MOBILE VIEW  | 

ETHYL ACRYLATE

Classification   |    Detailed evidence-based information

Therapeutic Toxic Class

    A) Ethyl acrylate monomer is the ester of acrylic acid and ethanol. It is a reactive monomer for making acrylic resins and emulsions and solution polymers.
    B) It was formerly used as a fragrance and flavoring agent in food.

Specific Substances

    1) 2-Propenoic acid ethyl ester
    2) Acrylic acid ethyl ester
    3) Acrylate d'ethyle
    4) Acrylsaeureaethylester
    5) Akrylanem ethylu
    6) Carboset 511
    7) Ethoxycarbonylethylene
    8) Ethylacrylaat
    9) Ethyl acrylate
    10) Ethyl acrylate, inhibited
    11) Ethylakrylat
    12) Ethylester kyseliny akrylove
    13) Ethyl propenoate
    14) Ethyl 2-propenoate
    15) Etil acrilato
    16) Etilacrilatului
    17) Latol 28-tall oil fatty acid
    18) NCI-c 50384
    19) NIOSH/RTECS AT 0700000
    20) STCC 4907215
    21) Molecular Formula: C5-H8-O2
    22) CAS 140-88-5
    23) ETHYLAKRYLAL (CZECH)
    1.2.1) MOLECULAR FORMULA
    1) C5-H8-O2

Available Forms Sources

    A) FORMS
    1) Ethyl acrylate is a colorless, volatile, flammable liquid. Its odor is described as sharp, acrid, pungent, fragrant, ester-like, acrylate, fruity, or penetrating (Bingham et al, 2001; AAR, 1996; ACGIH, 1991; Lewis, 1996; Sittig, 1991; CHRIS , 1999; IARC, 1986).
    2) Ethyl acrylate monomer is the ester of acrylic acid and ethanol. It is a reactive monomer used for making acrylic resins and emulsion and solution polymers (Bingham et al, 2001; ACGIH, 1991).
    B) SOURCES
    1) Ethyl acrylate is prepared from ethylene chlorohydrin or acrylonitrile, ethanol, and sulfuric acid, or by a catalyzed oxo reaction from acetylene, carbon monoxide, and ethanol (Budavari, 1996). It is also manufactured by oxidation of propylene to acrolein then to acrylic acid, with the acid being treated with ethanol to yield the ethyl ester (Bingham et al, 2001).
    C) USES
    1) It is used in concentrations up to 0.3 percent in paints and in the manufacture of latex paint, dirt release agents, plastic films, dental plates, surgical prostheses, acrylic fibers, adhesives, binders, contact lenses, and plexiglass; for surface treatment of textile fibers, paper, and leather; and in thermosetting acrylic enamels in automotive and appliance coatings (ACGIH, 1991) Hathaway, 1991; Hathaway, 1996; (CHRIS , 1985; IARC, 1986; HSDB , 2001).
    2) Ethyl acrylate was formerly used as an additive in food as a fragrance and flavoring agent (Bingham et al, 2001; ACGIH, 1991). It is a GRAS (generally recognized as safe) food additive (IARC, 1986).
    3) Ethyl acrylate can be released into the workplace air during carbon dioxide laser cutting operations on plexiglass, acrylic, and lucite plastics (Tharr, 1991).

Life Support

    A) This overview assumes that basic life support measures have been instituted.

Clinical Effects

    0.2.1) SUMMARY OF EXPOSURE
    A) Ethyl acrylate may be toxic by ingestion, inhalation, and from dermal exposure. Ingestion can result in cardiovascular collapse, severe respiratory insufficiency, CNS stimulation or depression, and seizures.
    B) Inhalation may cause drowsiness, nausea, headache, extreme irritation of the respiratory tract, noncardiogenic pulmonary edema, or seizures. The liquid can cause burns of the skin and eyes and may be a skin sensitizer.
    C) Liver and kidney injuries have occurred in experimental animals.
    D) Ethyl acrylate is a probable carcinogen in experimental animals, inducing chromosome damage in experimental studies with animals. IARC classifies this compound in its group 2B (possible human carcinogen).
    0.2.4) HEENT
    A) Highly irritating to mucous membranes and eyes. Strong lacrimator. May cause corneal burns.
    0.2.8) GASTROINTESTINAL
    A) Prolonged inhalation may cause nausea. Irritation of the GI tract may occur.
    0.2.14) DERMATOLOGIC
    A) Dermal irritation and sensitization may occur.

Laboratory Monitoring

    A) Monitoring urine mercapturic acid levels may be helpful as an index of exposure, but are not specific.
    B) If respiratory tract irritation or respiratory depression is evident, monitor arterial blood gases, chest x-ray, and pulmonary function tests.
    C) A number of chemicals produce abnormalities of the hematopoietic system, liver, and kidneys. Monitoring complete blood count, urinalysis, and liver and kidney function tests is suggested for patients with significant exposure.

Treatment Overview

    0.4.2) ORAL/PARENTERAL EXPOSURE
    A) Do NOT induce emesis.
    B) Significant esophageal or gastrointestinal tract irritation or burns may occur following ingestion. The possible benefit of early removal of some ingested material by cautious gastric lavage must be weighed against potential complications of bleeding or perforation.
    C) GASTRIC LAVAGE: Consider after ingestion of a potentially life-threatening amount of poison if it can be performed soon after ingestion (generally within 1 hour). Protect airway by placement in the head down left lateral decubitus position or by endotracheal intubation. Control any seizures first.
    1) CONTRAINDICATIONS: Loss of airway protective reflexes or decreased level of consciousness in unintubated patients; following ingestion of corrosives; hydrocarbons (high aspiration potential); patients at risk of hemorrhage or gastrointestinal perforation; and trivial or non-toxic ingestion.
    D) ACTIVATED CHARCOAL: Administer charcoal as a slurry (240 mL water/30 g charcoal). Usual dose: 25 to 100 g in adults/adolescents, 25 to 50 g in children (1 to 12 years), and 1 g/kg in infants less than 1 year old.
    E) SEIZURES: Administer a benzodiazepine; DIAZEPAM (ADULT: 5 to 10 mg IV initially; repeat every 5 to 20 minutes as needed. CHILD: 0.1 to 0.5 mg/kg IV over 2 to 5 minutes; up to a maximum of 10 mg/dose. May repeat dose every 5 to 10 minutes as needed) or LORAZEPAM (ADULT: 2 to 4 mg IV initially; repeat every 5 to 10 minutes as needed, if seizures persist. CHILD: 0.05 to 0.1 mg/kg IV over 2 to 5 minutes, up to a maximum of 4 mg/dose; may repeat in 5 to 15 minutes as needed, if seizures continue).
    1) Consider phenobarbital or propofol if seizures recur after diazepam 30 mg (adults) or 10 mg (children greater than 5 years).
    2) Monitor for hypotension, dysrhythmias, respiratory depression, and need for endotracheal intubation. Evaluate for hypoglycemia, electrolyte disturbances, and hypoxia.
    F) Observe patients with ingestion carefully for the possible development of esophageal or gastrointestinal tract irritation or burns. If signs or symptoms of esophageal irritation or burns are present, consider endoscopy to determine the extent of injury.
    0.4.3) INHALATION EXPOSURE
    A) INHALATION: Move patient to fresh air. Monitor for respiratory distress. If cough or difficulty breathing develops, evaluate for respiratory tract irritation, bronchitis, or pneumonitis. Administer oxygen and assist ventilation as required. Treat bronchospasm with an inhaled beta2-adrenergic agonist. Consider systemic corticosteroids in patients with significant bronchospasm.
    B) ACUTE LUNG INJURY: Maintain ventilation and oxygenation and evaluate with frequent arterial blood gases and/or pulse oximetry monitoring. Early use of PEEP and mechanical ventilation may be needed.
    0.4.4) EYE EXPOSURE
    A) DECONTAMINATION: Remove contact lenses and irrigate exposed eyes with copious amounts of room temperature 0.9% saline or water for at least 15 minutes. If irritation, pain, swelling, lacrimation, or photophobia persist after 15 minutes of irrigation, the patient should be seen in a healthcare facility.
    0.4.5) DERMAL EXPOSURE
    A) OVERVIEW
    1) DECONTAMINATION: Remove contaminated clothing and jewelry and place them in plastic bags. Wash exposed areas with soap and water for 10 to 15 minutes with gentle sponging to avoid skin breakdown. A physician may need to examine the area if irritation or pain persists (Burgess et al, 1999).
    2) Treat dermal irritation or burns with standard topical therapy. Patients developing dermal hypersensitivity reactions may require treatment with systemic or topical corticosteroids or antihistamines.

Range Of Toxicity

    A) Exposure to an airborne concentration of 25 ppm for more than a few minutes is intolerable.

Summary Of Exposure

    A) Ethyl acrylate may be toxic by ingestion, inhalation, and from dermal exposure. Ingestion can result in cardiovascular collapse, severe respiratory insufficiency, CNS stimulation or depression, and seizures.
    B) Inhalation may cause drowsiness, nausea, headache, extreme irritation of the respiratory tract, noncardiogenic pulmonary edema, or seizures. The liquid can cause burns of the skin and eyes and may be a skin sensitizer.
    C) Liver and kidney injuries have occurred in experimental animals.
    D) Ethyl acrylate is a probable carcinogen in experimental animals, inducing chromosome damage in experimental studies with animals. IARC classifies this compound in its group 2B (possible human carcinogen).

Vital Signs

    3.3.2) RESPIRATIONS
    A) TACHYPNEA - Inhalation of high concentrations of the vapor may cause rapid breathing (Gosselin et al, 1984).

Heent

    3.4.1) SUMMARY
    A) Highly irritating to mucous membranes and eyes. Strong lacrimator. May cause corneal burns.
    3.4.3) EYES
    A) LACRIMATION - Ethyl acrylate is a strong lacrimator and irritant (HSDB , 2001; Grant & Schuman, 1993; Gosselin et al, 1984).
    B) CORNEAL BURNS - with opacification may occur in some cases (HSDB , 2001; Gosselin et al, 1984).
    C) ANIMAL EXPERIMENTS - have produced the following results:
    1) CORNEAL NECROSIS - occurred within 24 hours after ocular exposure in rabbits (Grant & Schuman, 1993).
    2) IRRITATION - Ethyl acrylate was an eye irritant in rabbits and guinea pigs at 1204 ppm for 7 hours, in rats at 1204 ppm for 14 hours, and in monkeys at 1204 ppm for 15 hours in standard Draize tests (RTECS , 2001).

Respiratory

    3.6.2) CLINICAL EFFECTS
    A) ACUTE LUNG INJURY
    1) Inhalation of high concentrations of the vapor may cause rapid breathing and noncardiogenic pulmonary edema (HSDB , 2001; Gosselin et al, 1984).
    B) DISORDER OF RESPIRATORY SYSTEM
    1) CHRONIC RESPIRATORY DISEASE - may be aggravated by exposure (Hathaway et al, 1996; Union Carbide, 1988).
    C) IRRITATION SYMPTOM
    1) Ethyl acrylate vapors are extremely irritating to the entire respiratory tract. Respirations may be rapid, with cyanosis of the lips occurring (HSDB , 2001).
    3.6.3) ANIMAL EFFECTS
    A) ANIMAL STUDIES
    1) CYANOSIS
    a) High doses produced cyanosis and dyspnea (Treon, 1949). These effects have not been reported in exposed humans.

Neurologic

    3.7.2) CLINICAL EFFECTS
    A) DROWSY
    1) Lethargy may occur if high concentrations of vapors are inhaled (HSDB , 2001; Budavari, 1996).
    B) CENTRAL NERVOUS SYSTEM DEFICIT
    1) Prolonged inhalation of airborne concentrations of 50 to 75 ppm may cause signs of CNS depression, drowsiness, and headache (HSDB , 2001; ACGIH, 1991).
    2) ETHANOL - Ethyl acrylate is metabolized to ethanol in the lungs and GI tract which may be responsible for its CNS depressant effects.
    C) SEIZURE
    1) When high concentrations of the vapor are inhaled, lethargy and seizures may occur (HSDB , 2001).
    D) DISORDER OF AUTONOMIC NERVOUS SYSTEM
    1) CASE SERIES - In an occupational study, 14 of 33 workers exposed to airborne concentrations of 4 to 58 mg/m(3) for an average of 5 years complained of autonomic and neurotic symptoms, but had normal EEG examinations (IARC, 1986).
    3.7.3) ANIMAL EFFECTS
    A) ANIMAL STUDIES
    1) SEIZURES
    a) Rabbits exposed to an airborne concentration of 2621 ppm for 2.75 hours died with labored respirations, prostration, seizures, trembling and jerking of body, and cyanosis (Treon, 1949).

Gastrointestinal

    3.8.1) SUMMARY
    A) Prolonged inhalation may cause nausea. Irritation of the GI tract may occur.
    3.8.2) CLINICAL EFFECTS
    A) NAUSEA
    1) Prolonged inhalation of airborne concentrations of 50 to 75 ppm may cause nausea (ACGIH, 1991).
    B) GASTROINTESTINAL IRRITATION
    1) Irritation of the mucous membranes of the gastrointestinal tract may occur following exposures (HSDB , 2001).
    3.8.3) ANIMAL EFFECTS
    A) ANIMAL STUDIES
    1) GASTRITIS
    a) RATS - In rats, oral ethyl acrylate was more toxic to the forestomach than acrylic acid (Ghanayem et al, 1985b).
    1) The effects in the rat forestomach included mucosal and submucosal edema, vacuolization of the tunica muscularis, and mild submucosal edema in the glandular stomach. These effects were interpreted to be involved with classical inflammatory response to irritation (Ghanayem et al, 1985a).
    2) The rat forestomach and glandular stomach became more resistant to damage with repeated oral exposure (Ghanayem et al, 1986).

