon, France, 2008.
    28) IARC Working Group on the Evaluation of Carcinogenic Risks to Humans : IARC Monographs on the Evaluation of Carcinogenic Risks to Humans: Formaldehyde, 2-Butoxyethanol and 1-tert-Butoxypropan-2-ol, 88, International Agency for Research on Cancer, Lyon, France, 2006.
    29) IARC Working Group on the Evaluation of Carcinogenic Risks to Humans : IARC Monographs on the Evaluation of Carcinogenic Risks to Humans: Household Use of Solid Fuels and High-temperature Frying, 95, International Agency for Research on Cancer, Lyon, France, 2010a.
    30) IARC Working Group on the Evaluation of Carcinogenic Risks to Humans : IARC Monographs on the Evaluation of Carcinogenic Risks to Humans: Smokeless Tobacco and Some Tobacco-specific N-Nitrosamines, 89, International Agency for Research on Cancer, Lyon, France, 2007.
    31) IARC Working Group on the Evaluation of Carcinogenic Risks to Humans : IARC Monographs on the Evaluation of Carcinogenic Risks to Humans: Some Non-heterocyclic Polycyclic Aromatic Hydrocarbons and Some Related Exposures, 92, International Agency for Research on Cancer, Lyon, France, 2010.
    32) IARC: List of all agents, mixtures and exposures evaluated to date - IARC Monographs: Overall Evaluations of Carcinogenicity to Humans, Volumes 1-88, 1972-PRESENT. World Health Organization, International Agency for Research on Cancer. Lyon, FranceAvailable from URL: http://monographs.iarc.fr/monoeval/crthall.html. As accessed Oct 07, 2004.
    33) International Agency for Research on Cancer (IARC): IARC monographs on the evaluation of carcinogenic risks to humans: list of classifications, volumes 1-116. International Agency for Research on Cancer (IARC). Lyon, France. 2016. Available from URL: http://monographs.iarc.fr/ENG/Classification/latest_classif.php. As accessed 2016-08-24.
    34) International Agency for Research on Cancer: IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. World Health Organization. Geneva, Switzerland. 2015. Available from URL: http://monographs.iarc.fr/ENG/Classification/. As accessed 2015-08-06.
    35) Kleinman ME, Chameides L, Schexnayder SM, et al: 2010 American Heart Association guidelines for cardiopulmonary resuscitation and emergency cardiovascular care. Part 14: pediatric advanced life support. Circulation 2010; 122(18 Suppl.3):S876-S908.
    36) NFPA: Fire Protection Guide to Hazardous Materials, 13th ed., National Fire Protection Association, Quincy, MA, 2002.
    37) NRC: Acute Exposure Guideline Levels for Selected Airborne Chemicals - Volume 1, Subcommittee on Acute Exposure Guideline Levels, Committee on Toxicology, Board on Environmental Studies and Toxicology, Commission of Life Sciences, National Research Council. National Academy Press, Washington, DC, 2001.
    38) NRC: Acute Exposure Guideline Levels for Selected Airborne Chemicals - Volume 2, Subcommittee on Acute Exposure Guideline Levels, Committee on Toxicology, Board on Environmental Studies and Toxicology, Commission of Life Sciences, National Research Council. National Academy Press, Washington, DC, 2002.
    39) NRC: Acute Exposure Guideline Levels for Selected Airborne Chemicals - Volume 3, Subcommittee on Acute Exposure Guideline Levels, Committee on Toxicology, Board on Environmental Studies and Toxicology, Commission of Life Sciences, National Research Council. National Academy Press, Washington, DC, 2003.
    40) NRC: Acute Exposure Guideline Levels for Selected Airborne Chemicals - Volume 4, Subcommittee on Acute Exposure Guideline Levels, Committee on Toxicology, Board on Environmental Studies and Toxicology, Commission of Life Sciences, National Research Council. National Academy Press, Washington, DC, 2004.
