MOBILE VIEW  | 

EPICHLOROHYDRIN

Classification   |    Detailed evidence-based information

Therapeutic Toxic Class

    A) Epichlorohydrin is a major raw material used in the manufacture of epoxy resins.

Specific Substances

    1) 3-Chloro-1, 2-epoxy propane
    2) (Chloromethyl) ethylene oxide
    3) Chloromethyloxirane
    4) Chloropropylene oxide
    5) Gamma-chloropropylene oxide
    6) 3-chloro-1, 2-propylene oxide
    7) 2-chloromethyl-oxirane
    8) Alpha-epichlorohydrin
    9) Epichlorophydrin
    10) Glycidyl chloride
    11) ECH
    12) Oxirane (chloromethyl)
    13) CAS 106-89-8
    14) ECH (EPICHLOROHYDRIN)
    1.2.1) MOLECULAR FORMULA
    1) C3-H5-Cl-O

Available Forms Sources

    A) FORMS
    1) Epichlorohydrin is a mobile, colorless, flammable, and reactive liquid. Its odor has been described as sweet and pungent or chloroform-like (Ashford, 2001; Bingham et al, 2001; Budavari, 1996; Lewis, 2000; Lewis, 2001; Lewis, 1998; Raffle et al, 1994; Verschueren, 1983).
    B) SOURCES
    1) It is produced by dehydrochlorination (glycerol-1,3-dichlorohydrin + calcium hydroxide) and by chlorination/dehydrochlorination (allyl alcohol + chlorine) (Ashford, 2001).
    C) USES
    1) Epichlorohydrin is used as a solvent for resins, gums, cellulose esters and ethers, paints, varnishes, nail enamels, and laquers; in the manufacture of glycerol and glycidol derivatives; in the manufacture of epoxy and phenoxy resins; and as a stabilizer in chlorine-containing materials (Bingham et al, 2001; Budavari, 1996; Lewis, 2001; Lewis, 1998).

Life Support

    A) This overview assumes that basic life support measures have been instituted.

Clinical Effects

    0.2.1) SUMMARY OF EXPOSURE
    A) Inhalation of vapors, the major route of exposure, causes systemic effects; it is also toxic by ingestion and skin absorption. Epichlorohydrin is a strong irritant to skin, producing burning, itching, deep pain, redness, swelling, burns and blisters, and to the eyes and respiratory system. Exposure may result in nausea, vomiting, abdominal pain, shortness of breath, cyanosis, dizziness and suffocation. Effects may be delayed for several hours.
    B) Epichlorohydrin is toxic to kidneys. Central nervous system and respiratory depression are possible.
    C) There have been few serious reactions to epichlorohydrin following industrial exposures. Repeated, chronic exposure may damage lung, liver and kidney, with symptoms of enervation, dermatitis and disturbances in the stomach and kidneys.
    0.2.3) VITAL SIGNS
    A) Hypotension and apnea have been reported in animal studies.
    0.2.4) HEENT
    A) Facial swelling and eye and nasal mucosal irritation may be seen after exposure.
    0.2.6) RESPIRATORY
    A) Irritation of the respiratory tract, bronchitis, and dyspnea are possible, but have not been seen in industrial exposures.
    0.2.7) NEUROLOGIC
    A) CNS depression has been the primary cause of death in poisoned laboratory animals.
    0.2.8) GASTROINTESTINAL
    A) Vomiting, nausea, and abdominal pain have been seen in exposed workers.
    0.2.9) HEPATIC
    A) Hepatomegaly has been seen in both animal studies and human exposures. Liver function abnormalities have been reported in humans up to 2 years after exposure to an unknown concentration.
    0.2.10) GENITOURINARY
    A) Kidney lesions were seen in humans briefly exposed to 100 ppm.
    0.2.14) DERMATOLOGIC
    A) ECH is irritating on contact. Burns may result. Vesiculation has occurred several hours after direct contact with the skin.
    B) Sensitization may occur.
    0.2.20) REPRODUCTIVE
    A) Fetotoxicity was seen in mice.

Laboratory Monitoring

    A) No toxic serum levels have been established.
    B) Liver and kidney function should be monitored.
    C) Monitor for CNS and/or respiratory depression in symptomatic patients following a massive acute exposure.