Hepatic

    3.9.3) ANIMAL EFFECTS
    A) ANIMAL STUDIES
    1) HEPATOCELLULAR DAMAGE
    a) Cloudy swelling and congestion of the liver were seen in rats who died following inhalation exposure to 300 ppm for more than 30 days (ACGIH, 1991).

Genitourinary

    3.10.3) ANIMAL EFFECTS
    A) ANIMAL STUDIES
    1) RENAL TUBULAR DISORDER
    a) Cloudy swelling of renal tubules was seen in rats who died following inhalation exposure to 300 ppm for more than 30 days (ACGIH, 1987).

Dermatologic

    3.14.1) SUMMARY
    A) Dermal irritation and sensitization may occur.
    3.14.2) CLINICAL EFFECTS
    A) DERMATITIS
    1) Ethyl acrylate at 4 percent in petrolatum was a skin allergen in humans and may cause pruritus (HSDB , 2001; Bingham et al, 2001; IARC, 1986). Ethyl acrylate can cause allergic contact dermatitis (Kanerva et al, 1988).
    2) Existing dermatitis may be aggravated by exposure to ethyl acrylate (Union Carbide, 1988).
    3.14.3) ANIMAL EFFECTS
    A) ANIMAL STUDIES
    1) IRRITATION
    a) The liquid monomer is highly irritating to the skin (Gosselin et al, 1984).
    1) Ethyl acrylate was a mild skin irritant in rabbits at 500 mg in the open Draize test or at 10 mg/24 hours in the standard Draize test (RTECS , 2001).

Immunologic

    3.19.2) CLINICAL EFFECTS
    A) ACUTE ALLERGIC REACTION
    1) Skin allergic reactions may be seen with the application of a 4 percent in petrolatum mixture to humans (IARC, 1986). Ethyl acrylate can cause allergic contact dermatitis (Kanerva et al, 1988).

Reproductive

    3.20.2) TERATOGENICITY
    A) MENTAL DEFICIENCY
    1) ETHANOL - a primary metabolite of ethyl acrylate, is a known human teratogen and can cause Fetal Alcohol Syndrome, a complex scenario of facial, mental and developmental defects (Abel, 1984; Little & Streissguth, 1981; Ashley, 1981; Sokol, 1981; Wright & Toplis, 1986) Rossett et al, 1983).
    B) ANIMAL STUDIES
    1) SKELETAL MALFORMATION
    a) Some malformed fetuses were seen in the offspring of rats when signs of maternal toxicity were present with exposure to airborne levels of 150 ppm (ACGIH, 1991; Murray et al, 1981).
    b) Ethyl acrylate was teratogenic in rats (Shardein, 1985).
    c) Rats given 25 to 400 mg/kg/day had increased resorptions and delayed ossification. However, there were lower maternal body weights at the top three doses, indicating some maternal toxicity (IARC, 1986).
    d) Skeletal anomalies have been noted in rats (Schardein, 1993).
    2) LACK OF EFFECT
    a) Ethyl acrylate was not teratogenic in rats exposed to 50 or 150 ppm for 6 hours/day during days 6 to 15 of gestation (ACGIH, 1991; Murray et al, 1981).
    b) Ethyl acrylate was not teratogenic in rats (Shardein, 1985).
    3.20.4) EFFECTS DURING BREAST-FEEDING
    A) LACK OF INFORMATION
    1) At the time of this review, no data were available to assess the possible effects of exposure to this agent during lactation.

Carcinogenicity

    3.21.1) IARC CATEGORY
    A) IARC Carcinogenicity Ratings for CAS140-88-5 (International Agency for Research on Cancer (IARC), 2016; International Agency for Research on Cancer, 2015; IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, 2010; IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, 2010a; IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, 2008; IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, 2007; IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, 2006; IARC, 2004):
    1) IARC Classification
    a) Listed as: Ethyl acrylate
    b) Carcinogen Rating: 2B
    1) The agent (mixture) is possibly carcinogenic to humans. The exposure circumstance entails exposures that are possibly carcinogenic to humans. This category is used for agents, mixtures and exposure circumstances for which there is limited evidence of carcinogenicity in humans and less than sufficient evidence of carcinogenicity in experimental animals. It may also be used when there is inadequate evidence of carcinogenicity in humans but there is sufficient evidence of carcinogenicity in experimental animals. In some instances, an agent, mixture or exposure circumstance for which there is inadequate evidence of carcinogenicity in humans but limited evidence of carcinogenicity in experimental animals together with supporting evidence from other relevant data may be placed in this group.
    3.21.3) HUMAN STUDIES
    A) LACK OF INFORMATION
    1) There were no epidemiological or other studies on the potential carcinogenicity of ethyl acrylate in humans as of 1985 (IARC, 1986). In a large cohort study of workers exposed to ethyl acrylate, methyl methacrylate, and their byproducts during production of these chemicals, the group with the greatest exposure had an increased incidence of mortality from colon cancer (Walker et al, 1991).
    3.21.4) ANIMAL STUDIES
    A) GI NEOPLASIA
    1) Forestomach tumors were induced in rats with hyperplasia, after at least 6 months continuous treatment (Ghanayem et al, 1993).
    B) GASTRIC CARCINOMA
    1) In a two-year gavage study, mice receiving 100 or 200 mg/kg and rats given 200 or 400 mg/kg of ethyl acrylate had hyperkeratosis, inflammation, and hyperplasia of the forestomach with squamous cell papillomas and squamous cell carcinomas. The carcinogenicity was believed to be secondary to irritant effects in the forestomach (ACGIH, 1991; NTP, 1986).
    C) THYROID CARCINOMA
    1) Male mice exposed to an airborne concentration of 225 ppm, 6 hours per day, 5 days per week for 6 months had an increased incidence of thyroid follicular adenomas. However, the B6C3F1 strain used for this study has a historically high incidence of spontaneous tumors of this type, and the adenomas were thought not to be treatment-related (ACGIH, 1991).
    D) EPIDERMAL NECROLYSIS
    1) Male C3H(He) mice treated with 25 microliters of ethyl acrylate 3 times per week during a lifetime skin-painting study developed dermatitis, fibrosis, epidermal necrosis, and hyperkeratosis, but no epidermal tumors (DePass, 1984).
    E) UPPER AIRWAY INJURY
    1) Inflammatory and metaplastic changes in the nasal turbinates were seen in F344 rats and B6C3F1 mice exposed to airborne concentrations of 75 or 225 ppm of ethyl acrylate for six hours per day for 30 days; no effect was seen at 25 ppm. These changes were thought to be due to irritation (ACGIH, 1991).
    F) LACK OF EFFECT
    1) Ethyl acrylate was not carcinogenic in rats exposed to airborne concentrations of 100 to 920 mg/m(3) (25 to 225 ppm) for up to 27 months (IARC, 1986).
    2) Ethyl acrylate was not carcinogenic when given at 10 to 1000 ppm in the diet for 2 years to dogs or at 6 to 2000 mg/L in the drinking water to rats (Borzelleca et al, 1964). Insufficient details of survival and pathology were given in this study (IARC, 1986).

Monitoring Parameters Levels

    4.1.1) SUMMARY
    A) Monitoring urine mercapturic acid levels may be helpful as an index of exposure, but are not specific.
    B) If respiratory tract irritation or respiratory depression is evident, monitor arterial blood gases, chest x-ray, and pulmonary function tests.
    C) A number of chemicals produce abnormalities of the hematopoietic system, liver, and kidneys. Monitoring complete blood count, urinalysis, and liver and kidney function tests is suggested for patients with significant exposure.
    4.1.2) SERUM/BLOOD
    A) BLOOD/SERUM CHEMISTRY
    1) Monitoring urine mercapturic levels may serve as an index of exposure, but are not specific to this substance (Linhart et al, 1994).
    4.1.4) OTHER
    A) OTHER
    1) MONITORING
    a) If respiratory tract irritation is present, monitor arterial blood gases and chest x-ray.
    b) Pulse oximetry may be used to monitor oxygenation in patients with respiratory distress.
    c) A number of chemicals produce abnormalities of the hematopoietic system, liver, and kidneys. Monitoring complete blood count, urinalysis, and liver and kidney function tests is suggested for patients with significant exposure.
    2) PULMONARY FUNCTION TESTS
    a) If respiratory tract irritation is present, it may be useful to monitor pulmonary function tests.

Radiographic Studies

    A) CHEST RADIOGRAPH
    1) If respiratory tract irritation is present, monitor chest x-ray.

Methods

    A) MULTIPLE ANALYTICAL METHODS
    1) Carbon dioxide laser absorption spectrometry can detect ethyl acrylate in humid air down to 0.08 mg/m(3) (IARC, 1986).
    2) Ethyl acrylate can be determined in air by absorption onto charcoal and desorption with carbon disulfide followed by gas chromatography (see NIOSH Methods, Set D) (Sittig, 1991).
    B) OTHER
    1) Personal sampling can be accomplished with the use of passive dosimeters and the same analytical procedure (IARC, 1986).

Life Support

    A) Support respiratory and cardiovascular function.

Patient Disposition

    6.3.1) DISPOSITION/ORAL EXPOSURE
    6.3.1.5) OBSERVATION CRITERIA/ORAL
    A) Patients symptomatic following exposure should be observed in a controlled setting until all signs and symptoms have fully resolved.

Monitoring

    A) Monitoring urine mercapturic acid levels may be helpful as an index of exposure, but are not specific.
    B) If respiratory tract irritation or respiratory depression is evident, monitor arterial blood gases, chest x-ray, and pulmonary function tests.
    C) A number of chemicals produce abnormalities of the hematopoietic system, liver, and kidneys. Monitoring complete blood count, urinalysis, and liver and kidney function tests is suggested for patients with significant exposure.