    41) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for 1,2,3-Trimethylbenzene (Proposed). United States Environmental Protection Agency. Washington, DC. 2006k. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d68a&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    42) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for 1,2,4-Trimethylbenzene (Proposed). United States Environmental Protection Agency. Washington, DC. 2006m. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d68a&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    43) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for 1,2-Butylene Oxide (Proposed). United States Environmental Protection Agency. Washington, DC. 2008d. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648083cdbb&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    44) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for 1,2-Dibromoethane (Proposed). United States Environmental Protection Agency. Washington, DC. 2007g. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064802796db&disposition=attachment&contentType=pdf. As accessed 2010-08-18.
    45) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for 1,3,5-Trimethylbenzene (Proposed). United States Environmental Protection Agency. Washington, DC. 2006l. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d68a&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    46) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for 2-Ethylhexyl Chloroformate (Proposed). United States Environmental Protection Agency. Washington, DC. 2007b. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648037904e&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    47) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Acrylonitrile (Proposed). United States Environmental Protection Agency. Washington, DC. 2007c. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648028e6a3&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    48) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Adamsite (Proposed). United States Environmental Protection Agency. Washington, DC. 2007h. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020fd29&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    49) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Agent BZ (3-quinuclidinyl benzilate) (Proposed). United States Environmental Protection Agency. Washington, DC. 2007f. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064803ad507&disposition=attachment&contentType=pdf. As accessed 2010-08-18.
    50) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Allyl Chloride (Proposed). United States Environmental Protection Agency. Washington, DC. 2008. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648039d9ee&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    51) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Aluminum Phosphide (Proposed). United States Environmental Protection Agency. Washington, DC. 2005b. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c5ed&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    52) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Arsenic Trioxide (Proposed). United States Environmental Protection Agency. Washington, DC. 2007m. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480220305&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    53) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Automotive Gasoline Unleaded (Proposed). United States Environmental Protection Agency. Washington, DC. 2009a. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a7cc17&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    54) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Biphenyl (Proposed). United States Environmental Protection Agency. Washington, DC. 2005j. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064801ea1b7&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    55) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Bis-Chloromethyl Ether (BCME) (Proposed). United States Environmental Protection Agency. Washington, DC. 2006n. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648022db11&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    56) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Boron Tribromide (Proposed). United States Environmental Protection Agency. Washington, DC. 2008a. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064803ae1d3&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    57) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Bromine Chloride (Proposed). United States Environmental Protection Agency. Washington, DC. 2007d. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648039732a&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    58) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Bromoacetone (Proposed). United States Environmental Protection Agency. Washington, DC. 2008e. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064809187bf&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    59) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Calcium Phosphide (Proposed). United States Environmental Protection Agency. Washington, DC. 2005d. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c5ed&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    60) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Carbonyl Fluoride (Proposed). United States Environmental Protection Agency. Washington, DC. 2008b. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064803ae328&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    61) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Carbonyl Sulfide (Proposed). United States Environmental Protection Agency. Washington, DC. 2007e. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648037ff26&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    62) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Chlorobenzene (Proposed). United States Environmental Protection Agency. Washington, DC. 2008c. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064803a52bb&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    63) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Cyanogen (Proposed). United States Environmental Protection Agency. Washington, DC. 2008f. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064809187fe&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    64) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Dimethyl Phosphite (Proposed). United States Environmental Protection Agency. Washington, DC. 2009. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a7cbf3&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    65) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Diphenylchloroarsine (Proposed). United States Environmental Protection Agency. Washington, DC. 2007l. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020fd29&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    66) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Ethyl Isocyanate (Proposed). United States Environmental Protection Agency. Washington, DC. 2008h. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648091884e&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    67) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Ethyl Phosphorodichloridate (Proposed). United States Environmental Protection Agency. Washington, DC. 2008i. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480920347&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    68) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Ethylbenzene (Proposed). United States Environmental Protection Agency. Washington, DC. 2008g. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064809203e7&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    69) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Ethyldichloroarsine (Proposed). United States Environmental Protection Agency. Washington, DC. 2007j. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020fd29&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    70) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Germane (Proposed). United States Environmental Protection Agency. Washington, DC. 2008j. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480963906&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    71) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Hexafluoropropylene (Proposed). United States Environmental Protection Agency. Washington, DC. 2006. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064801ea1f5&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    72) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Ketene (Proposed). United States Environmental Protection Agency. Washington, DC. 2007. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020ee7c&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    73) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Magnesium Aluminum Phosphide (Proposed). United States Environmental Protection Agency. Washington, DC. 2005h. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c5ed&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    74) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Magnesium Phosphide (Proposed). United States Environmental Protection Agency. Washington, DC. 2005g. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c5ed&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    75) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Malathion (Proposed). United States Environmental Protection Agency. Washington, DC. 2009k. