6.5.1) PREVENTION OF ABSORPTION/PREHOSPITAL
A) Due to the irritant nature of this substance and theoretical risk of aspiration pneumonitis, prehospital gastrointestinal decontamination is not advised.
6.5.2) PREVENTION OF ABSORPTION
A) Due to the irritant nature of this substance, relatively benign clinical course in most cases involving systemic absorption, risk of aspiration, and the role of GI endoscopy in concentrated eugenol ingestions, activated charcoal is not routinely recommended.
6.5.3) TREATMENT
A) SUPPORT 1) MANAGEMENT OF MILD TO MODERATE TOXICITY a) Treatment is symptomatic and supportive. In patients with significant ingestions of concentrated eugenol, endoscopy should be performed 12 to 24 hours post-ingestion to assess severity. Monitor the patient for respiratory distress. If a cough or breathing difficulty develops, evaluate for respiratory tract irritation, bronchitis, and pneumonitis.
2) MANAGEMENT OF SEVERE TOXICITY a) Treatment is symptomatic and supportive. Treat severe metabolic acidosis (pH less than 7.1) with sodium bicarbonate 1 to 2 mEq/kg. Treat seizures with IV benzodiazepines; barbiturates or propofol may be needed if seizures persist or recur.
B) MONITORING OF PATIENT 1) Monitor pulse oximetry and/or arterial blood gases, chest radiograph, and pulmonary function tests in patients with respiratory signs/symptoms. 2) In severe poisoning cases, monitor electrolytes, renal and hepatic function tests, serum glucose, complete blood count and coagulation studies as indicated.
C) ENDOSCOPIC PROCEDURE 1) Endoscopy should be performed 12 to 24 hours postingestion of concentrated eugenol, to assess severity. The esophagoscope should not be passed beyond the circumferential first burn to avoid risk of perforation.
D) ACIDOSIS 1) METABOLIC ACIDOSIS: Treat severe metabolic acidosis (pH less than 7.1) with sodium bicarbonate, 1 to 2 mEq/kg is a reasonable starting dose(Kraut & Madias, 2010). Monitor serum electrolytes and arterial or venous blood gases to guide further therapy.
E) SEIZURE 1) SUMMARY a) Attempt initial control with a benzodiazepine (eg, diazepam, lorazepam). If seizures persist or recur, administer phenobarbital or propofol. b) Monitor for respiratory depression, hypotension, and dysrhythmias. Endotracheal intubation should be performed in patients with persistent seizures. c) Evaluate for hypoxia, electrolyte disturbances, and hypoglycemia (or, if immediate bedside glucose testing is not available, treat with intravenous dextrose).
2) DIAZEPAM a) ADULT DOSE: Initially 5 to 10 mg IV, OR 0.15 mg/kg IV up to 10 mg per dose up to a rate of 5 mg/minute; may be repeated every 5 to 20 minutes as needed (Brophy et al, 2012; Prod Info diazepam IM, IV injection, 2008; Manno, 2003). b) PEDIATRIC DOSE: 0.1 to 0.5 mg/kg IV over 2 to 5 minutes; up to a maximum of 10 mg/dose. May repeat dose every 5 to 10 minutes as needed (Loddenkemper & Goodkin, 2011; Hegenbarth & American Academy of Pediatrics Committee on Drugs, 2008). c) Monitor for hypotension, respiratory depression, and the need for endotracheal intubation. Consider a second agent if seizures persist or recur after repeated doses of diazepam .
3) NO INTRAVENOUS ACCESS a) DIAZEPAM may be given rectally or intramuscularly (Manno, 2003). RECTAL DOSE: CHILD: Greater than 12 years: 0.2 mg/kg; 6 to 11 years: 0.3 mg/kg; 2 to 5 years: 0.5 mg/kg (Brophy et al, 2012). b) MIDAZOLAM has been used intramuscularly and intranasally, particularly in children when intravenous access has not been established. ADULT DOSE: 0.2 mg/kg IM, up to a maximum dose of 10 mg (Brophy et al, 2012). PEDIATRIC DOSE: INTRAMUSCULAR: 0.2 mg/kg IM, up to a maximum dose of 7 mg (Chamberlain et al, 1997) OR 10 mg IM (weight greater than 40 kg); 5 mg IM (weight 13 to 40 kg); INTRANASAL: 0.2 to 0.5 mg/kg up to a maximum of 10 mg/dose (Loddenkemper & Goodkin, 2011; Brophy et al, 2012). BUCCAL midazolam, 10 mg, has been used in adolescents and older children (5-years-old or more) to control seizures when intravenous access was not established (Scott et al, 1999).