Oral Exposure

    6.5.1) PREVENTION OF ABSORPTION/PREHOSPITAL
    A) ACTIVATED CHARCOAL
    1) PREHOSPITAL ACTIVATED CHARCOAL ADMINISTRATION
    a) Consider prehospital administration of activated charcoal as an aqueous slurry in patients with a potentially toxic ingestion who are awake and able to protect their airway. Activated charcoal is most effective when administered within one hour of ingestion. Administration in the prehospital setting has the potential to significantly decrease the time from toxin ingestion to activated charcoal administration, although it has not been shown to affect outcome (Alaspaa et al, 2005; Thakore & Murphy, 2002; Spiller & Rogers, 2002).
    1) In patients who are at risk for the abrupt onset of seizures or mental status depression, activated charcoal should not be administered in the prehospital setting, due to the risk of aspiration in the event of spontaneous emesis.
    2) The addition of flavoring agents (cola drinks, chocolate milk, cherry syrup) to activated charcoal improves the palatability for children and may facilitate successful administration (Guenther Skokan et al, 2001; Dagnone et al, 2002).
    2) CHARCOAL DOSE
    a) Use a minimum of 240 milliliters of water per 30 grams charcoal (FDA, 1985). Optimum dose not established; usual dose is 25 to 100 grams in adults and adolescents; 25 to 50 grams in children aged 1 to 12 years (or 0.5 to 1 gram/kilogram body weight) ; and 0.5 to 1 gram/kilogram in infants up to 1 year old (Chyka et al, 2005).
    1) Routine use of a cathartic with activated charcoal is NOT recommended as there is no evidence that cathartics reduce drug absorption and cathartics are known to cause adverse effects such as nausea, vomiting, abdominal cramps, electrolyte imbalances and occasionally hypotension (None Listed, 2004).
    b) ADVERSE EFFECTS/CONTRAINDICATIONS
    1) Complications: emesis, aspiration (Chyka et al, 2005). Aspiration may be complicated by acute respiratory failure, ARDS, bronchiolitis obliterans or chronic lung disease (Golej et al, 2001; Graff et al, 2002; Pollack et al, 1981; Harris & Filandrinos, 1993; Elliot et al, 1989; Rau et al, 1988; Golej et al, 2001; Graff et al, 2002). Refer to the ACTIVATED CHARCOAL/TREATMENT management for further information.
    2) Contraindications: unprotected airway (increases risk/severity of aspiration) , nonfunctioning gastrointestinal tract, uncontrolled vomiting, and ingestion of most hydrocarbons (Chyka et al, 2005).
    6.5.2) PREVENTION OF ABSORPTION
    A) ACTIVATED CHARCOAL
    1) CHARCOAL ADMINISTRATION
    a) Consider administration of activated charcoal after a potentially toxic ingestion (Chyka et al, 2005). Administer charcoal as an aqueous slurry; most effective when administered within one hour of ingestion.
    2) CHARCOAL DOSE
    a) Use a minimum of 240 milliliters of water per 30 grams charcoal (FDA, 1985). Optimum dose not established; usual dose is 25 to 100 grams in adults and adolescents; 25 to 50 grams in children aged 1 to 12 years (or 0.5 to 1 gram/kilogram body weight) ; and 0.5 to 1 gram/kilogram in infants up to 1 year old (Chyka et al, 2005).
    1) Routine use of a cathartic with activated charcoal is NOT recommended as there is no evidence that cathartics reduce drug absorption and cathartics are known to cause adverse effects such as nausea, vomiting, abdominal cramps, electrolyte imbalances and occasionally hypotension (None Listed, 2004).
    b) ADVERSE EFFECTS/CONTRAINDICATIONS
    1) Complications: emesis, aspiration (Chyka et al, 2005). Aspiration may be complicated by acute respiratory failure, ARDS, bronchiolitis obliterans or chronic lung disease (Golej et al, 2001; Graff et al, 2002; Pollack et al, 1981; Harris & Filandrinos, 1993; Elliot et al, 1989; Rau et al, 1988; Golej et al, 2001; Graff et al, 2002). Refer to the ACTIVATED CHARCOAL/TREATMENT management for further information.
    2) Contraindications: unprotected airway (increases risk/severity of aspiration) , nonfunctioning gastrointestinal tract, uncontrolled vomiting, and ingestion of most hydrocarbons (Chyka et al, 2005).
    B) GASTRIC LAVAGE
    1) Significant esophageal or gastrointestinal tract irritation or burns may occur following ingestion. The possible benefit of early removal of some ingested material by cautious gastric lavage must be weighed against potential complications of bleeding or perforation.
    2) INDICATIONS: Consider gastric lavage with a large-bore orogastric tube (ADULT: 36 to 40 French or 30 English gauge tube {external diameter 12 to 13.3 mm}; CHILD: 24 to 28 French {diameter 7.8 to 9.3 mm}) after a potentially life threatening ingestion if it can be performed soon after ingestion (generally within 60 minutes).
    a) Consider lavage more than 60 minutes after ingestion of sustained-release formulations and substances known to form bezoars or concretions.
    3) PRECAUTIONS:
    a) SEIZURE CONTROL: Is mandatory prior to gastric lavage.
    b) AIRWAY PROTECTION: Place patients in the head down left lateral decubitus position, with suction available. Patients with depressed mental status should be intubated with a cuffed endotracheal tube prior to lavage.
    4) LAVAGE FLUID:
    a) Use small aliquots of liquid. Lavage with 200 to 300 milliliters warm tap water (preferably 38 degrees Celsius) or saline per wash (in older children or adults) and 10 milliliters/kilogram body weight of normal saline in young children(Vale et al, 2004) and repeat until lavage return is clear.
    b) The volume of lavage return should approximate amount of fluid given to avoid fluid-electrolyte imbalance.
    c) CAUTION: Water should be avoided in young children because of the risk of electrolyte imbalance and water intoxication. Warm fluids avoid the risk of hypothermia in very young children and the elderly.
    5) COMPLICATIONS:
    a) Complications of gastric lavage have included: aspiration pneumonia, hypoxia, hypercapnia, mechanical injury to the throat, esophagus, or stomach, fluid and electrolyte imbalance (Vale, 1997). Combative patients may be at greater risk for complications (Caravati et al, 2001).
    b) Gastric lavage can cause significant morbidity; it should NOT be performed routinely in all poisoned patients (Vale, 1997).
    6) CONTRAINDICATIONS:
    a) Loss of airway protective reflexes or decreased level of consciousness if patient is not intubated, following ingestion of corrosive substances, hydrocarbons (high aspiration potential), patients at risk of hemorrhage or gastrointestinal perforation, or trivial or non-toxic ingestion.
    6.5.3) TREATMENT
    A) SEIZURE
    1) SUMMARY
    a) Attempt initial control with a benzodiazepine (eg, diazepam, lorazepam). If seizures persist or recur, administer phenobarbital or propofol.
    b) Monitor for respiratory depression, hypotension, and dysrhythmias. Endotracheal intubation should be performed in patients with persistent seizures.
    c) Evaluate for hypoxia, electrolyte disturbances, and hypoglycemia (or, if immediate bedside glucose testing is not available, treat with intravenous dextrose).
    2) DIAZEPAM
    a) ADULT DOSE: Initially 5 to 10 mg IV, OR 0.15 mg/kg IV up to 10 mg per dose up to a rate of 5 mg/minute; may be repeated every 5 to 20 minutes as needed (Brophy et al, 2012; Prod Info diazepam IM, IV injection, 2008; Manno, 2003).
    b) PEDIATRIC DOSE: 0.1 to 0.5 mg/kg IV over 2 to 5 minutes; up to a maximum of 10 mg/dose. May repeat dose every 5 to 10 minutes as needed (Loddenkemper & Goodkin, 2011; Hegenbarth & American Academy of Pediatrics Committee on Drugs, 2008).
    c) Monitor for hypotension, respiratory depression, and the need for endotracheal intubation. Consider a second agent if seizures persist or recur after repeated doses of diazepam .
    3) NO INTRAVENOUS ACCESS
    a) DIAZEPAM may be given rectally or intramuscularly (Manno, 2003). RECTAL DOSE: CHILD: Greater than 12 years: 0.2 mg/kg; 6 to 11 years: 0.3 mg/kg; 2 to 5 years: 0.5 mg/kg (Brophy et al, 2012).
    b) MIDAZOLAM has been used intramuscularly and intranasally, particularly in children when intravenous access has not been established. ADULT DOSE: 0.2 mg/kg IM, up to a maximum dose of 10 mg (Brophy et al, 2012). PEDIATRIC DOSE: INTRAMUSCULAR: 0.2 mg/kg IM, up to a maximum dose of 7 mg (Chamberlain et al, 1997) OR 10 mg IM (weight greater than 40 kg); 5 mg IM (weight 13 to 40 kg); INTRANASAL: 0.2 to 0.5 mg/kg up to a maximum of 10 mg/dose (Loddenkemper & Goodkin, 2011; Brophy et al, 2012). BUCCAL midazolam, 10 mg, has been used in adolescents and older children (5-years-old or more) to control seizures when intravenous access was not established (Scott et al, 1999).
    4) LORAZEPAM
    a) MAXIMUM RATE: The rate of intravenous administration of lorazepam should not exceed 2 mg/min (Brophy et al, 2012; Prod Info lorazepam IM, IV injection, 2008).
    b) ADULT DOSE: 2 to 4 mg IV initially; repeat every 5 to 10 minutes as needed, if seizures persist (Manno, 2003; Brophy et al, 2012).
    c) PEDIATRIC DOSE: 0.05 to 0.1 mg/kg IV over 2 to 5 minutes, up to a maximum of 4 mg/dose; may repeat in 5 to 15 minutes as needed, if seizures continue (Brophy et al, 2012; Loddenkemper & Goodkin, 2011; Hegenbarth & American Academy of Pediatrics Committee on Drugs, 2008; Sreenath et al, 2010; Chin et al, 2008).
    5) PHENOBARBITAL
    a) ADULT LOADING DOSE: 20 mg/kg IV at an infusion rate of 50 to 100 mg/minute IV. An additional 5 to 10 mg/kg dose may be given 10 minutes after loading infusion if seizures persist or recur (Brophy et al, 2012).
    b) Patients receiving high doses will require endotracheal intubation and may require vasopressor support (Brophy et al, 2012).
    c) PEDIATRIC LOADING DOSE: 20 mg/kg may be given as single or divided application (2 mg/kg/minute in children weighing less than 40 kg up to 100 mg/min in children weighing greater than 40 kg). A plasma concentration of about 20 mg/L will be achieved by this dose (Loddenkemper & Goodkin, 2011).
    d) REPEAT PEDIATRIC DOSE: Repeat doses of 5 to 20 mg/kg may be given every 15 to 20 minutes if seizures persist, with cardiorespiratory monitoring (Loddenkemper & Goodkin, 2011).
    e) MONITOR: For hypotension, respiratory depression, and the need for endotracheal intubation (Loddenkemper & Goodkin, 2011; Manno, 2003).
    f) SERUM CONCENTRATION MONITORING: Monitor serum concentrations over the next 12 to 24 hours. Therapeutic serum concentrations of phenobarbital range from 10 to 40 mcg/mL, although the optimal plasma concentration for some individuals may vary outside this range (Hvidberg & Dam, 1976; Choonara & Rane, 1990; AMA Department of Drugs, 1992).
    6) OTHER AGENTS
    a) If seizures persist after phenobarbital, propofol or pentobarbital infusion, or neuromuscular paralysis with general anesthesia (isoflurane) and continuous EEG monitoring should be considered (Manno, 2003). Other anticonvulsants can be considered (eg, valproate sodium, levetiracetam, lacosamide, topiramate) if seizures persist or recur; however, there is very little data regarding their use in toxin induced seizures, controlled trials are not available to define the optimal dosage ranges for these agents in status epilepticus (Brophy et al, 2012):
    1) VALPROATE SODIUM: ADULT DOSE: An initial dose of 20 to 40 mg/kg IV, at a rate of 3 to 6 mg/kg/minute; may give an additional dose of 20 mg/kg 10 minutes after loading infusion. PEDIATRIC DOSE: 1.5 to 3 mg/kg/minute (Brophy et al, 2012).
    2) LEVETIRACETAM: ADULT DOSE: 1000 to 3000 mg IV, at a rate of 2 to 5 mg/kg/min IV. PEDIATRIC DOSE: 20 to 60 mg/kg IV (Brophy et al, 2012; Loddenkemper & Goodkin, 2011).
    3) LACOSAMIDE: ADULT DOSE: 200 to 400 mg IV; 200 mg IV over 15 minutes (Brophy et al, 2012). PEDIATRIC DOSE: In one study, median starting doses of 1.3 mg/kg/day and maintenance doses of 4.7 mg/kg/day were used in children 8 years and older (Loddenkemper & Goodkin, 2011).
    4) TOPIRAMATE: ADULT DOSE: 200 to 400 mg nasogastric/orally OR 300 to 1600 mg/day orally divided in 2 to 4 times daily (Brophy et al, 2012).
    B) IRRITATION SYMPTOM
    1) Observe patients with ingestion carefully for the possible development of esophageal or gastrointestinal tract irritation or burns. If signs or symptoms of esophageal irritation or burns are present, consider endoscopy to determine the extent of injury.
    C) MONITORING OF PATIENT
    1) A number of chemicals produce abnormalities of the hematopoietic system, liver, and kidneys. Monitoring complete blood count, urinalysis, and liver and kidney function tests is suggested for patients with significant exposure.