Treatment Overview

    0.4.2) ORAL/PARENTERAL EXPOSURE
    A) EMESIS: Ipecac-induced emesis is not recommended because there is so little information about the effects of overdose in humans.
    B) GASTRIC LAVAGE: Consider after ingestion of a potentially life-threatening amount of poison if it can be performed soon after ingestion (generally within 1 hour). Protect airway by placement in the head down left lateral decubitus position or by endotracheal intubation. Control any seizures first.
    1) CONTRAINDICATIONS: Loss of airway protective reflexes or decreased level of consciousness in unintubated patients; following ingestion of corrosives; hydrocarbons (high aspiration potential); patients at risk of hemorrhage or gastrointestinal perforation; and trivial or non-toxic ingestion.
    C) ACTIVATED CHARCOAL: Administer charcoal as a slurry (240 mL water/30 g charcoal). Usual dose: 25 to 100 g in adults/adolescents, 25 to 50 g in children (1 to 12 years), and 1 g/kg in infants less than 1 year old.
    D) ACUTE LUNG INJURY: Maintain ventilation and oxygenation and evaluate with frequent arterial blood gases and/or pulse oximetry monitoring. Early use of PEEP and mechanical ventilation may be needed.
    E) HYPOTENSION: Infuse 10 to 20 mL/kg isotonic fluid. If hypotension persists, administer dopamine (5 to 20 mcg/kg/min) or norepinephrine (ADULT: begin infusion at 0.5 to 1 mcg/min; CHILD: begin infusion at 0.1 mcg/kg/min); titrate to desired response.
    0.4.3) INHALATION EXPOSURE
    A) INHALATION: Move patient to fresh air. Monitor for respiratory distress. If cough or difficulty breathing develops, evaluate for respiratory tract irritation, bronchitis, or pneumonitis. Administer oxygen and assist ventilation as required. Treat bronchospasm with an inhaled beta2-adrenergic agonist. Consider systemic corticosteroids in patients with significant bronchospasm.
    0.4.4) EYE EXPOSURE
    A) DECONTAMINATION: Remove contact lenses and irrigate exposed eyes with copious amounts of room temperature 0.9% saline or water for at least 15 minutes. If irritation, pain, swelling, lacrimation, or photophobia persist after 15 minutes of irrigation, the patient should be seen in a healthcare facility.
    0.4.5) DERMAL EXPOSURE
    A) OVERVIEW
    1) DECONTAMINATION: Remove contaminated clothing and jewelry and place them in plastic bags. Wash exposed areas with soap and water for 10 to 15 minutes with gentle sponging to avoid skin breakdown. A physician may need to examine the area if irritation or pain persists (Burgess et al, 1999).

Range Of Toxicity

    A) Toxic levels have not been established in humans.
    B) The no-effect air level in humans is estimated at 9 ppm.

Heent

    3.4.1) SUMMARY
    A) Facial swelling and eye and nasal mucosal irritation may be seen after exposure.
    3.4.2) HEAD
    A) Facial swelling may be seen after exposures to epichlorohydrin vapors (NIOSH, 1976).
    3.4.3) EYES
    A) CONJUNCTIVITIS - ECH is very irritating to the eyes, producing a burning sensation at 20 ppm of the vapor.
    1) If instilled into the eyes, it is markedly irritating, causing blepharospasm, hyperemia of the mucous membranes, tearing, pupillary constriction, clouded cornea and lid edema (NIOSH, 1976; ACGIH, 1991) Proctor & Hughes, 1977).
    3.4.5) NOSE
    A) RHINORRHEA - ECH may cause a burning sensation of the nasal mucosa as well as rhinorrhea at concentrations of 20 ppm (ACGIH, 1986; NIOSH, 1976).

Cardiovascular

    3.5.2) CLINICAL EFFECTS
    A) HYPOTENSIVE EPISODE
    1) Has been seen in animal studies, but has not been seen in human exposures (Clayton & Clayton, 1982).

Respiratory

    3.6.1) SUMMARY
    A) Irritation of the respiratory tract, bronchitis, and dyspnea are possible, but have not been seen in industrial exposures.
    3.6.2) CLINICAL EFFECTS
    A) PNEUMONITIS
    1) Irritation of the respiratory tract, bronchitis, and dyspnea are possible, but have not been seen in industrial exposures (ACGIH, 1991; Bingham et al, 2001; Clayton & Clayton, 1982).
    3.6.3) ANIMAL EFFECTS
    A) ANIMAL STUDIES
    1) APNEA
    a) Respiratory depression leading to apnea has been seen in animals. Cyanosis has also been present (Clayton & Clayton, 1982).