4) LORAZEPAM a) MAXIMUM RATE: The rate of intravenous administration of lorazepam should not exceed 2 mg/min (Brophy et al, 2012; Prod Info lorazepam IM, IV injection, 2008). b) ADULT DOSE: 2 to 4 mg IV initially; repeat every 5 to 10 minutes as needed, if seizures persist (Manno, 2003; Brophy et al, 2012). c) PEDIATRIC DOSE: 0.05 to 0.1 mg/kg IV over 2 to 5 minutes, up to a maximum of 4 mg/dose; may repeat in 5 to 15 minutes as needed, if seizures continue (Brophy et al, 2012; Loddenkemper & Goodkin, 2011; Hegenbarth & American Academy of Pediatrics Committee on Drugs, 2008; Sreenath et al, 2009; Chin et al, 2008).
5) PHENOBARBITAL a) ADULT LOADING DOSE: 20 mg/kg IV at an infusion rate of 50 to 100 mg/minute IV. An additional 5 to 10 mg/kg dose may be given 10 minutes after loading infusion if seizures persist or recur (Brophy et al, 2012). b) Patients receiving high doses will require endotracheal intubation and may require vasopressor support (Brophy et al, 2012). c) PEDIATRIC LOADING DOSE: 20 mg/kg may be given as single or divided application (2 mg/kg/minute in children weighing less than 40 kg up to 100 mg/min in children weighing greater than 40 kg). A plasma concentration of about 20 mg/L will be achieved by this dose (Loddenkemper & Goodkin, 2011). d) REPEAT PEDIATRIC DOSE: Repeat doses of 5 to 20 mg/kg may be given every 15 to 20 minutes if seizures persist, with cardiorespiratory monitoring (Loddenkemper & Goodkin, 2011). e) MONITOR: For hypotension, respiratory depression, and the need for endotracheal intubation (Loddenkemper & Goodkin, 2011; Manno, 2003). f) SERUM CONCENTRATION MONITORING: Monitor serum concentrations over the next 12 to 24 hours. Therapeutic serum concentrations of phenobarbital range from 10 to 40 mcg/mL, although the optimal plasma concentration for some individuals may vary outside this range (Hvidberg & Dam, 1976; Choonara & Rane, 1990; AMA Department of Drugs, 1992).
6) OTHER AGENTS a) If seizures persist after phenobarbital, propofol or pentobarbital infusion, or neuromuscular paralysis with general anesthesia (isoflurane) and continuous EEG monitoring should be considered (Manno, 2003). Other anticonvulsants can be considered (eg, valproate sodium, levetiracetam, lacosamide, topiramate) if seizures persist or recur; however, there is very little data regarding their use in toxin induced seizures, controlled trials are not available to define the optimal dosage ranges for these agents in status epilepticus (Brophy et al, 2012): 1) VALPROATE SODIUM: ADULT DOSE: An initial dose of 20 to 40 mg/kg IV, at a rate of 3 to 6 mg/kg/minute; may give an additional dose of 20 mg/kg 10 minutes after loading infusion. PEDIATRIC DOSE: 1.5 to 3 mg/kg/minute (Brophy et al, 2012). 2) LEVETIRACETAM: ADULT DOSE: 1000 to 3000 mg IV, at a rate of 2 to 5 mg/kg/min IV. PEDIATRIC DOSE: 20 to 60 mg/kg IV (Brophy et al, 2012; Loddenkemper & Goodkin, 2011). 3) LACOSAMIDE: ADULT DOSE: 200 to 400 mg IV; 200 mg IV over 15 minutes (Brophy et al, 2012). PEDIATRIC DOSE: In one study, median starting doses of 1.3 mg/kg/day and maintenance doses of 4.7 mg/kg/day were used in children 8 years and older (Loddenkemper & Goodkin, 2011). 4) TOPIRAMATE: ADULT DOSE: 200 to 400 mg nasogastric/orally OR 300 to 1600 mg/day orally divided in 2 to 4 times daily (Brophy et al, 2012).