Inhalation Exposure

    6.7.1) DECONTAMINATION
    A) Move patient from the toxic environment to fresh air. Monitor for respiratory distress. If cough or difficulty in breathing develops, evaluate for hypoxia, respiratory tract irritation, bronchitis, or pneumonitis.
    B) OBSERVATION: Carefully observe patients with inhalation exposure for the development of any systemic signs or symptoms and administer symptomatic treatment as necessary.
    C) INITIAL TREATMENT: Administer 100% humidified supplemental oxygen, perform endotracheal intubation and provide assisted ventilation as required. Administer inhaled beta-2 adrenergic agonists, if bronchospasm develops. Consider systemic corticosteroids in patients with significant bronchospasm (National Heart,Lung,and Blood Institute, 2007). Exposed skin and eyes should be flushed with copious amounts of water.
    6.7.2) TREATMENT
    A) IRRITATION SYMPTOM
    1) Respiratory tract irritation, if severe, can progress to noncardiogenic pulmonary edema which may be delayed in onset up to 24 to 72 hours after exposure in some cases.
    2) There are no controlled studies indicating that early administration of corticosteroids can prevent the development of noncardiogenic pulmonary edema in patients with inhalation exposure to respiratory irritant substances, and long-term use may cause adverse effects (Boysen & Modell, 1989).
    a) However, based on anecdotal experience, some clinicians do recommend early administration of corticosteroids (such as methylprednisolone 1 gram intravenously as a single dose) in an attempt to prevent the later development of pulmonary edema.
    1) Anecdotal experience with dimethyl sulfate inhalation showed possible benefit of methylprednisolone in the TREATMENT of noncardiogenic pulmonary edema (Ip et al, 1989).
    3) Anecdotal experience also indicated that systemic corticosteroids may have possible efficacy in the TREATMENT of drug-induced noncardiogenic pulmonary edema (Zitnik & Cooper, 1990; Stentoft, 1990; Chudnofsky & Otten, 1989) or noncardiogenic pulmonary edema developing after cardiopulmonary bypass (Maggart & Stewart, 1987).
    4) It is not clear from the published literature that administration of systemic corticosteroids early following inhalation exposure to respiratory irritant substances can PREVENT the development of noncardiogenic pulmonary edema. The decision to administer or withhold corticosteroids in this setting must currently be made on clinical grounds.
    B) BRONCHOSPASM
    1) If bronchospasm and wheezing occur, consider treatment with inhaled sympathomimetic agents.
    C) ACUTE LUNG INJURY
    1) ONSET: Onset of acute lung injury after toxic exposure may be delayed up to 24 to 72 hours after exposure in some cases.
    2) NON-PHARMACOLOGIC TREATMENT: The treatment of acute lung injury is primarily supportive (Cataletto, 2012). Maintain adequate ventilation and oxygenation with frequent monitoring of arterial blood gases and/or pulse oximetry. If a high FIO2 is required to maintain adequate oxygenation, mechanical ventilation and positive-end-expiratory pressure (PEEP) may be required; ventilation with small tidal volumes (6 mL/kg) is preferred if ARDS develops (Haas, 2011; Stolbach & Hoffman, 2011).
    a) To minimize barotrauma and other complications, use the lowest amount of PEEP possible while maintaining adequate oxygenation. Use of smaller tidal volumes (6 mL/kg) and lower plateau pressures (30 cm water or less) has been associated with decreased mortality and more rapid weaning from mechanical ventilation in patients with ARDS (Brower et al, 2000). More treatment information may be obtained from ARDS Clinical Network website, NIH NHLBI ARDS Clinical Network Mechanical Ventilation Protocol Summary, http://www.ardsnet.org/node/77791 (NHLBI ARDS Network, 2008)
    3) FLUIDS: Crystalloid solutions must be administered judiciously. Pulmonary artery monitoring may help. In general the pulmonary artery wedge pressure should be kept relatively low while still maintaining adequate cardiac output, blood pressure and urine output (Stolbach & Hoffman, 2011).
    4) ANTIBIOTICS: Indicated only when there is evidence of infection (Artigas et al, 1998).
    5) EXPERIMENTAL THERAPY: Partial liquid ventilation has shown promise in preliminary studies (Kollef & Schuster, 1995).
    6) CALFACTANT: In a multicenter, randomized, blinded trial, endotracheal instillation of 2 doses of 80 mL/m(2) calfactant (35 mg/mL of phospholipid suspension in saline) in infants, children, and adolescents with acute lung injury resulted in acute improvement in oxygenation and lower mortality; however, no significant decrease in the course of respiratory failure measured by duration of ventilator therapy, intensive care unit, or hospital stay was noted. Adverse effects (transient hypoxia and hypotension) were more frequent in calfactant patients, but these effects were mild and did not require withdrawal from the study (Wilson et al, 2005).
    7) However, in a multicenter, randomized, controlled, and masked trial, endotracheal instillation of up to 3 doses of calfactant (30 mg) in adults only with acute lung injury/ARDS due to direct lung injury was not associated with improved oxygenation and longer term benefits compared to the placebo group. It was also associated with significant increases in hypoxia and hypotension (Willson et al, 2015).
    D) OBSERVATION REGIMES
    1) Carefully observe patients with inhalation exposure for the development of any systemic signs or symptoms and administer symptomatic treatment as necessary.
    E) SEIZURE
    1) SUMMARY
    a) Attempt initial control with a benzodiazepine (eg, diazepam, lorazepam). If seizures persist or recur, administer phenobarbital or propofol.
    b) Monitor for respiratory depression, hypotension, and dysrhythmias. Endotracheal intubation should be performed in patients with persistent seizures.
    c) Evaluate for hypoxia, electrolyte disturbances, and hypoglycemia (or, if immediate bedside glucose testing is not available, treat with intravenous dextrose).
    2) DIAZEPAM
    a) ADULT DOSE: Initially 5 to 10 mg IV, OR 0.15 mg/kg IV up to 10 mg per dose up to a rate of 5 mg/minute; may be repeated every 5 to 20 minutes as needed (Brophy et al, 2012; Prod Info diazepam IM, IV injection, 2008; Manno, 2003).
    b) PEDIATRIC DOSE: 0.1 to 0.5 mg/kg IV over 2 to 5 minutes; up to a maximum of 10 mg/dose. May repeat dose every 5 to 10 minutes as needed (Loddenkemper & Goodkin, 2011; Hegenbarth & American Academy of Pediatrics Committee on Drugs, 2008).
    c) Monitor for hypotension, respiratory depression, and the need for endotracheal intubation. Consider a second agent if seizures persist or recur after repeated doses of diazepam .
    3) NO INTRAVENOUS ACCESS
    a) DIAZEPAM may be given rectally or intramuscularly (Manno, 2003). RECTAL DOSE: CHILD: Greater than 12 years: 0.2 mg/kg; 6 to 11 years: 0.3 mg/kg; 2 to 5 years: 0.5 mg/kg (Brophy et al, 2012).
    b) MIDAZOLAM has been used intramuscularly and intranasally, particularly in children when intravenous access has not been established. ADULT DOSE: 0.2 mg/kg IM, up to a maximum dose of 10 mg (Brophy et al, 2012). PEDIATRIC DOSE: INTRAMUSCULAR: 0.2 mg/kg IM, up to a maximum dose of 7 mg (Chamberlain et al, 1997) OR 10 mg IM (weight greater than 40 kg); 5 mg IM (weight 13 to 40 kg); INTRANASAL: 0.2 to 0.5 mg/kg up to a maximum of 10 mg/dose (Loddenkemper & Goodkin, 2011; Brophy et al, 2012). BUCCAL midazolam, 10 mg, has been used in adolescents and older children (5-years-old or more) to control seizures when intravenous access was not established (Scott et al, 1999).
    4) LORAZEPAM
    a) MAXIMUM RATE: The rate of intravenous administration of lorazepam should not exceed 2 mg/min (Brophy et al, 2012; Prod Info lorazepam IM, IV injection, 2008).
    b) ADULT DOSE: 2 to 4 mg IV initially; repeat every 5 to 10 minutes as needed, if seizures persist (Manno, 2003; Brophy et al, 2012).
    c) PEDIATRIC DOSE: 0.05 to 0.1 mg/kg IV over 2 to 5 minutes, up to a maximum of 4 mg/dose; may repeat in 5 to 15 minutes as needed, if seizures continue (Brophy et al, 2012; Loddenkemper & Goodkin, 2011; Hegenbarth & American Academy of Pediatrics Committee on Drugs, 2008; Sreenath et al, 2010; Chin et al, 2008).
    5) PHENOBARBITAL
    a) ADULT LOADING DOSE: 20 mg/kg IV at an infusion rate of 50 to 100 mg/minute IV. An additional 5 to 10 mg/kg dose may be given 10 minutes after loading infusion if seizures persist or recur (Brophy et al, 2012).
    b) Patients receiving high doses will require endotracheal intubation and may require vasopressor support (Brophy et al, 2012).
    c) PEDIATRIC LOADING DOSE: 20 mg/kg may be given as single or divided application (2 mg/kg/minute in children weighing less than 40 kg up to 100 mg/min in children weighing greater than 40 kg). A plasma concentration of about 20 mg/L will be achieved by this dose (Loddenkemper & Goodkin, 2011).
    d) REPEAT PEDIATRIC DOSE: Repeat doses of 5 to 20 mg/kg may be given every 15 to 20 minutes if seizures persist, with cardiorespiratory monitoring (Loddenkemper & Goodkin, 2011).
    e) MONITOR: For hypotension, respiratory depression, and the need for endotracheal intubation (Loddenkemper & Goodkin, 2011; Manno, 2003).
    f) SERUM CONCENTRATION MONITORING: Monitor serum concentrations over the next 12 to 24 hours. Therapeutic serum concentrations of phenobarbital range from 10 to 40 mcg/mL, although the optimal plasma concentration for some individuals may vary outside this range (Hvidberg & Dam, 1976; Choonara & Rane, 1990; AMA Department of Drugs, 1992).
    6) OTHER AGENTS
    a) If seizures persist after phenobarbital, propofol or pentobarbital infusion, or neuromuscular paralysis with general anesthesia (isoflurane) and continuous EEG monitoring should be considered (Manno, 2003). Other anticonvulsants can be considered (eg, valproate sodium, levetiracetam, lacosamide, topiramate) if seizures persist or recur; however, there is very little data regarding their use in toxin induced seizures, controlled trials are not available to define the optimal dosage ranges for these agents in status epilepticus (Brophy et al, 2012):
    1) VALPROATE SODIUM: ADULT DOSE: An initial dose of 20 to 40 mg/kg IV, at a rate of 3 to 6 mg/kg/minute; may give an additional dose of 20 mg/kg 10 minutes after loading infusion. PEDIATRIC DOSE: 1.5 to 3 mg/kg/minute (Brophy et al, 2012).
    2) LEVETIRACETAM: ADULT DOSE: 1000 to 3000 mg IV, at a rate of 2 to 5 mg/kg/min IV. PEDIATRIC DOSE: 20 to 60 mg/kg IV (Brophy et al, 2012; Loddenkemper & Goodkin, 2011).
    3) LACOSAMIDE: ADULT DOSE: 200 to 400 mg IV; 200 mg IV over 15 minutes (Brophy et al, 2012). PEDIATRIC DOSE: In one study, median starting doses of 1.3 mg/kg/day and maintenance doses of 4.7 mg/kg/day were used in children 8 years and older (Loddenkemper & Goodkin, 2011).
    4) TOPIRAMATE: ADULT DOSE: 200 to 400 mg nasogastric/orally OR 300 to 1600 mg/day orally divided in 2 to 4 times daily (Brophy et al, 2012).
    F) Treatment should include recommendations listed in the ORAL EXPOSURE section when appropriate.

Eye Exposure

    6.8.1) DECONTAMINATION
    A) EYE IRRIGATION, ROUTINE: Remove contact lenses and irrigate exposed eyes with copious amounts of room temperature 0.9% saline or water for at least 15 minutes. If irritation, pain, swelling, lacrimation, or photophobia persist after 15 minutes of irrigation, an ophthalmologic examination should be performed (Peate, 2007; Naradzay & Barish, 2006).

Dermal Exposure

    6.9.1) DECONTAMINATION
    A) DERMAL DECONTAMINATION
    1) DECONTAMINATION: Remove contaminated clothing and wash exposed area thoroughly with soap and water for 10 to 15 minutes. A physician may need to examine the area if irritation or pain persists (Burgess et al, 1999).
    6.9.2) TREATMENT
    A) IRRITATION SYMPTOM
    1) Treat dermal irritation or burns with standard topical therapy. Patients developing dermal hypersensitivity reactions may require treatment with systemic or topical corticosteroids or antihistamines.
    B) Treatment should include recommendations listed in the ORAL EXPOSURE section when appropriate.

Enhanced Elimination

    A) LACK OF INFORMATION
    1) No studies have addressed the utilization of extracorporeal elimination techniques in poisoning with this agent.

Case Reports

    A) CHRONIC EFFECTS
    1) In an occupational study, 14 of 33 workers exposed to airborne concentrations of 4 to 58 mg/m(3) for an average of 5 years complained of autonomic and neurotic symptoms but had normal EEG examinations (IARC, 1986).

Summary

    A) Exposure to an airborne concentration of 25 ppm for more than a few minutes is intolerable.

Minimum Lethal Exposure

    A) GENERAL/SUMMARY
    1) The minimum lethal human dose to this agent has not been delineated.
    B) ANIMAL DATA
    1) In rats, the lowest lethal dermal dose was reported to be 1,800 mg/kg (ACGIH, 1991).
    2) Inhalation exposure of rats to airborne levels of 300 or 540 ppm of ethyl acrylate for up to 30 days produced the following results (ACGIH, 1991) -
    a) Termination was forced due to high mortality after 19 days of exposure at the 540 ppm air concentration. Of the 30 rats exposed at the 300 ppm concentration, 18 died prior to completion of the 30-day exposure regimen (ACGIH, 1991).
    3) A monkey exposed to an airborne concentration of 1,024 ppm of ethyl acrylate died after 2.2 days (ACGIH, 1991).

Maximum Tolerated Exposure

    A) ROUTE OF EXPOSURE
    1) Drowsiness, headache, and nausea resulted from a prolonged inhalation exposure to airborne concentrations of 50 to 75 ppm (ACGIH, 1991).
    2) Skin sensitization reactions in 10 of 24 human volunteers resulted after exposure to a 4 percent concentration of ethyl acrylate in petroleum jelly (ACGIH, 1991).
    3) In an occupational study, 14 of 33 workers exposed to an airborne concentration of 4 to 58 mg/m(3) of ethyl acrylate for an average of 5 years complained of autonomic and neurotic symptoms but had normal EEG examinations (IARC, 1986).
    B) ANIMAL DATA
    1) In rats, inhalation exposure to an airborne concentration of 1,000 ppm for 4 hours caused skin irritation but was not fatal (Hathaway et al, 1996).
    2) All 30 rats survived inhalation exposure to ethyl acrylate at 70 ppm for 30 days, and 12 of 30 rats survived exposure to 300 ppm for 30 days (ACGIH, 1991).
    3) Rats, rabbits, and guinea pigs subjected to 50 inhalation exposures of 7 hours each at an airborne concentration of 75 ppm of ethyl acrylate had no indications of toxicity (ACGIH, 1991).
    4) A monkey exposed for 28 days to an airborne concentration of 272 ppm was lethargic, experienced weight loss, and had slight mucous membrane irritation. After 130 exposures of 7 hours each at airborne concentrations of 24.5 or 26.2 ppm, neither of two monkeys had signs of intoxication (ACGIH, 1991).
    5) Corneal necrosis occurred within 24 hours after one drop of the liquid was instilled in the eye of a rabbit (Hathaway et al, 1996).
    6) Pregnant rats exposed to an airborne concentration of 150 ppm for 6 hours/day during days 6 through 15 of gestation had some maternal toxicity and a slight, but not statistically significant, increase in malformed fetuses. At an airborne concentration of 50 ppm, there were neither maternal toxicity nor an adverse effect on the fetus (Hathaway et al, 1996).
    7) Rabbits had only retarded growth or weight loss after exposure to 0.0315 g/kg for 25 doses (Treon, 1949).