Neurologic

    3.7.1) SUMMARY
    A) CNS depression has been the primary cause of death in poisoned laboratory animals.
    3.7.3) ANIMAL EFFECTS
    A) ANIMAL STUDIES
    1) CNS DEPRESSION
    a) CNS depression has been a primary cause of death in poisoned laboratory animals, but has not been reported in humans (Clayton & Clayton, 1982).

Gastrointestinal

    3.8.1) SUMMARY
    A) Vomiting, nausea, and abdominal pain have been seen in exposed workers.
    3.8.2) CLINICAL EFFECTS
    A) NAUSEA AND VOMITING
    1) Nausea, vomiting, and abdominal pain have been seen in exposed workers (ACGIH, 1986; Hathaway et al, 1996).

Hepatic

    3.9.1) SUMMARY
    A) Hepatomegaly has been seen in both animal studies and human exposures. Liver function abnormalities have been reported in humans up to 2 years after exposure to an unknown concentration.
    3.9.2) CLINICAL EFFECTS
    A) LARGE LIVER
    1) Hepatomegaly has been seen in both animal studies and human exposures (ACGIH, 1986). Liver function abnormalities have been reported in humans up to 2 years after a single exposure of unknown concentration (NIOSH, 1976).

Genitourinary

    3.10.1) SUMMARY
    A) Kidney lesions were seen in humans briefly exposed to 100 ppm.
    3.10.2) CLINICAL EFFECTS
    A) ABNORMAL RENAL FUNCTION
    1) Kidney lesions were seen in humans briefly exposed to approximately 100 ppm (ACGIH, 1986).

Hematologic

    3.13.3) ANIMAL EFFECTS
    A) ANIMAL STUDIES
    1) HEMOLYSIS
    a) Hemolysis has been reported in rabbit's blood, but has NOT been reported in humans (Clayton & Clayton, 1982).

Dermatologic

    3.14.1) SUMMARY
    A) ECH is irritating on contact. Burns may result. Vesiculation has occurred several hours after direct contact with the skin.
    B) Sensitization may occur.
    3.14.2) CLINICAL EFFECTS
    A) DERMATITIS
    1) ECH is irritating on contact. Absorption and systemic toxicity may occur by way of the skin (ACGIH, 1986). This chemical penetrates leather and rubber (Clayton & Clayton, 1982).
    B) BULLOUS ERUPTION
    1) Skin contact may result in a transient burning sensation, followed several hours later by blistering, pain, and possibly necrosis (Proctor & Hughes, 1978; Lane, 1979).
    C) CONTACT DERMATITIS
    1) ECH is a strong irritant and sensitizer (Windholz et al, 1983).
    2) CASE SERIES - Of 6 patients with occupational contact dermatitis, 2 produced positive patch tests for ECH and 4 reacted to epoxy resin (van Jost, 1988).
    3) The prevalence of occupational sensitization to ECH in a larger study was 3.5% (Prens et al, 1986).

Reproductive

    3.20.1) SUMMARY
    A) Fetotoxicity was seen in mice.
    3.20.2) TERATOGENICITY
    A) FETOTOXICITY
    1) ECH was fetotoxic in mice at a relatively high oral dose (RTECS, 2002).
    3.20.5) FERTILITY
    A) FERTILITY DECREASED MALE
    1) Impairment of male fertility was seen in animal tests.