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064809639df&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    76) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Mercury Vapor (Proposed). United States Environmental Protection Agency. Washington, DC. 2009b. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a8a087&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    77) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Methyl Isothiocyanate (Proposed). United States Environmental Protection Agency. Washington, DC. 2008k. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480963a03&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    78) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Methyl Parathion (Proposed). United States Environmental Protection Agency. Washington, DC. 2008l. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480963a57&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    79) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Methyl tertiary-butyl ether (Proposed). United States Environmental Protection Agency. Washington, DC. 2007a. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064802a4985&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    80) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Methylchlorosilane (Proposed). United States Environmental Protection Agency. Washington, DC. 2005. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c5f4&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    81) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Methyldichloroarsine (Proposed). United States Environmental Protection Agency. Washington, DC. 2007i. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020fd29&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    82) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Methyldichlorosilane (Proposed). United States Environmental Protection Agency. Washington, DC. 2005a. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c646&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    83) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Nitrogen Mustard (HN1 CAS Reg. No. 538-07-8) (Proposed). United States Environmental Protection Agency. Washington, DC. 2006a. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d6cb&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    84) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Nitrogen Mustard (HN2 CAS Reg. No. 51-75-2) (Proposed). United States Environmental Protection Agency. Washington, DC. 2006b. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d6cb&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    85) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Nitrogen Mustard (HN3 CAS Reg. No. 555-77-1) (Proposed). United States Environmental Protection Agency. Washington, DC. 2006c. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d6cb&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    86) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Nitrogen Tetroxide (Proposed). United States Environmental Protection Agency. Washington, DC. 2008n. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648091855b&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    87) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Nitrogen Trifluoride (Proposed). United States Environmental Protection Agency. Washington, DC. 2009l. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480963e0c&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    88) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Parathion (Proposed). United States Environmental Protection Agency. Washington, DC. 2008o. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480963e32&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    89) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Perchloryl Fluoride (Proposed). United States Environmental Protection Agency. Washington, DC. 2009c. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a7e268&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    90) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Perfluoroisobutylene (Proposed). United States Environmental Protection Agency. Washington, DC. 2009d. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a7e26a&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    91) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Phenyl Isocyanate (Proposed). United States Environmental Protection Agency. Washington, DC. 2008p. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648096dd58&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    92) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Phenyl Mercaptan (Proposed). United States Environmental Protection Agency. Washington, DC. 2006d. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020cc0c&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    93) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Phenyldichloroarsine (Proposed). United States Environmental Protection Agency. Washington, DC. 2007k. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020fd29&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    94) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Phorate (Proposed). United States Environmental Protection Agency. Washington, DC. 2008q. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648096dcc8&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    95) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Phosgene (Draft-Revised). United States Environmental Protection Agency. Washington, DC. 2009e. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a8a08a&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    96) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Phosgene Oxime (Proposed). United States Environmental Protection Agency. Washington, DC. 2009f. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a7e26d&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    97) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Potassium Cyanide (Proposed). United States Environmental Protection Agency. Washington, DC. 2009g. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a7cbb9&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    98) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Potassium Phosphide (Proposed). United States Environmental Protection Agency. Washington, DC. 2005c. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c5ed&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    99) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Propargyl Alcohol (Proposed). United States Environmental Protection Agency. Washington, DC. 2006e. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020ec91&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    100) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Selenium Hexafluoride (Proposed). United States Environmental Protection Agency. Washington, DC. 2006f. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020ec55&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    101) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Silane (Proposed). United States Environmental Protection Agency. Washington, DC. 2006g. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d523&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    102) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Sodium Cyanide (Proposed). United States Environmental Protection Agency. Washington, DC. 2009h. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a7cbb9&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    103) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Sodium Phosphide (Proposed). United States Environmental Protection Agency. Washington, DC. 2005i. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c5ed&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    104) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Strontium Phosphide (Proposed). United States Environmental Protection Agency. Washington, DC. 2005f. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c5ed&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    105) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Sulfuryl Chloride (Proposed). United States Environmental Protection Agency. Washington, DC. 2006h. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020ec7a&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    106) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Tear Gas (Proposed). United States Environmental Protection Agency. Washington, DC. 2008s. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648096e551&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    107) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Tellurium Hexafluoride (Proposed). United States Environmental Protection Agency. Washington, DC. 2009i. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a7e2a1&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    108) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Tert-Octyl Mercaptan (Proposed). United States Environmental Protection Agency. Washington, DC. 2008r. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648096e5c7&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    109) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Tetramethoxysilane (Proposed). United States Environmental Protection Agency. Washington, DC. 2006j. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d632&disposition=attachment&contentType=pdf. As accessed 2010-08-17.