F) ACUTE LUNG INJURY 1) ONSET: Onset of acute lung injury after toxic exposure may be delayed up to 24 to 72 hours after exposure in some cases. 2) NON-PHARMACOLOGIC TREATMENT: The treatment of acute lung injury is primarily supportive (Cataletto, 2012). Maintain adequate ventilation and oxygenation with frequent monitoring of arterial blood gases and/or pulse oximetry. If a high FIO2 is required to maintain adequate oxygenation, mechanical ventilation and positive-end-expiratory pressure (PEEP) may be required; ventilation with small tidal volumes (6 mL/kg) is preferred if ARDS develops (Haas, 2011; Stolbach & Hoffman, 2011). a) To minimize barotrauma and other complications, use the lowest amount of PEEP possible while maintaining adequate oxygenation. Use of smaller tidal volumes (6 mL/kg) and lower plateau pressures (30 cm water or less) has been associated with decreased mortality and more rapid weaning from mechanical ventilation in patients with ARDS (Brower et al, 2000). More treatment information may be obtained from ARDS Clinical Network website, NIH NHLBI ARDS Clinical Network Mechanical Ventilation Protocol Summary, http://www.ardsnet.org/node/77791 (NHLBI ARDS Network, 2008)
3) FLUIDS: Crystalloid solutions must be administered judiciously. Pulmonary artery monitoring may help. In general the pulmonary artery wedge pressure should be kept relatively low while still maintaining adequate cardiac output, blood pressure and urine output (Stolbach & Hoffman, 2011). 4) ANTIBIOTICS: Indicated only when there is evidence of infection (Artigas et al, 1998). 5) EXPERIMENTAL THERAPY: Partial liquid ventilation has shown promise in preliminary studies (Kollef & Schuster, 1995). 6) CALFACTANT: In a multicenter, randomized, blinded trial, endotracheal instillation of 2 doses of 80 mL/m(2) calfactant (35 mg/mL of phospholipid suspension in saline) in infants, children, and adolescents with acute lung injury resulted in acute improvement in oxygenation and lower mortality; however, no significant decrease in the course of respiratory failure measured by duration of ventilator therapy, intensive care unit, or hospital stay was noted. Adverse effects (transient hypoxia and hypotension) were more frequent in calfactant patients, but these effects were mild and did not require withdrawal from the study (Wilson et al, 2005). 7) However, in a multicenter, randomized, controlled, and masked trial, endotracheal instillation of up to 3 doses of calfactant (30 mg) in adults only with acute lung injury/ARDS due to direct lung injury was not associated with improved oxygenation and longer term benefits compared to the placebo group. It was also associated with significant increases in hypoxia and hypotension (Willson et al, 2015). G) HYPERSENSITIVITY REACTION 1) SUMMARY a) Mild to moderate allergic reactions may be treated with antihistamines with or without inhaled beta adrenergic agonists, corticosteroids or epinephrine. Treatment of severe anaphylaxis also includes oxygen supplementation, aggressive airway management, epinephrine, ECG monitoring, and IV fluids.
2) BRONCHOSPASM a) ALBUTEROL 1) ADULT: 2.5 to 5 milligrams in 2 to 4.5 milliliters of normal saline delivered per nebulizer every 20 minutes up to 3 doses. If incomplete response administer 2.5 to 10 mg every 1 to 4 hours as needed, or 10 to 15 mg/hr by continuous nebulization as needed (National Heart,Lung,and Blood Institute, 2007). CHILD: 0.15 milligram/kilogram (minimum 2.5 milligrams) per nebulizer every 20 minutes up to 3 doses. If incomplete response administer 0.15 to 0.3 mg/kg (up to 10 mg) every 1 to 4 hours as needed, or 0.5 mg/kg/hr by continuous nebulization (National Heart,Lung,and Blood Institute, 2007).