Carcinogenicity

    3.21.1) IARC CATEGORY
    A) IARC Carcinogenicity Ratings for CAS106-89-8 (International Agency for Research on Cancer (IARC), 2016; International Agency for Research on Cancer, 2015; IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, 2010; IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, 2010a; IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, 2008; IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, 2007; IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, 2006; IARC, 2004):
    1) IARC Classification
    a) Listed as: Epichlorohydrin
    b) Carcinogen Rating: 2A
    1) The agent (mixture) is probably carcinogenic to humans. The exposure circumstance entails exposures that are probably carcinogenic to humans. This category is used when there is limited evidence of carcinogenicity in humans and sufficient evidence of carcinogenicity in experimental animals. In some cases, an agent (mixture) may be classified in this category when there is inadequate evidence of carcinogenicity in humans and sufficient evidence of carcinogenicity in experimental animals and strong evidence that the carcinogenesis is mediated by a mechanism that also operates in humans. Exceptionally, an agent, mixture or exposure circumstance may be classified in this category solely on the basis of limited evidence of carcinogenicity in humans.
    3.21.3) HUMAN STUDIES
    A) HUMANS
    1) Enterline et al (1990) studied the incidence of all cancers in two plants using epichlorhydrin. The SMR for all cancers at 20 or more years post following first exposure was 112.2, with a statistically significant SMR of 500 for leukemia.
    2) This work was questioned by Tsia et al (1990) as to its validity. A follow-up study of this cohort of U.S. epichlorohydrin workers demonstrated overall and cancer mortality lower than that seen in surrounding communities (Tsai et al, 1996).
    3) Other case control studies of ECH workers were not considered to have a positive correlation with lung cancer (Hagmar et al, 1986; Bond et al, 1986) Olsen et al, 1994).
    4) Barbone et al (1994) reported an association between epichlorohydrin exposure and central nervous system neoplasms. However, three of the four reported cases also had exposure to intermediates of anthraquinone dye production.
    3.21.4) ANIMAL STUDIES
    A) ANIMAL STUDIES
    1) ECH has been carcinogenic in rats and mice by the oral and inhalation routes (RTECS, 2002).
    B) CARCINOMA
    1) MICE - Cancers were produced in mice via dermal application and subcutaneous injection. Concentrations greater than 30 ppm produced nasal cavity carcinoma in rats (ACGIH, 1991; Bingham et al, 2001).
    2) There is sufficient evidence to classify ECH as an animal carcinogen by IARC criteria (RTECS, 2002).
    3) MICE - Tumors of the respiratory system were seen in mice given ECH by the IP route (RTECS, 2002).
    4) MICE - Tumors at the site of application were produced in mice by ECH given SC; lymphomas were produced by an unspecified route.
    a) Tumors of the respiratory system and nose were found in rats treated by inhalation, and of the gastrointestinal tract from oral dosing (RTECS, 2002).
    5) ECH is listed in the NTP Ninth Annual Report on Carcinogens in 2000 (RTECS, 2002).

Genotoxicity

    A) ECH has induced DNA damage or repair, unscheduled DNA synthesis, DNA inhibition, mutations, chromosome aberrations, sex chromosome loss and nondisjunction, gene conversion and mitotic recombination.
    1) Sister chromatid exchanges, micronuclei, abnormal sperm morphology, and oncogenic transformation in a variety of cells and species have been reported.

Summary Of Exposure

    A) Inhalation of vapors, the major route of exposure, causes systemic effects; it is also toxic by ingestion and skin absorption. Epichlorohydrin is a strong irritant to skin, producing burning, itching, deep pain, redness, swelling, burns and blisters, and to the eyes and respiratory system. Exposure may result in nausea, vomiting, abdominal pain, shortness of breath, cyanosis, dizziness and suffocation. Effects may be delayed for several hours.
    B) Epichlorohydrin is toxic to kidneys. Central nervous system and respiratory depression are possible.
    C) There have been few serious reactions to epichlorohydrin following industrial exposures. Repeated, chronic exposure may damage lung, liver and kidney, with symptoms of enervation, dermatitis and disturbances in the stomach and kidneys.

Vital Signs

    3.3.1) SUMMARY
    A) Hypotension and apnea have been reported in animal studies.
    3.3.4) BLOOD PRESSURE
    A) Hypotension has been seen in animal studies, but has not been seen in human exposures (Clayton & Clayton, 1982).

Monitoring Parameters Levels

    4.1.1) SUMMARY
    A) No toxic serum levels have been established.
    B) Liver and kidney function should be monitored.
    C) Monitor for CNS and/or respiratory depression in symptomatic patients following a massive acute exposure.
    4.1.2) SERUM/BLOOD
    A) BLOOD/SERUM CHEMISTRY
    1) No toxic serum levels have been established.
    2) This agent may cause liver failure. Monitor liver functions for several days after an exposure.
    3) This agent may cause kidney damage. Monitor kidney function tests.
    4.1.3) URINE
    A) URINALYSIS
    1) This agent may cause kidney damage. Monitor renal function and urinalysis.
    2) Occupational exposure to epichlorohydrin correlates with urinary excretion of 3-chloro-2-hydroxylpropylpercapturic acid (CHMPA) and 2,3-dihydroxypropylmercapturic acid (De Rooij et al, 1997).
    4.1.4) OTHER
    A) OTHER
    1) MONITORING
    a) Animal studies show CNS and respiratory depression are possible in high dose acute exposures; monitor for CNS and respiratory depression after high dose exposure and in symptomatic patients.
    b) Hemoglobin adducts have been utilized to monitor occupational exposure to epichlorohydrin and are said to reflect exposure for the preceding four month period (Landin et al, 1997).