    110) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Trimethoxysilane (Proposed). United States Environmental Protection Agency. Washington, DC. 2006i. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d632&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    111) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Trimethyl Phosphite (Proposed). United States Environmental Protection Agency. Washington, DC. 2009j. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a7d608&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    112) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Trimethylacetyl Chloride (Proposed). United States Environmental Protection Agency. Washington, DC. 2008t. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648096e5cc&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    113) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Zinc Phosphide (Proposed). United States Environmental Protection Agency. Washington, DC. 2005e. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c5ed&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    114) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for n-Butyl Isocyanate (Proposed). United States Environmental Protection Agency. Washington, DC. 2008m. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064808f9591&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    115) National Institute for Occupational Safety and Health: NIOSH Pocket Guide to Chemical Hazards, U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, Cincinnati, OH, 2007.
    116) National Research Council : Acute exposure guideline levels for selected airborne chemicals, 5, National Academies Press, Washington, DC, 2007.
    117) National Research Council: Acute exposure guideline levels for selected airborne chemicals, 6, National Academies Press, Washington, DC, 2008.
    118) National Research Council: Acute exposure guideline levels for selected airborne chemicals, 7, National Academies Press, Washington, DC, 2009.
    119) National Research Council: Acute exposure guideline levels for selected airborne chemicals, 8, National Academies Press, Washington, DC, 2010.
    120) None Listed: Position paper: cathartics. J Toxicol Clin Toxicol 2004; 42(3):243-253.
    121) Panel on Treatment of HIV-Infected Pregnant Women and Prevention of Perinatal Transmission: Recommendations for use of antiretroviral drugs in pregnant HIV-1-infected women for maternal health and interventions to reduce perinatal HIV transmission in the United States. AIDSinfo, U.S. Department of Health and Human Services. Rockville, MD. 2012. Available from URL: http://aidsinfo.nih.gov/guidelines/html/3/perinatal-guidelines/0/. As accessed 2012-08-02.
    122) Peberdy MA , Callaway CW , Neumar RW , et al: 2010 American Heart Association guidelines for cardiopulmonary resuscitation and emergency cardiovascular care science. Part 9: post–cardiac arrest care. Circulation 2010; 122(18 Suppl 3):S768-S786.
    123) Pollack MM, Dunbar BS, & Holbrook PR: Aspiration of activated charcoal and gastric contents. Ann Emerg Med 1981; 10:528-529.
    124) Product Information: SELZENTRY oral tablets, maraviroc oral tablets. Pfizer Labs, New York, NY, 2010.
    125) Product Information: SELZENTRY(R) oral tablets, maraviroc oral tablets. Pfizer Labs, New York, NY, 2007.
    126) Product Information: SELZENTRY(R) oral tablets, maraviroc oral tablets. ViiV Healthcare (per FDA), Research Triangle Park, NC, 2013.
    127) Product Information: dopamine hcl, 5% dextrose IV injection, dopamine hcl, 5% dextrose IV injection. Hospira,Inc, Lake Forest, IL, 2004.
    128) Product Information: norepinephrine bitartrate injection, norepinephrine bitartrate injection. Sicor Pharmaceuticals,Inc, Irvine, CA, 2005.