3) CORTICOSTEROIDS a) Consider systemic corticosteroids in patients with significant bronchospasm. b) PREDNISONE: ADULT: 40 to 80 milligrams/day. CHILD: 1 to 2 milligrams/kilogram/day (maximum 60 mg) in 1 to 2 divided doses divided twice daily (National Heart,Lung,and Blood Institute, 2007).
4) MILD CASES a) DIPHENHYDRAMINE 1) SUMMARY: Oral diphenhydramine, as well as other H1 antihistamines can be used as indicated (Lieberman et al, 2010). 2) ADULT: 50 milligrams orally, or 10 to 50 mg intravenously at a rate not to exceed 25 mg/min or may be given by deep intramuscular injection. A total of 100 mg may be administered if needed. Maximum daily dosage is 400 mg (Prod Info diphenhydramine HCl intravenous injection solution, intramuscular injection solution, 2013). 3) CHILD: 5 mg/kg/24 hours or 150 mg/m(2)/24 hours. Divided into 4 doses, administered intravenously at a rate not exceeding 25 mg/min or by deep intramuscular injection. Maximum daily dosage is 300 mg (Prod Info diphenhydramine HCl intravenous injection solution, intramuscular injection solution, 2013).
5) MODERATE CASES a) EPINEPHRINE: INJECTABLE SOLUTION: It should be administered early in patients by IM injection. Using a 1:1000 (1 mg/mL) solution of epinephrine. Initial Dose: 0.01 mg/kg intramuscularly with a maximum dose of 0.5 mg in adults and 0.3 mg in children. The dose may be repeated every 5 to 15 minutes, if no clinical improvement. Most patients respond to 1 or 2 doses (Nowak & Macias, 2014).
6) SEVERE CASES a) EPINEPHRINE 1) INTRAVENOUS BOLUS: ADULT: 1 mg intravenously as a 1:10,000 (0.1 mg/mL) solution; CHILD: 0.01 mL/kg intravenously to a maximum single dose of 1 mg given as a 1:10,000 (0.1 mg/mL) solution. It can be repeated every 3 to 5 minutes as needed. The dose can also be given by the intraosseous route if IV access cannot be established (Lieberman et al, 2015). ALTERNATIVE ROUTE: ENDOTRACHEAL ADMINISTRATION: If IV/IO access is unavailable. DOSE: ADULT: Administer 2 to 2.5 mg of 1:1000 (1 mg/mL) solution diluted in 5 to 10 mL of sterile water via endotracheal tube. CHILD: DOSE: 0.1 mg/kg to a maximum of 2.5 mg administered as a 1:1000 (1 mg/mL) solution diluted in 5 to 10 mL of sterile water via endotracheal tube (Lieberman et al, 2015). 2) INTRAVENOUS INFUSION: Intravenous administration may be considered in patients poorly responsive to IM or SubQ epinephrine. An epinephrine infusion may be prepared by adding 1 mg (1 mL of 1:1000 (1 mg/mL) solution) to 250 mL D5W, yielding a concentration of 4 mcg/mL, and infuse this solution IV at a rate of 1 mcg/min to 10 mcg/min (maximum rate). CHILD: A dosage of 0.01 mg/kg (0.1 mL/kg of a 1:10,000 (0.1 mg/mL) solution up to 10 mcg/min (maximum dose 0.3 mg) is recommended for children (Lieberman et al, 2010). Careful titration of a continuous infusion of IV epinephrine, based on the severity of the reaction, along with a crystalloid infusion can be considered in the treatment of anaphylactic shock. It appears to be a reasonable alternative to IV boluses, if the patient is not in cardiac arrest (Vanden Hoek,TL,et al).
7) AIRWAY MANAGEMENT a) OXYGEN: 5 to 10 liters/minute via high flow mask. b) INTUBATION: Perform early if any stridor or signs of airway obstruction. c) CRICOTHYROTOMY: Use if unable to intubate with complete airway obstruction (Vanden Hoek,TL,et al). d) BRONCHODILATORS are recommended for mild to severe bronchospasm. e) ALBUTEROL: ADULT: 2.5 to 5 milligrams in 2 to 4.5 milliliters of normal saline delivered per nebulizer every 20 minutes up to 3 doses. If incomplete response administer 2.5 to 10 mg every 1 to 4 hours as needed, or 10 to 15 mg/hr by continuous nebulization as needed (National Heart,Lung,and Blood Institute, 2007). f) ALBUTEROL: CHILD: 0.15 milligram/kilogram (minimum 2.5 milligrams) per nebulizer every 20 minutes up to 3 doses. If incomplete response administer 0.15 to 0.3 milligram/kilogram (maximum 10 milligrams) every 1 to 4 hours as needed OR administer 0.5 mg/kg/hr by continuous nebulization (National Heart,Lung,and Blood Institute, 2007).