Workplace Standards

    A) ACGIH TLV Values for CAS140-88-5 (American Conference of Governmental Industrial Hygienists, 2010):
    1) Editor's Note: The listed values are recommendations or guidelines developed by ACGIH(R) to assist in the control of health hazards. They should only be used, interpreted and applied by individuals trained in industrial hygiene. Before applying these values, it is imperative to read the introduction to each section in the current TLVs(R) and BEI(R) Book and become familiar with the constraints and limitations to their use. Always consult the Documentation of the TLVs(R) and BEIs(R) before applying these recommendations and guidelines.
    a) Adopted Value
    1) Ethyl acrylate
    a) TLV:
    1) TLV-TWA: 5 ppm
    2) TLV-STEL: 15 ppm
    3) TLV-Ceiling:
    b) Notations and Endnotes:
    1) Carcinogenicity Category: A4
    2) Codes: Not Listed
    3) Definitions:
    a) A4: Not Classifiable as a Human Carcinogen: Agents which cause concern that they could be carcinogenic for humans but which cannot be assessed conclusively because of a lack of data. In vitro or animal studies do not provide indications of carcinogenicity which are sufficient to classify the agent into one of the other categories.
    c) TLV Basis - Critical Effect(s): URT, eye, and GI irr; CNS impair; skin sens
    d) Molecular Weight: 100.11
    1) For gases and vapors, to convert the TLV from ppm to mg/m(3):
    a) [(TLV in ppm)(gram molecular weight of substance)]/24.45
    2) For gases and vapors, to convert the TLV from mg/m(3) to ppm:
    a) [(TLV in mg/m(3))(24.45)]/gram molecular weight of substance
    e) Additional information:

    B) NIOSH REL and IDLH Values for CAS140-88-5 (National Institute for Occupational Safety and Health, 2007):
    1) Listed as: Ethyl acrylate
    2) REL:
    a) TWA:
    b) STEL:
    c) Ceiling:
    d) Carcinogen Listing: (Ca) NIOSH considers this substance to be a potential occupational carcinogen (See Appendix A in the NIOSH Pocket Guide to Chemical Hazards).
    e) Skin Designation: Not Listed
    f) Note(s): See Appendix A
    3) IDLH:
    a) IDLH: 300 ppm
    b) Note(s): Ca
    1) Ca: NIOSH considers this substance to be a potential occupational carcinogen (See Appendix A).

    C) Carcinogenicity Ratings for CAS140-88-5 :
    1) ACGIH (American Conference of Governmental Industrial Hygienists, 2010): A4 ; Listed as: Ethyl acrylate
    a) A4 :Not Classifiable as a Human Carcinogen: Agents which cause concern that they could be carcinogenic for humans but which cannot be assessed conclusively because of a lack of data. In vitro or animal studies do not provide indications of carcinogenicity which are sufficient to classify the agent into one of the other categories.
    2) EPA (U.S. Environmental Protection Agency, 2011): Not Listed
    3) IARC (International Agency for Research on Cancer (IARC), 2016; International Agency for Research on Cancer, 2015; IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, 2010; IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, 2010a; IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, 2008; IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, 2007; IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, 2006; IARC, 2004): 2B ; Listed as: Ethyl acrylate
    a) 2B : The agent (mixture) is possibly carcinogenic to humans. The exposure circumstance entails exposures that are possibly carcinogenic to humans. This category is used for agents, mixtures and exposure circumstances for which there is limited evidence of carcinogenicity in humans and less than sufficient evidence of carcinogenicity in experimental animals. It may also be used when there is inadequate evidence of carcinogenicity in humans but there is sufficient evidence of carcinogenicity in experimental animals. In some instances, an agent, mixture or exposure circumstance for which there is inadequate evidence of carcinogenicity in humans but limited evidence of carcinogenicity in experimental animals together with supporting evidence from other relevant data may be placed in this group.
    4) NIOSH (National Institute for Occupational Safety and Health, 2007): Ca ; Listed as: Ethyl acrylate
    a) Ca : NIOSH considers this substance to be a potential occupational carcinogen (See Appendix A in the NIOSH Pocket Guide to Chemical Hazards).
    5) MAK (DFG, 2002): Not Listed
    6) NTP (U.S. Department of Health and Human Services, Public Health Service, National Toxicology Project ): Not Listed

    D) OSHA PEL Values for CAS140-88-5 (U.S. Occupational Safety, and Health Administration (OSHA), 2010):
    1) Listed as: Ethyl acrylate
    2) Table Z-1 for Ethyl acrylate:
    a) 8-hour TWA:
    1) ppm: 25
    a) Parts of vapor or gas per million parts of contaminated air by volume at 25 degrees C and 760 torr.
    2) mg/m3: 100
    a) Milligrams of substances per cubic meter of air. When entry is in this column only, the value is exact; when listed with a ppm entry, it is approximate.
    3) Ceiling Value:
    4) Skin Designation: Yes
    5) Notation(s): Not Listed

Toxicity Information

    7.7.1) TOXICITY VALUES
    A) References: RTECS, 2001 Lewis, 1992 Lewis, 1996 ACGIH, 1991 Note: All values are from RTECS 2001, unless otherwise noted.
    1) LD50- (INTRAPERITONEAL)MOUSE:
    a) 599 mg/kg
    2) LD50- (ORAL)MOUSE:
    a) 1799 mg/kg
    3) LD50- (INTRAPERITONEAL)RAT:
    a) 450 mg/kg
    4) LD50- (ORAL)RAT:
    a) 800 mg/kg
    b) 1020 mg/kg (ACGIH, 1991)
    5) TCLo- (INHALATION)HUMAN:
    a) 50 ppm

Toxicologic Mechanism

    A) SULFHYDRYL BINDING - Ethyl acrylate binds to nonprotein sulfhydryl groups in vitro and in rats in vivo (IARC, 1986).
    B) GASTRIC TOXICITY - Requirements for producing gastric toxicity by gavage in rats included an intact ester group, double bond, no substitution at carbon number 2 and lipophilicity of the dose vehicle (Ghanayem et al, 1985).
    C) IRRITATION - Ethyl acrylate is a direct irritant of the eyes, skin, and the respiratory tract (Sittig, 1991).
    D) TOXICITY POTENTIATION - Pretreatment of rats with tri-O-cresyl phosphate, a carboxylesterase inhibitor, potentiated the toxicity of ethyl acrylate (Silver & Murphy, 1981), indicating that the ester is more toxic than the metabolites.

Physical Characteristics

    A) Ethyl acrylate is a colorless liquid with a characteristic odor described as sharp, acrid, pungent, fragrant, ester-like, acrylate, fruity, or penetrating (Bingham et al, 2001; Budavari, 1996; Lewis, 1996; ACGIH, 1991; Sittig, 1991).
    1) The commercial form contains 1000 ppm of hydroquinone or 15 or 200 ppm of hydroquinone monomethyl ether to prevent polymerization (Hathaway et al, 1996).
    B) The polymer is a transparent, elastic substance with practically no odor and little adhesive power. It resists the usual solvents (Budavari, 1996).
    C) Ethyl acrylate easily polymerizes on standing. The polymerization process is speeded up by heat, light, and peroxides (Budavari, 1996).
    D) If pure, the monomer can be stored below 10 degrees C without polymerizing (Budavari, 1996).
    E) Ethyl acrylate is usually inhibited with hydroquinone or its methyl ether to prevent polymerization (ACGIH, 1991).

Ph

    A) The small amount (0.005 percent) of acrylic acid in ethyl acrylate may cause it to be slightly acidic (IARC, 1986).

Molecular Weight

    A) 100.12 (Budavari, 1996)