    129) Rau NR, Nagaraj MV, Prakash PS, et al: Fatal pulmonary aspiration of oral activated charcoal. Br Med J 1988; 297:918-919.
    130) Schurmann D, Fatkenheuer G, Reynes J, et al: Antiviral activity, pharmacokinetics and safety of vicriviroc, an oral CCR5 antagonist, during 14-day monotherapy in HIV-infected adults. AIDS 2007; 21(10):1293-1299.
    131) Spiller HA & Rogers GC: Evaluation of administration of activated charcoal in the home. Pediatrics 2002; 108:E100.
    132) Thakore S & Murphy N: The potential role of prehospital administration of activated charcoal. Emerg Med J 2002; 19:63-65.
    133) U.S. Department of Energy, Office of Emergency Management: Protective Action Criteria (PAC) with AEGLs, ERPGs, & TEELs: Rev. 26 for chemicals of concern. U.S. Department of Energy, Office of Emergency Management. Washington, DC. 2010. Available from URL: http://www.hss.doe.gov/HealthSafety/WSHP/Chem_Safety/teel.html. As accessed 2011-06-27.
    134) U.S. Department of Health and Human Services, Public Health Service, National Toxicology Project : 11th Report on Carcinogens. U.S. Department of Health and Human Services, Public Health Service, National Toxicology Program. Washington, DC. 2005. Available from URL: http://ntp.niehs.nih.gov/INDEXA5E1.HTM?objectid=32BA9724-F1F6-975E-7FCE50709CB4C932. As accessed 2011-06-27.
    135) U.S. Environmental Protection Agency: Discarded commercial chemical products, off-specification species, container residues, and spill residues thereof. Environmental Protection Agency's (EPA) Resource Conservation and Recovery Act (RCRA); List of hazardous substances and reportable quantities 2010b; 40CFR(261.33, e-f):77-.
    136) U.S. Environmental Protection Agency: Integrated Risk Information System (IRIS). U.S. Environmental Protection Agency. Washington, DC. 2011. Available from URL: http://cfpub.epa.gov/ncea/iris/index.cfm?fuseaction=iris.showSubstanceList&list_type=date. As accessed 2011-06-21.
    137) U.S. Environmental Protection Agency: List of Radionuclides. U.S. Environmental Protection Agency. Washington, DC. 2010a. Available from URL: http://www.gpo.gov/fdsys/pkg/CFR-2010-title40-vol27/pdf/CFR-2010-title40-vol27-sec302-4.pdf. As accessed 2011-06-17.
    138) U.S. Environmental Protection Agency: List of hazardous substances and reportable quantities. U.S. Environmental Protection Agency. Washington, DC. 2010. Available from URL: http://www.gpo.gov/fdsys/pkg/CFR-2010-title40-vol27/pdf/CFR-2010-title40-vol27-sec302-4.pdf. As accessed 2011-06-17.
    139) U.S. Environmental Protection Agency: The list of extremely hazardous substances and their threshold planning quantities (CAS Number Order). U.S. Environmental Protection Agency. Washington, DC. 2010c. Available from URL: http://www.gpo.gov/fdsys/pkg/CFR-2010-title40-vol27/pdf/CFR-2010-title40-vol27-part355.pdf. As accessed 2011-06-17.
    140) U.S. Occupational Safety and Health Administration: Part 1910 - Occupational safety and health standards (continued) Occupational Safety, and Health Administration's (OSHA) list of highly hazardous chemicals, toxics and reactives. Subpart Z - toxic and hazardous substances. CFR 2010 2010; Vol6(SEC1910):7-.
    141) U.S. Occupational Safety, and Health Administration (OSHA): Process safety management of highly hazardous chemicals. 29 CFR 2010 2010; 29(1910.119):348-.
    142) United States Environmental Protection Agency Office of Pollution Prevention and Toxics: Acute Exposure Guideline Levels (AEGLs) for Vinyl Acetate (Proposed). United States Environmental Protection Agency. Washington, DC. 2006. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d6af&disposition=attachment&contentType=pdf. As accessed 2010-08-16.