8) MONITORING a) CARDIAC MONITOR: All complicated cases. b) IV ACCESS: Routine in all complicated cases.
9) HYPOTENSION a) If hypotensive give 500 to 2000 milliliters crystalloid initially (20 milliliters/kilogram in children) and titrate to desired effect (stabilization of vital signs, mentation, urine output); adults may require up to 6 to 10 L/24 hours. Central venous or pulmonary artery pressure monitoring is recommended in patients with persistent hypotension. 1) VASOPRESSORS: Should be used in refractory cases unresponsive to repeated doses of epinephrine and after vigorous intravenous crystalloid rehydration (Lieberman et al, 2010). 2) DOPAMINE: Initial Dose: 2 to 20 micrograms/kilogram/minute intravenously; titrate to maintain systolic blood pressure greater than 90 mm Hg (Lieberman et al, 2010).
10) H1 and H2 ANTIHISTAMINES a) SUMMARY: Antihistamines are second-line therapy and are used as supportive therapy and should not be used in place of epinephrine (Lieberman et al, 2010). 1) DIPHENHYDRAMINE: ADULT: 25 to 50 milligrams via a slow intravenous infusion or IM. PEDIATRIC: 1 milligram/kilogram via slow intravenous infusion or IM up to 50 mg in children (Lieberman et al, 2010).
b) RANITIDINE: ADULT: 1 mg/kg parenterally; CHILD: 12.5 to 50 mg parenterally. If the intravenous route is used, ranitidine should be infused over 10 to 15 minutes or diluted in 5% dextrose to a volume of 20 mL and injected over 5 minutes (Lieberman et al, 2010). c) Oral diphenhydramine, as well as other H1 antihistamines, can also be used as indicated (Lieberman et al, 2010). 11) DYSRHYTHMIAS a) Dysrhythmias and cardiac dysfunction may occur primarily or iatrogenically as a result of pharmacologic treatment (epinephrine) (Vanden Hoek,TL,et al). Monitor and correct serum electrolytes, oxygenation and tissue perfusion. Treat with antiarrhythmic agents as indicated.
12) OTHER THERAPIES a) There have been a few reports of patients with anaphylaxis, with or without cardiac arrest, that have responded to vasopressin therapy that did not respond to standard therapy. Although there are no randomized controlled trials, other alternative vasoactive therapies (ie, vasopressin, norepinephrine, methoxamine, and metaraminol) may be considered in patients in cardiac arrest secondary to anaphylaxis that do not respond to epinephrine (Vanden Hoek,TL,et al).
H) EXPERIMENTAL THERAPY 1) N-ACETYLCYSTEINE/CASE REPORT: A 3-month-old infant developed fulminant hepatic failure, coagulopathy, and hypoglycemia after ingesting approximately 8 mL of clove oil. Thirty-five hours after ingestion, the patient's AST was greater than 10,000 units/liter and, at 38 hours post-ingestion, her INR and ALT peaked at 3.86 and 8761 units/liter, respectively. Intravenous N-acetylcysteine therapy was initiated approximately 32 hours post-ingestion and continued until approximately 84 hours post-ingestion (after the patient's INR had decreased to less than 2.0). The patient recovered and was discharged home 5 days post-ingestion (Eisen et al, 2004). The intravenous N-acetylcysteine dosing regimen initiated was the standard 20-hour protocol typically used for acetaminophen poisoning. Please refer to the ACETAMINOPHEN-ACUTE management for further information. a) Animal studies indicate that eugenol in rat hepatocytes causes depletion of hepatic glutathione and conjugation of eugenol with glutathione, sulphate, and glucuronic acid, resulting in hepatotoxicity similar to that of acetaminophen-induced hepatotoxicity (Eisen et al, 2004).
|