General Bibliography

    1) 40 CFR 372.28: Environmental Protection Agency - Toxic Chemical Release Reporting, Community Right-To-Know, Lower thresholds for chemicals of special concern. National Archives and Records Administration (NARA) and the Government Printing Office (GPO). Washington, DC. Final rules current as of Apr 3, 2006.
    2) 40 CFR 372.65: Environmental Protection Agency - Toxic Chemical Release Reporting, Community Right-To-Know, Chemicals and Chemical Categories to which this part applies. National Archives and Records Association (NARA) and the Government Printing Office (GPO), Washington, DC. Final rules current as of Apr 3, 2006.
    3) 49 CFR 172.101 - App. B: Department of Transportation - Table of Hazardous Materials, Appendix B: List of Marine Pollutants. National Archives and Records Administration (NARA) and the Government Printing Office (GPO), Washington, DC. Final rules current as of Aug 29, 2005.
    4) 49 CFR 172.101: Department of Transportation - Table of Hazardous Materials. National Archives and Records Administration (NARA) and the Government Printing Office (GPO), Washington, DC. Final rules current as of Aug 11, 2005.
    5) 62 FR 58840: Notice of the National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances - Proposed AEGL Values, Environmental Protection Agency, NAC/AEGL Committee. National Archives and Records Administration (NARA) and the Government Publishing Office (GPO), Washington, DC, 1997.
    6) 65 FR 14186: Notice of the National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances - Proposed AEGL Values, Environmental Protection Agency, NAC/AEGL Committee. National Archives and Records Administration (NARA) and the Government Publishing Office (GPO), Washington, DC, 2000.
    7) 65 FR 39264: Notice of the National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances - Proposed AEGL Values, Environmental Protection Agency, NAC/AEGL Committee. National Archives and Records Administration (NARA) and the Government Publishing Office (GPO), Washington, DC, 2000.
    8) 65 FR 77866: Notice of the National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances - Proposed AEGL Values, Environmental Protection Agency, NAC/AEGL Committee. National Archives and Records Administration (NARA) and the Government Publishing Office (GPO), Washington, DC, 2000.
    9) 66 FR 21940: Notice of the National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances - Proposed AEGL Values, Environmental Protection Agency, NAC/AEGL Committee. National Archives and Records Administration (NARA) and the Government Publishing Office (GPO), Washington, DC, 2001.
    10) 67 FR 7164: Notice of the National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances - Proposed AEGL Values, Environmental Protection Agency, NAC/AEGL Committee. National Archives and Records Administration (NARA) and the Government Publishing Office (GPO), Washington, DC, 2002.
    11) 68 FR 42710: Notice of the National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances - Proposed AEGL Values, Environmental Protection Agency, NAC/AEGL Committee. National Archives and Records Administration (NARA) and the Government Publishing Office (GPO), Washington, DC, 2003.
    12) 69 FR 54144: Notice of the National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances - Proposed AEGL Values, Environmental Protection Agency, NAC/AEGL Committee. National Archives and Records Administration (NARA) and the Government Publishing Office (GPO), Washington, DC, 2004.
    13) AAR: Emergency Handling of Hazardous Materials in Surface Transportation, Bureau of Explosives, Association of American Railroads, Washington, DC, 1992.
    14) AAR: Emergency Handling of Hazardous Materials in Surface Transportation, Bureau of Explosives, Association of American Railroads, Washington, DC, 1996.
    15) ACGIH: Documentation of the Threshold Limit Values and Biological Exposure Indices, Vol 3, 6th ed, Am Conference of Govt Ind Hyg, Inc, Cincinnati, OH, 1991.
    16) AIHA: 2006 Emergency Response Planning Guidelines and Workplace Environmental Exposure Level Guides Handbook, American Industrial Hygiene Association, Fairfax, VA, 2006.
    17) AMA Department of DrugsAMA Department of Drugs: AMA Evaluations Subscription, American Medical Association, Chicago, IL, 1992.
    18) Abel EL: Drug Alcohol Depend 1984; 14:1-10.
    19) Alaspaa AO, Kuisma MJ, Hoppu K, et al: Out-of-hospital administration of activated charcoal by emergency medical services. Ann Emerg Med 2005; 45:207-12.
    20) American Conference of Governmental Industrial Hygienists : ACGIH 2010 Threshold Limit Values (TLVs(R)) for Chemical Substances and Physical Agents and Biological Exposure Indices (BEIs(R)), American Conference of Governmental Industrial Hygienists, Cincinnati, OH, 2010.
    21) Ansell-Edmont: SpecWare Chemical Application and Recommendation Guide. Ansell-Edmont. Coshocton, OH. 2001. Available from URL: http://www.ansellpro.com/specware. As accessed 10/31/2001.
    22) Artigas A, Bernard GR, Carlet J, et al: The American-European consensus conference on ARDS, part 2: ventilatory, pharmacologic, supportive therapy, study design strategies, and issues related to recovery and remodeling.. Am J Respir Crit Care Med 1998; 157:1332-1347.
    23) Ashley MJ: Canad Med J 1981; 125:141-142.
    24) Bata Shoe Company: Industrial Footwear Catalog, Bata Shoe Company, Belcamp, MD, 1995.
    25) Best Manufacturing: ChemRest Chemical Resistance Guide. Best Manufacturing. Menlo, GA. 2002. Available from URL: http://www.chemrest.com. As accessed 10/8/2002.
    26) Best Manufacturing: Degradation and Permeation Data. Best Manufacturing. Menlo, GA. 2004. Available from URL: http://www.chemrest.com/DomesticPrep2/. As accessed 04/09/2004.
    27) Bingham E, Cohrssen B, & Powell CH: Patty's Toxicology, 5th ed, John Wiley & Sons, New York, NY, 2001.
    28) Borzelleca JF, Larson PS, & Hennigar HR: Studies on the chronic oral toxicity of monomeric ethyl acrylate and methyl methacrylate. Toxicol Appl Pharmacol 1964; 6:29-36.
    29) Boss Manufacturing Company: Work Gloves, Boss Manufacturing Company, Kewanee, IL, 1998.
    30) Boysen PG & Modell JH: Pulmonary edema, in: Textbook of Critical Care Medicine, 2nd ed. Shoemaker WC, Ayres S, Grenvik A et al (Eds), WB Saunders Company, Philadelphia, PA, 1989, pp 515-518.
    31) Bretherick L: Bretherick's Handbook of Reactive Chemical Hazards, Butterworths, London, United Kingdom, 1996.
    32) Brophy GM, Bell R, Claassen J, et al: Guidelines for the evaluation and management of status epilepticus. Neurocrit Care 2012; 17(1):3-23.
    33) Brower RG, Matthay AM, & Morris A: Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Eng J Med 2000; 342:1301-1308.
    34) Budavari S: The Merck Index, 12th ed, Merck & Co, Inc, Whitehouse Station, NJ, 1996.
    35) Burgess JL, Kirk M, Borron SW, et al: Emergency department hazardous materials protocol for contaminated patients. Ann Emerg Med 1999; 34(2):205-212.
    36) CHRIS : CHRIS Hazardous Chemical Data. US Department of Transportation, US Coast Guard. Washington, DC (Internet Version). Edition expires 1985; provided by Truven Health Analytics Inc., Greenwood Village, CO.
    37) CHRIS : CHRIS Hazardous Chemical Data. US Department of Transportation, US Coast Guard. Washington, DC (Internet Version). Edition expires 1995; provided by Truven Health Analytics Inc., Greenwood Village, CO.
    38) CHRIS : CHRIS Hazardous Chemical Data. US Department of Transportation, US Coast Guard. Washington, DC (Internet Version). Edition expires 1999; provided by Truven Health Analytics Inc., Greenwood Village, CO.
    39) Caravati EM, Knight HH, & Linscott MS: Esophageal laceration and charcoal mediastinum complicating gastric lavage. J Emerg Med 2001; 20:273-276.
    40) Cataletto M: Respiratory Distress Syndrome, Acute(ARDS). In: Domino FJ, ed. The 5-Minute Clinical Consult 2012, 20th ed. Lippincott Williams & Wilkins, Philadelphia, PA, 2012.
    41) Chamberlain JM, Altieri MA, & Futterman C: A prospective, randomized study comparing intramuscular midazolam with intravenous diazepam for the treatment of seizures in children. Ped Emerg Care 1997; 13:92-94.
    42) ChemFab Corporation: Chemical Permeation Guide Challenge Protective Clothing Fabrics, ChemFab Corporation, Merrimack, NH, 1993.
    43) Chin RF , Neville BG , Peckham C , et al: Treatment of community-onset, childhood convulsive status epilepticus: a prospective, population-based study. Lancet Neurol 2008; 7(8):696-703.
    44) Choonara IA & Rane A: Therapeutic drug monitoring of anticonvulsants state of the art. Clin Pharmacokinet 1990; 18:318-328.
    45) Chudnofsky CR & Otten EJ: Acute pulmonary toxicity to nitrofurantoin. J Emerg Med 1989; 7:15-19.
    46) Chyka PA, Seger D, Krenzelok EP, et al: Position paper: Single-dose activated charcoal. Clin Toxicol (Phila) 2005; 43(2):61-87.
    47) Clayton GD & Clayton FE: Patty's Industrial Hygiene and Toxicology Vol 2A, Toxicology, 4th ed, John Wiley & Sons, New York, NY, 1993.
    48) Comasec Safety, Inc.: Chemical Resistance to Permeation Chart. Comasec Safety, Inc.. Enfield, CT. 2003. Available from URL: http://www.comasec.com/webcomasec/english/catalogue/mtabgb.html. As accessed 4/28/2003.
    49) Comasec Safety, Inc.: Product Literature, Comasec Safety, Inc., Enfield, CT, 2003a.
    50) DFG: List of MAK and BAT Values 2002, Report No. 38, Deutsche Forschungsgemeinschaft, Commission for the Investigation of Health Hazards of Chemical Compounds in the Work Area, Wiley-VCH, Weinheim, Federal Republic of Germany, 2002.
    51) Dagnone D, Matsui D, & Rieder MJ: Assessment of the palatability of vehicles for activated charcoal in pediatric volunteers. Pediatr Emerg Care 2002; 18:19-21.
    52) DePass LR: Dermal oncogenicity bioassays of acrylic acid, ethyl acrylate, and butyl acrylate. J Toxicol Environ Health 1984; 14:115-120.
    53) DuPont: DuPont Suit Smart: Interactive Tool for the Selection of Protective Apparel. DuPont. Wilmington, DE. 2002. Available from URL: http://personalprotection.dupont.com/protectiveapparel/suitsmart/smartsuit2/na_english.asp. As accessed 10/31/2002.
    54) DuPont: Permeation Guide for DuPont Tychem Protective Fabrics. DuPont. Wilmington, DE. 2003. Available from URL: http://personalprotection.dupont.com/en/pdf/tyvektychem/pgcomplete20030128.pdf. As accessed 4/26/2004.
    55) DuPont: Permeation Test Results. DuPont. Wilmington, DE. 2002a. Available from URL: http://www.tyvekprotectiveapprl.com/databases/default.htm. As accessed 7/31/2002.
    56) EPA: Search results for Toxic Substances Control Act (TSCA) Inventory Chemicals. US Environmental Protection Agency, Substance Registry System, U.S. EPA's Office of Pollution Prevention and Toxics. Washington, DC. 2005. Available from URL: http://www.epa.gov/srs/.
    57) ERG: Emergency Response Guidebook. A Guidebook for First Responders During the Initial Phase of a Dangerous Goods/Hazardous Materials Incident, U.S. Department of Transportation, Research and Special Programs Administration, Washington, DC, 2004.
    58) Elliot CG, Colby TV, & Kelly TM: Charcoal lung. Bronchiolitis obliterans after aspiration of activated charcoal. Chest 1989; 96:672-674.
    59) FDA: Poison treatment drug product for over-the-counter human use; tentative final monograph. FDA: Fed Register 1985; 50:2244-2262.
    60) Ghanayem BI, Burka LT, & Matthews HB: Ethyl acrylate distribution, macromolecular binding, excretion, and metabolism in male Fisher 344 rats. Fundam Appl Toxicol 1987; 9:389-397.
    61) Ghanayem BI, Maronpot RR, & Matthews HB: Ethyl acrylate-induced gastric toxicity. I. Effect of single and repetitive dosing. Toxicol Appl Pharmacol 1985a; 80:323-335.
    62) Ghanayem BI, Maronpot RR, & Matthews HB: Ethyl acrylate-induced gastric toxicity. II. Structure-toxicity relationships and mechanism. Toxicol Appl Pharmacol 1985b; 80:336-344.
    63) Ghanayem BI, Maronpot RR, & Matthews HB: Ethyl acrylate-induced gastric toxicity. III. Development and recovery of lesions. Toxicol Appl Pharmacol 1986; 83:576-583.
    64) Ghanayem BI, Sanchez IM, & Maronpot RR: Relationship between the time of sustained ethyl acrylate forestomach hyperplasia and carcinogenicity. Environ Health Perspect 1993; 101(Suppl 5):277-279.
    65) Golej J, Boigner H, Burda G, et al: Severe respiratory failure following charcoal application in a toddler. Resuscitation 2001; 49:315-318.
    66) Gosselin RE, Smith RP, & Hodge HC: Clinical Toxicology of Commercial Products, 5th ed, Williams & Wilkins, Baltimore, MD, 1984, pp ll-409.
    67) Graff GR, Stark J, & Berkenbosch JW: Chronic lung disease after activated charcoal aspiration. Pediatrics 2002; 109:959-961.
    68) Grant WM & Schuman JS: Toxicology of the Eye, 4th ed, Charles C Thomas, Springfield, IL, 1993, pp 658-59.
    69) Guardian Manufacturing Group: Guardian Gloves Test Results. Guardian Manufacturing Group. Willard, OH. 2001. Available from URL: http://www.guardian-mfg.com/guardianmfg.html. As accessed 12/11/2001.
    70) Guenther Skokan E, Junkins EP, & Corneli HM: Taste test: children rate flavoring agents used with activated charcoal. Arch Pediatr Adolesc Med 2001; 155:683-686.
    71) HSDB : Hazardous Substances Data Bank. National Library of Medicine. Bethesda, MD (Internet Version). Edition expires 1995; provided by Truven Health Analytics Inc., Greenwood Village, CO.
    72) HSDB : Hazardous Substances Data Bank. National Library of Medicine. Bethesda, MD (Internet Version). Edition expires 1999; provided by Truven Health Analytics Inc., Greenwood Village, CO.
    73) HSDB : Hazardous Substances Data Bank. National Library of Medicine. Bethesda, MD (Internet Version). Edition expires 2001; provided by Truven Health Analytics Inc., Greenwood Village, CO.
    74) HSDB : Hazardous Substances Data Bank. National Library of Medicine. Bethesda, MD (Internet Version). Edition expires 2004; provided by Truven Health Analytics Inc., Greenwood Village, CO.
    75) Haas CF: Mechanical ventilation with lung protective strategies: what works?. Crit Care Clin 2011; 27(3):469-486.
    76) Harris CR & Filandrinos D: Accidental administration of activated charcoal into the lung: aspiration by proxy. Ann Emerg Med 1993; 22:1470-1473.
    77) Hathaway GJ, Proctor NH, & Hughes JP: Chemical Hazards of the Workplace, 3rd ed, Van Nostrand Reinhold Company, New York, NY, 1991, pp 276-277.
    78) Hathaway GJ, Proctor NH, & Hughes JP: Chemical Hazards of the Workplace, 4th ed, Van Nostrand Reinhold Company, New York, NY, 1996, pp 276-77.
    79) Hegenbarth MA & American Academy of Pediatrics Committee on Drugs: Preparing for pediatric emergencies: drugs to consider. Pediatrics 2008; 121(2):433-443.
    80) Hvidberg EF & Dam M: Clinical pharmacokinetics of anticonvulsants. Clin Pharmacokinet 1976; 1:161.
    81) IARC Working Group on the Evaluation of Carcinogenic Risks to Humans : IARC Monographs on the Evaluation of Carcinogenic Risks to Humans: 1,3-Butadiene, Ethylene Oxide and Vinyl Halides (Vinyl Fluoride, Vinyl Chloride and Vinyl Bromide), 97, International Agency for Research on Cancer, Lyon, France, 2008.
    82) IARC Working Group on the Evaluation of Carcinogenic Risks to Humans : IARC Monographs on the Evaluation of Carcinogenic Risks to Humans: Formaldehyde, 2-Butoxyethanol and 1-tert-Butoxypropan-2-ol, 88, International Agency for Research on Cancer, Lyon, France, 2006.
    83) IARC Working Group on the Evaluation of Carcinogenic Risks to Humans : IARC Monographs on the Evaluation of Carcinogenic Risks to Humans: Household Use of Solid Fuels and High-temperature Frying, 95, International Agency for Research on Cancer, Lyon, France, 2010a.
    84) IARC Working Group on the Evaluation of Carcinogenic Risks to Humans : IARC Monographs on the Evaluation of Carcinogenic Risks to Humans: Smokeless Tobacco and Some Tobacco-specific N-Nitrosamines, 89, International Agency for Research on Cancer, Lyon, France, 2007.
    85) IARC Working Group on the Evaluation of Carcinogenic Risks to Humans : IARC Monographs on the Evaluation of Carcinogenic Risks to Humans: Some Non-heterocyclic Polycyclic Aromatic Hydrocarbons and Some Related Exposures, 92, International Agency for Research on Cancer, Lyon, France, 2010.
    86) IARC: IARC Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans, 39, International Agency for Research on Cancer, World Health Organization, Geneva, Switzerland, 1986, pp 81-98.
    87) IARC: List of all agents, mixtures and exposures evaluated to date - IARC Monographs: Overall Evaluations of Carcinogenicity to Humans, Volumes 1-88, 1972-PRESENT. World Health Organization, International Agency for Research on Cancer. Lyon, FranceAvailable from URL: http://monographs.iarc.fr/monoeval/crthall.html. As accessed Oct 07, 2004.
    88) ICAO: Technical Instructions for the Safe Transport of Dangerous Goods by Air, 2003-2004. International Civil Aviation Organization, Montreal, Quebec, Canada, 2002.
    89) ILC Dover, Inc.: Ready 1 The Chemturion Limited Use Chemical Protective Suit, ILC Dover, Inc., Frederica, DE, 1998.
    90) International Agency for Research on Cancer (IARC): IARC monographs on the evaluation of carcinogenic risks to humans: list of classifications, volumes 1-116. International Agency for Research on Cancer (IARC). Lyon, France. 2016. Available from URL: http://monographs.iarc.fr/ENG/Classification/latest_classif.php. As accessed 2016-08-24.
    91) International Agency for Research on Cancer: IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. World Health Organization. Geneva, Switzerland. 2015. Available from URL: http://monographs.iarc.fr/ENG/Classification/. As accessed 2015-08-06.
    92) Ip M, Wong K-L, & Wong K-F: Lung injury in dimethyl sulfate poisoning. J Occup Med 1989; 31:141-143.
    93) Kanerva L, Estlander T, & Jolanki R: Sensitization to patch test acrylates. Contact Dermatitis 1988; 18:10-15.
    94) Kappler, Inc.: Suit Smart. Kappler, Inc.. Guntersville, AL. 2001. Available from URL: http://www.kappler.com/suitsmart/smartsuit2/na_english.asp?select=1. As accessed 7/10/2001.