Methods

    A) CHROMATOGRAPHY
    1) Epichlorhydrin can be detected in water using gas chromatography with electron capture (Pesselman & Feit, 1988).

Life Support

    A) Support respiratory and cardiovascular function.

Monitoring

    A) No toxic serum levels have been established.
    B) Liver and kidney function should be monitored.
    C) Monitor for CNS and/or respiratory depression in symptomatic patients following a massive acute exposure.

Oral Exposure

    6.5.1) PREVENTION OF ABSORPTION/PREHOSPITAL
    A) EMESIS/NOT RECOMMENDED -
    1) EMESIS: Ipecac-induced emesis is not recommended because there is so little information about the effects of overdose in humans.
    B) ACTIVATED CHARCOAL -
    1) PREHOSPITAL ACTIVATED CHARCOAL ADMINISTRATION
    a) Consider prehospital administration of activated charcoal as an aqueous slurry in patients with a potentially toxic ingestion who are awake and able to protect their airway. Activated charcoal is most effective when administered within one hour of ingestion. Administration in the prehospital setting has the potential to significantly decrease the time from toxin ingestion to activated charcoal administration, although it has not been shown to affect outcome (Alaspaa et al, 2005; Thakore & Murphy, 2002; Spiller & Rogers, 2002).
    1) In patients who are at risk for the abrupt onset of seizures or mental status depression, activated charcoal should not be administered in the prehospital setting, due to the risk of aspiration in the event of spontaneous emesis.
    2) The addition of flavoring agents (cola drinks, chocolate milk, cherry syrup) to activated charcoal improves the palatability for children and may facilitate successful administration (Guenther Skokan et al, 2001; Dagnone et al, 2002).
    2) CHARCOAL DOSE
    a) Use a minimum of 240 milliliters of water per 30 grams charcoal (FDA, 1985). Optimum dose not established; usual dose is 25 to 100 grams in adults and adolescents; 25 to 50 grams in children aged 1 to 12 years (or 0.5 to 1 gram/kilogram body weight) ; and 0.5 to 1 gram/kilogram in infants up to 1 year old (Chyka et al, 2005).
    1) Routine use of a cathartic with activated charcoal is NOT recommended as there is no evidence that cathartics reduce drug absorption and cathartics are known to cause adverse effects such as nausea, vomiting, abdominal cramps, electrolyte imbalances and occasionally hypotension (None Listed, 2004).
    b) ADVERSE EFFECTS/CONTRAINDICATIONS
    1) Complications: emesis, aspiration (Chyka et al, 2005). Aspiration may be complicated by acute respiratory failure, ARDS, bronchiolitis obliterans or chronic lung disease (Golej et al, 2001; Graff et al, 2002; Pollack et al, 1981; Harris & Filandrinos, 1993; Elliot et al, 1989; Rau et al, 1988; Golej et al, 2001; Graff et al, 2002). Refer to the ACTIVATED CHARCOAL/TREATMENT management for further information.
    2) Contraindications: unprotected airway (increases risk/severity of aspiration) , nonfunctioning gastrointestinal tract, uncontrolled vomiting, and ingestion of most hydrocarbons (Chyka et al, 2005).
    6.5.2) PREVENTION OF ABSORPTION
    A) GASTRIC LAVAGE
    1) INDICATIONS: Consider gastric lavage with a large-bore orogastric tube (ADULT: 36 to 40 French or 30 English gauge tube {external diameter 12 to 13.3 mm}; CHILD: 24 to 28 French {diameter 7.8 to 9.3 mm}) after a potentially life threatening ingestion if it can be performed soon after ingestion (generally within 60 minutes).
    a) Consider lavage more than 60 minutes after ingestion of sustained-release formulations and substances known to form bezoars or concretions.
    2) PRECAUTIONS:
    a) SEIZURE CONTROL: Is mandatory prior to gastric lavage.
    b) AIRWAY PROTECTION: Place patients in the head down left lateral decubitus position, with suction available. Patients with depressed mental status should be intubated with a cuffed endotracheal tube prior to lavage.
    3) LAVAGE FLUID:
    a) Use small aliquots of liquid. Lavage with 200 to 300 milliliters warm tap water (preferably 38 degrees Celsius) or saline per wash (in older children or adults) and 10 milliliters/kilogram body weight of normal saline in young children(Vale et al, 2004) and repeat until lavage return is clear.