    95) Kimberly-Clark, Inc.: Chemical Test Results. Kimberly-Clark, Inc.. Atlanta, GA. 2002. Available from URL: http://www.kc-safety.com/tech_cres.html. As accessed 10/4/2002.
    96) Kollef MH & Schuster DP: The acute respiratory distress syndrome. N Engl J Med 1995; 332:27-37.
    97) LaCrosse-Rainfair: Safety Products, LaCrosse-Rainfair, Racine, WI, 1997.
    98) Lewis RJ: Hawley's Condensed Chemical Dictionary, 12th ed, Van Nostrand Reinhold Company, New York, NY, 1993.
    99) Lewis RJ: Sax's Dangerous Properties of Industrial Materials, 8th ed, Van Nostrand Reinhold Company, New York, NY, 1992.
    100) Lewis RJ: Sax's Dangerous Properties of Industrial Materials, 9th ed, Van Nostrand Reinhold Company, New York, NY, 1996.
    101) Linhart I, Vosmanska M, & Smejkal J: Biotransformation of acrylates. Excreation of mercapturic acids and changes in urinary carboxylic acid profile in rat dosed with ethyl and 1-butyl acrylate. Xenobiotica 1994; 10:1043-52.
    102) Little RE & Streissguth AP: Canad Med J 1981; 125:159-164.
    103) Loddenkemper T & Goodkin HP: Treatment of Pediatric Status Epilepticus. Curr Treat Options Neurol 2011; Epub:Epub.
    104) MAPA Professional: Chemical Resistance Guide. MAPA North America. Columbia, TN. 2003. Available from URL: http://www.mapaglove.com/pro/ChemicalSearch.asp. As accessed 4/21/2003.
    105) MAPA Professional: Chemical Resistance Guide. MAPA North America. Columbia, TN. 2004. Available from URL: http://www.mapaglove.com/ProductSearch.cfm?id=1. As accessed 6/10/2004.
    106) Maggart M & Stewart S: The mechanisms and management of noncardiogenic pulmonary edema following cardiopulmonary bypass. Ann Thorac Surg 1987; 43:231-236.
    107) Manno EM: New management strategies in the treatment of status epilepticus. Mayo Clin Proc 2003; 78(4):508-518.
    108) Mar-Mac Manufacturing, Inc: Product Literature, Protective Apparel, Mar-Mac Manufacturing, Inc., McBee, SC, 1995.
    109) Marigold Industrial: US Chemical Resistance Chart, on-line version. Marigold Industrial. Norcross, GA. 2003. Available from URL: www.marigoldindustrial.com/charts/uschart/uschart.html. As accessed 4/14/2003.
    110) Memphis Glove Company: Permeation Guide. Memphis Glove Company. Memphis, TN. 2001. Available from URL: http://www.memphisglove.com/permeation.html. As accessed 7/2/2001.
    111) Montgomery Safety Products: Montgomery Safety Products Chemical Resistant Glove Guide, Montgomery Safety Products, Canton, OH, 1995.
    112) Moore MM, Amtower A, & Doerr CL: Genotoxicity of acrylic acid, methyl acrylate, ethyl acrylate, methyl methacrylate, and ethyl methacrylate in L5178Y mouse lymphoma cells. Environ Mol Mutagen 1988; 11:49-63.
    113) Murray JS, Miller RR, & Deacon MM: Teratological evaluation of inhaled ethyl acrylate in rats. Toxicol Appl Pharmacol 1981; 60:106-111.
    114) NFPA: Fire Protection Guide to Hazardous Materials, 10th ed, National Fire Protection Association, Quincy, MA, 1991.
    115) NFPA: Fire Protection Guide to Hazardous Materials, 13th ed., National Fire Protection Association, Quincy, MA, 2002.
    116) NHLBI ARDS Network: Mechanical ventilation protocol summary. Massachusetts General Hospital. Boston, MA. 2008. Available from URL: http://www.ardsnet.org/system/files/6mlcardsmall_2008update_final_JULY2008.pdf. As accessed 2013-08-07.
    117) NRC: Acute Exposure Guideline Levels for Selected Airborne Chemicals - Volume 1, Subcommittee on Acute Exposure Guideline Levels, Committee on Toxicology, Board on Environmental Studies and Toxicology, Commission of Life Sciences, National Research Council. National Academy Press, Washington, DC, 2001.
    118) NRC: Acute Exposure Guideline Levels for Selected Airborne Chemicals - Volume 2, Subcommittee on Acute Exposure Guideline Levels, Committee on Toxicology, Board on Environmental Studies and Toxicology, Commission of Life Sciences, National Research Council. National Academy Press, Washington, DC, 2002.
    119) NRC: Acute Exposure Guideline Levels for Selected Airborne Chemicals - Volume 3, Subcommittee on Acute Exposure Guideline Levels, Committee on Toxicology, Board on Environmental Studies and Toxicology, Commission of Life Sciences, National Research Council. National Academy Press, Washington, DC, 2003.
    120) NRC: Acute Exposure Guideline Levels for Selected Airborne Chemicals - Volume 4, Subcommittee on Acute Exposure Guideline Levels, Committee on Toxicology, Board on Environmental Studies and Toxicology, Commission of Life Sciences, National Research Council. National Academy Press, Washington, DC, 2004.
    121) NTP: Carcinogenesis Studies of Ethyl Acrylate. U.S, National Toxicology Program, US Department of Human Health Services, National Institutes of Health, Research Triangle Park, NC, 1986.
    122) Naradzay J & Barish RA: Approach to ophthalmologic emergencies. Med Clin North Am 2006; 90(2):305-328.
    123) Nat-Wear: Protective Clothing, Hazards Chart. Nat-Wear. Miora, NY. 2001. Available from URL: http://www.natwear.com/hazchart1.htm. As accessed 7/12/2001.
    124) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for 1,2,3-Trimethylbenzene (Proposed). United States Environmental Protection Agency. Washington, DC. 2006k. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d68a&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    125) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for 1,2,4-Trimethylbenzene (Proposed). United States Environmental Protection Agency. Washington, DC. 2006m. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d68a&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    126) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for 1,2-Butylene Oxide (Proposed). United States Environmental Protection Agency. Washington, DC. 2008d. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648083cdbb&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    127) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for 1,2-Dibromoethane (Proposed). United States Environmental Protection Agency. Washington, DC. 2007g. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064802796db&disposition=attachment&contentType=pdf. As accessed 2010-08-18.
    128) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for 1,3,5-Trimethylbenzene (Proposed). United States Environmental Protection Agency. Washington, DC. 2006l. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d68a&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    129) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for 2-Ethylhexyl Chloroformate (Proposed). United States Environmental Protection Agency. Washington, DC. 2007b. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648037904e&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    130) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Acrylonitrile (Proposed). United States Environmental Protection Agency. Washington, DC. 2007c. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648028e6a3&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    131) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Adamsite (Proposed). United States Environmental Protection Agency. Washington, DC. 2007h. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020fd29&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    132) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Agent BZ (3-quinuclidinyl benzilate) (Proposed). United States Environmental Protection Agency. Washington, DC. 2007f. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064803ad507&disposition=attachment&contentType=pdf. As accessed 2010-08-18.
    133) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Allyl Chloride (Proposed). United States Environmental Protection Agency. Washington, DC. 2008. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648039d9ee&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    134) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Aluminum Phosphide (Proposed). United States Environmental Protection Agency. Washington, DC. 2005b. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c5ed&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    135) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Arsenic Trioxide (Proposed). United States Environmental Protection Agency. Washington, DC. 2007m. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480220305&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    136) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Automotive Gasoline Unleaded (Proposed). United States Environmental Protection Agency. Washington, DC. 2009a. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a7cc17&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    137) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Biphenyl (Proposed). United States Environmental Protection Agency. Washington, DC. 2005j. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064801ea1b7&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    138) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Bis-Chloromethyl Ether (BCME) (Proposed). United States Environmental Protection Agency. Washington, DC. 2006n. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648022db11&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    139) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Boron Tribromide (Proposed). United States Environmental Protection Agency. Washington, DC. 2008a. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064803ae1d3&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    140) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Bromine Chloride (Proposed). United States Environmental Protection Agency. Washington, DC. 2007d. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648039732a&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    141) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Bromoacetone (Proposed). United States Environmental Protection Agency. Washington, DC. 2008e. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064809187bf&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    142) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Calcium Phosphide (Proposed). United States Environmental Protection Agency. Washington, DC. 2005d. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c5ed&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    143) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Carbonyl Fluoride (Proposed). United States Environmental Protection Agency. Washington, DC. 2008b. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064803ae328&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    144) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Carbonyl Sulfide (Proposed). United States Environmental Protection Agency. Washington, DC. 2007e. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648037ff26&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    145) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Chlorobenzene (Proposed). United States Environmental Protection Agency. Washington, DC. 2008c. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064803a52bb&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    146) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Cyanogen (Proposed). United States Environmental Protection Agency. Washington, DC. 2008f. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064809187fe&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    147) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Dimethyl Phosphite (Proposed). United States Environmental Protection Agency. Washington, DC. 2009. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a7cbf3&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    148) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Diphenylchloroarsine (Proposed). United States Environmental Protection Agency. Washington, DC. 2007l. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020fd29&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    149) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Ethyl Isocyanate (Proposed). United States Environmental Protection Agency. Washington, DC. 2008h. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648091884e&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    150) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Ethyl Phosphorodichloridate (Proposed). United States Environmental Protection Agency. Washington, DC. 2008i. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480920347&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    151) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Ethylbenzene (Proposed). United States Environmental Protection Agency. Washington, DC. 2008g. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064809203e7&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    152) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Ethyldichloroarsine (Proposed). United States Environmental Protection Agency. Washington, DC. 2007j. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020fd29&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    153) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Germane (Proposed). United States Environmental Protection Agency. Washington, DC. 2008j. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480963906&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    154) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Hexafluoropropylene (Proposed). United States Environmental Protection Agency. Washington, DC. 2006. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064801ea1f5&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    155) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Ketene (Proposed). United States Environmental Protection Agency. Washington, DC. 2007. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020ee7c&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    156) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Magnesium Aluminum Phosphide (Proposed). United States Environmental Protection Agency. Washington, DC. 2005h. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c5ed&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    157) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Magnesium Phosphide (Proposed). United States Environmental Protection Agency. Washington, DC. 2005g. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c5ed&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    158) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Malathion (Proposed). United States Environmental Protection Agency. Washington, DC. 2009k. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064809639df&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    159) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Mercury Vapor (Proposed). United States Environmental Protection Agency. Washington, DC. 2009b. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a8a087&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    160) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Methyl Isothiocyanate (Proposed). United States Environmental Protection Agency. Washington, DC. 2008k. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480963a03&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    161) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Methyl Parathion (Proposed). United States Environmental Protection Agency. Washington, DC. 2008l. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480963a57&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    162) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Methyl tertiary-butyl ether (Proposed). United States Environmental Protection Agency. Washington, DC. 2007a. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064802a4985&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    163) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Methylchlorosilane (Proposed). United States Environmental Protection Agency. Washington, DC. 2005. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c5f4&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    164) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Methyldichloroarsine (Proposed). United States Environmental Protection Agency. Washington, DC. 2007i. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020fd29&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    165) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Methyldichlorosilane (Proposed). United States Environmental Protection Agency. Washington, DC. 2005a. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c646&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    166) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Nitrogen Mustard (HN1 CAS Reg. No. 538-07-8) (Proposed). United States Environmental Protection Agency. Washington, DC. 2006a. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d6cb&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    167) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Nitrogen Mustard (HN2 CAS Reg. No. 51-75-2) (Proposed). United States Environmental Protection Agency. Washington, DC. 2006b. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d6cb&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    168) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Nitrogen Mustard (HN3 CAS Reg. No. 555-77-1) (Proposed). United States Environmental Protection Agency. Washington, DC. 2006c. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d6cb&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    169) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Nitrogen Tetroxide (Proposed). United States Environmental Protection Agency. Washington, DC. 2008n. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648091855b&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    170) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Nitrogen Trifluoride (Proposed). United States Environmental Protection Agency. Washington, DC. 2009l. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480963e0c&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    171) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Parathion (Proposed). United States Environmental Protection Agency. Washington, DC. 2008o. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480963e32&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    172) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Perchloryl Fluoride (Proposed). United States Environmental Protection Agency. Washington, DC. 2009c. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a7e268&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    173) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Perfluoroisobutylene (Proposed). United States Environmental Protection Agency. Washington, DC. 2009d. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a7e26a&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    174) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Phenyl Isocyanate (Proposed). United States Environmental Protection Agency. Washington, DC. 2008p. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648096dd58&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    175) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Phenyl Mercaptan (Proposed). United States Environmental Protection Agency. Washington, DC. 2006d. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020cc0c&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    176) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Phenyldichloroarsine (Proposed). United States Environmental Protection Agency. Washington, DC. 2007k. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020fd29&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    177) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Phorate (Proposed). United States Environmental Protection Agency. Washington, DC. 2008q. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648096dcc8&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    178) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Phosgene (Draft-Revised). United States Environmental Protection Agency. Washington, DC. 2009e. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a8a08a&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    179) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Phosgene Oxime (Proposed). United States Environmental Protection Agency. Washington, DC. 2009f. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a7e26d&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    180) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Potassium Cyanide (Proposed). United States Environmental Protection Agency. Washington, DC. 2009g. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a7cbb9&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    181) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Potassium Phosphide (Proposed). United States Environmental Protection Agency. Washington, DC. 2005c. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c5ed&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    182) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Propargyl Alcohol (Proposed). United States Environmental Protection Agency. Washington, DC. 2006e. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020ec91&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    183) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Selenium Hexafluoride (Proposed). United States Environmental Protection Agency. Washington, DC. 2006f. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020ec55&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    184) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Silane (Proposed). United States Environmental Protection Agency. Washington, DC. 2006g. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d523&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    185) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Sodium Cyanide (Proposed). United States Environmental Protection Agency. Washington, DC. 2009h. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a7cbb9&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    186) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Sodium Phosphide (Proposed). United States Environmental Protection Agency. Washington, DC. 2005i. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c5ed&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    187) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Strontium Phosphide (Proposed). United States Environmental Protection Agency. Washington, DC. 2005f. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c5ed&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    188) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Sulfuryl Chloride (Proposed). United States Environmental Protection Agency. Washington, DC. 2006h. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020ec7a&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    189) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Tear Gas (Proposed). United States Environmental Protection Agency. Washington, DC. 2008s. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648096e551&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    190) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Tellurium Hexafluoride (Proposed). United States Environmental Protection Agency. Washington, DC. 2009i. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a7e2a1&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    191) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Tert-Octyl Mercaptan (Proposed). United States Environmental Protection Agency. Washington, DC. 2008r. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648096e5c7&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    192) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Tetramethoxysilane (Proposed). United States Environmental Protection Agency. Washington, DC. 2006j. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d632&disposition=attachment&contentType=pdf. As accessed 2010-08-17.
    193) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Trimethoxysilane (Proposed). United States Environmental Protection Agency. Washington, DC. 2006i. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d632&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    194) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Trimethyl Phosphite (Proposed). United States Environmental Protection Agency. Washington, DC. 2009j. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a7d608&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    195) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Trimethylacetyl Chloride (Proposed). United States Environmental Protection Agency. Washington, DC. 2008t. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648096e5cc&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    196) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Zinc Phosphide (Proposed). United States Environmental Protection Agency. Washington, DC. 2005e. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c5ed&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    197) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for n-Butyl Isocyanate (Proposed). United States Environmental Protection Agency. Washington, DC. 2008m. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064808f9591&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    198) National Heart,Lung,and Blood Institute: Expert panel report 3: guidelines for the diagnosis and management of asthma. National Heart,Lung,and Blood Institute. Bethesda, MD. 2007. Available from URL: http://www.nhlbi.nih.gov/guidelines/asthma/asthgdln.pdf.
    199) National Institute for Occupational Safety and Health: NIOSH Pocket Guide to Chemical Hazards, U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, Cincinnati, OH, 2007.
    200) National Research Council : Acute exposure guideline levels for selected airborne chemicals, 5, National Academies Press, Washington, DC, 2007.
    201) National Research Council: Acute exposure guideline levels for selected airborne chemicals, 6, National Academies Press, Washington, DC, 2008.
    202) National Research Council: Acute exposure guideline levels for selected airborne chemicals, 7, National Academies Press, Washington, DC, 2009.
    203) National Research Council: Acute exposure guideline levels for selected airborne chemicals, 8, National Academies Press, Washington, DC, 2010.
    204) Neese Industries, Inc.: Fabric Properties Rating Chart. Neese Industries, Inc.. Gonzales, LA. 2003. Available from URL: http://www.neeseind.com/new/TechGroup.asp?Group=Fabric+Properties&Family=Technical. As accessed 4/15/2003.
    205) None Listed: Position paper: cathartics. J Toxicol Clin Toxicol 2004; 42(3):243-253.
    206) North: Chemical Resistance Comparison Chart - Protective Footwear . North Safety. Cranston, RI. 2002. Available from URL: http://www.linkpath.com/index2gisufrm.php?t=N-USA1. As accessed April 30, 2004.
    207) North: eZ Guide Interactive Software. North Safety. Cranston, RI. 2002a. Available from URL: http://www.northsafety.com/feature1.htm. As accessed 8/31/2002.
    208) Peate WF: Work-related eye injuries and illnesses. Am Fam Physician 2007; 75(7):1017-1022.
    209) Playtex: Fits Tough Jobs Like a Glove, Playtex, Westport, CT, 1995.
    210) Pollack MM, Dunbar BS, & Holbrook PR: Aspiration of activated charcoal and gastric contents. Ann Emerg Med 1981; 10:528-529.
    211) Proctor NH & Hughes JP: Chemical Hazards of the Workplace, JB Lippincott Co, Philadelphia, PA, 1978, pp 248.
    212) Product Information: diazepam IM, IV injection, diazepam IM, IV injection. Hospira, Inc (per Manufacturer), Lake Forest, IL, 2008.
    213) Product Information: lorazepam IM, IV injection, lorazepam IM, IV injection. Akorn, Inc, Lake Forest, IL, 2008.
    214) Przybojewska B, Dziubaltowska E, & Kowalski Z: Genotoxic effects of ethyl acrylate and methyl acrylate in the mouse evaluated by the micronucleus test. Mutat Res 1984; 135:189-191.
    215) RTECS : Registry of Toxic Effects of Chemical Substances. National Institute for Occupational Safety and Health. Cincinnati, OH (Internet Version). Edition expires 2001; provided by Truven Health Analytics Inc., Greenwood Village, CO.
    216) Rau NR, Nagaraj MV, Prakash PS, et al: Fatal pulmonary aspiration of oral activated charcoal. Br Med J 1988; 297:918-919.
    217) River City: Protective Wear Product Literature, River City, Memphis, TN, 1995.
    218) Safety 4: North Safety Products: Chemical Protection Guide. North Safety. Cranston, RI. 2002. Available from URL: http://www.safety4.com/guide/set_guide.htm. As accessed 8/14/2002.
    219) Schardein JL: Chemically Induced Birth Defects, 2nd ed, Marcel Dekker, Inc, New York, NY, 1993.
    220) Scott R, Besag FMC, & Neville BGR: Buccal midazolam and rectal diazepam for treatment of prolonged seizures in childhood and adolescence: a randomized trial. Lancet 1999; 353:623-626.
    221) Servus: Norcross Safety Products, Servus Rubber, Servus, Rock Island, IL, 1995.
    222) Silver EH & Murphy SD: Potentiation of acrylate ester toxicity by prior treatment with the carboxylesterase inhibitor triorthotolyl phosphate (TOCP). Toxicol Appl Pharmacol 1981; 57:208-219.
    223) Sittig M: Handbook of Toxic and Hazardous Chemicals and Carcinogens, 3rd ed, Noyes Publications, Park Ridge, NJ, 1991, pp 723-33.
    224) Sokol RJ: Canad Med J 1981; 125:143-148.
    225) Spiller HA & Rogers GC: Evaluation of administration of activated charcoal in the home. Pediatrics 2002; 108:E100.
    226) Sreenath TG, Gupta P, Sharma KK, et al: Lorazepam versus diazepam-phenytoin combination in the treatment of convulsive status epilepticus in children: A randomized controlled trial. Eur J Paediatr Neurol 2010; 14(2):162-168.
    227) Standard Safety Equipment: Product Literature, Standard Safety Equipment, McHenry, IL, 1995.
    228) Stentoft J: The toxicity of cytarabine. Drug Saf 1990; 5:7-27.
    229) Stolbach A & Hoffman RS: Respiratory Principles. In: Nelson LS, Hoffman RS, Lewin NA, et al, eds. Goldfrank's Toxicologic Emergencies, 9th ed. McGraw Hill Medical, New York, NY, 2011.
    230) Thakore S & Murphy N: The potential role of prehospital administration of activated charcoal. Emerg Med J 2002; 19:63-65.
    231) Tharr D: Airborne emissions from carbon dioxide laser cutting operations. Appl Occup Environ Hyg 1991; 6:652-654.
    232) Tice RR, Nylander-French LA, & French JE: Absence of systemic in vivo genotoxicity after dermal exposure to ethyl acrylate and tripropylene glycol diacrylate in Tg.AC(r-Ha-ras) mice. Environ Mol Mutagen 1997; 29:240-249.
    233) Tingley: Chemical Degradation for Footwear and Clothing. Tingley. South Plainfield, NJ. 2002. Available from URL: http://www.tingleyrubber.com/tingley/Guide_ChemDeg.pdf. As accessed 10/16/2002.
    234) Trelleborg-Viking, Inc.: Chemical and Biological Tests (database). Trelleborg-Viking, Inc.. Portsmouth, NH. 2002. Available from URL: http://www.trelleborg.com/protective/. As accessed 10/18/2002.
    235) Trelleborg-Viking, Inc.: Trellchem Chemical Protective Suits, Interactive manual & Chemical Database. Trelleborg-Viking, Inc.. Portsmouth, NH. 2001.
    236) Treon JF: The toxicity of methyl and ethyl acrylate. J Ind Hyg 1949; 31:317-326.
    237) U.S. Department of Energy, Office of Emergency Management: Protective Action Criteria (PAC) with AEGLs, ERPGs, & TEELs: Rev. 26 for chemicals of concern. U.S. Department of Energy, Office of Emergency Management. Washington, DC. 2010. Available from URL: http://www.hss.doe.gov/HealthSafety/WSHP/Chem_Safety/teel.html. As accessed 2011-06-27.
    238) U.S. Department of Health and Human Services, Public Health Service, National Toxicology Project : 11th Report on Carcinogens. U.S. Department of Health and Human Services, Public Health Service, National Toxicology Program. Washington, DC. 2005. Available from URL: http://ntp.niehs.nih.gov/INDEXA5E1.HTM?objectid=32BA9724-F1F6-975E-7FCE50709CB4C932. As accessed 2011-06-27.
    239) U.S. Environmental Protection Agency: Discarded commercial chemical products, off-specification species, container residues, and spill residues thereof. Environmental Protection Agency's (EPA) Resource Conservation and Recovery Act (RCRA); List of hazardous substances and reportable quantities 2010b; 40CFR(261.33, e-f):77-.
    240) U.S. Environmental Protection Agency: Integrated Risk Information System (IRIS). U.S. Environmental Protection Agency. Washington, DC. 2011. Available from URL: http://cfpub.epa.gov/ncea/iris/index.cfm?fuseaction=iris.showSubstanceList&list_type=date. As accessed 2011-06-21.
    241) U.S. Environmental Protection Agency: List of Radionuclides. U.S. Environmental Protection Agency. Washington, DC. 2010a. Available from URL: http://www.gpo.gov/fdsys/pkg/CFR-2010-title40-vol27/pdf/CFR-2010-title40-vol27-sec302-4.pdf. As accessed 2011-06-17.
    242) U.S. Environmental Protection Agency: List of hazardous substances and reportable quantities. U.S. Environmental Protection Agency. Washington, DC. 2010. Available from URL: http://www.gpo.gov/fdsys/pkg/CFR-2010-title40-vol27/pdf/CFR-2010-title40-vol27-sec302-4.pdf. As accessed 2011-06-17.
    243) U.S. Environmental Protection Agency: The list of extremely hazardous substances and their threshold planning quantities (CAS Number Order). U.S. Environmental Protection Agency. Washington, DC. 2010c. Available from URL: http://www.gpo.gov/fdsys/pkg/CFR-2010-title40-vol27/pdf/CFR-2010-title40-vol27-part355.pdf. As accessed 2011-06-17.
    244) U.S. Occupational Safety and Health Administration: Part 1910 - Occupational safety and health standards (continued) Occupational Safety, and Health Administration's (OSHA) list of highly hazardous chemicals, toxics and reactives. Subpart Z - toxic and hazardous substances. CFR 2010 2010; Vol6(SEC1910):7-.
    245) U.S. Occupational Safety, and Health Administration (OSHA): Process safety management of highly hazardous chemicals. 29 CFR 2010 2010; 29(1910.119):348-.
    246) Union Carbide: Material Safety Data Sheet No F-43126C on Ethyl Acrylate. Canadian Centre for Occupational Health and Safety, 1988.
    247) United States Environmental Protection Agency Office of Pollution Prevention and Toxics: Acute Exposure Guideline Levels (AEGLs) for Vinyl Acetate (Proposed). United States Environmental Protection Agency. Washington, DC. 2006. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d6af&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    248) Vale JA, Kulig K, American Academy of Clinical Toxicology, et al: Position paper: Gastric lavage. J Toxicol Clin Toxicol 2004; 42:933-943.
    249) Vale JA: Position Statement: gastric lavage. American Academy of Clinical Toxicology; European Association of Poisons Centres and Clinical Toxicologists. J Toxicol Clin Toxicol 1997; 35:711-719.
    250) Walker AM, Cohen AJ, & Loughlin AJ: Mortality from cancer of the colon or rectum among workers exposed to ethyl acrylate and methyl acrylate. Scan J Work Environ Health 1991; 17:7-19.
    251) Wells Lamont Industrial: Chemical Resistant Glove Application Chart. Wells Lamont Industrial. Morton Grove, IL. 2002. Available from URL: http://www.wellslamontindustry.com. As accessed 10/31/2002.
    252) Willson DF, Truwit JD, Conaway MR, et al: The adult calfactant in acute respiratory distress syndrome (CARDS) trial. Chest 2015; 148(2):356-364.
    253) Wilson DF, Thomas NJ, Markovitz BP, et al: Effect of exogenous surfactant (calfactant) in pediatric acute lung injury. A randomized controlled trial. JAMA 2005; 293:470-476.
    254) Workrite: Chemical Splash Protection Garments, Technical Data and Application Guide, W.L. Gore Material Chemical Resistance Guide, Workrite, Oxnard, CA, 1997.
    255) Wright JT & Toplis PJ: Br J Ob Gyn 1986; 93:201-202.
    256) Zitnik RJ & Cooper JA: Pulmonary disease due to antirheumatic agents. Clin Chest Med 1990; 11:139-150.
    257) deBethizy JD: The disposition and metabolism of acrylic acid and ethyl acrylate in male Sprague-Dawley rats. Fundam Appl Toxicol 1987; 8:549-561.