    b) The volume of lavage return should approximate amount of fluid given to avoid fluid-electrolyte imbalance.
    c) CAUTION: Water should be avoided in young children because of the risk of electrolyte imbalance and water intoxication. Warm fluids avoid the risk of hypothermia in very young children and the elderly.
    4) COMPLICATIONS:
    a) Complications of gastric lavage have included: aspiration pneumonia, hypoxia, hypercapnia, mechanical injury to the throat, esophagus, or stomach, fluid and electrolyte imbalance (Vale, 1997). Combative patients may be at greater risk for complications (Caravati et al, 2001).
    b) Gastric lavage can cause significant morbidity; it should NOT be performed routinely in all poisoned patients (Vale, 1997).
    5) CONTRAINDICATIONS:
    a) Loss of airway protective reflexes or decreased level of consciousness if patient is not intubated, following ingestion of corrosive substances, hydrocarbons (high aspiration potential), patients at risk of hemorrhage or gastrointestinal perforation, or trivial or non-toxic ingestion.
    B) ACTIVATED CHARCOAL
    1) CHARCOAL ADMINISTRATION
    a) Consider administration of activated charcoal after a potentially toxic ingestion (Chyka et al, 2005). Administer charcoal as an aqueous slurry; most effective when administered within one hour of ingestion.
    2) CHARCOAL DOSE
    a) Use a minimum of 240 milliliters of water per 30 grams charcoal (FDA, 1985). Optimum dose not established; usual dose is 25 to 100 grams in adults and adolescents; 25 to 50 grams in children aged 1 to 12 years (or 0.5 to 1 gram/kilogram body weight) ; and 0.5 to 1 gram/kilogram in infants up to 1 year old (Chyka et al, 2005).
    1) Routine use of a cathartic with activated charcoal is NOT recommended as there is no evidence that cathartics reduce drug absorption and cathartics are known to cause adverse effects such as nausea, vomiting, abdominal cramps, electrolyte imbalances and occasionally hypotension (None Listed, 2004).
    b) ADVERSE EFFECTS/CONTRAINDICATIONS
    1) Complications: emesis, aspiration (Chyka et al, 2005). Aspiration may be complicated by acute respiratory failure, ARDS, bronchiolitis obliterans or chronic lung disease (Golej et al, 2001; Graff et al, 2002; Pollack et al, 1981; Harris & Filandrinos, 1993; Elliot et al, 1989; Rau et al, 1988; Golej et al, 2001; Graff et al, 2002). Refer to the ACTIVATED CHARCOAL/TREATMENT management for further information.
    2) Contraindications: unprotected airway (increases risk/severity of aspiration) , nonfunctioning gastrointestinal tract, uncontrolled vomiting, and ingestion of most hydrocarbons (Chyka et al, 2005).
    6.5.3) TREATMENT
    A) SUPPORT
    1) There is no antidote for epichlorohydrin poisoning. Treatment is symptomatic and supportive. CNS depression and respiratory depression have not been reported in human, but are anticipated based upon animal studies. Monitoring for CNS and respiratory depression should be done for all symptomatic patients. Airway management should be provided for patients with respiratory compromise.
    B) ACUTE LUNG INJURY
    1) Pulmonary edema has not yet been seen in human cases, but is a probable effect extrapolated from animal data.
    2) ONSET: Onset of acute lung injury after toxic exposure may be delayed up to 24 to 72 hours after exposure in some cases.
    3) NON-PHARMACOLOGIC TREATMENT: The treatment of acute lung injury is primarily supportive (Cataletto, 2012). Maintain adequate ventilation and oxygenation with frequent monitoring of arterial blood gases and/or pulse oximetry. If a high FIO2 is required to maintain adequate oxygenation, mechanical ventilation and positive-end-expiratory pressure (PEEP) may be required; ventilation with small tidal volumes (6 mL/kg) is preferred if ARDS develops (Haas, 2011; Stolbach & Hoffman, 2011).
    a) To minimize barotrauma and other complications, use the lowest amount of PEEP possible while maintaining adequate oxygenation. Use of smaller tidal volumes (6 mL/kg) and lower plateau pressures (30 cm water or less) has been associated with decreased mortality and more rapid weaning from mechanical ventilation in patients with ARDS (Brower et al, 2000). More treatment information may be obtained from ARDS Clinical Network website, NIH NHLBI ARDS Clinical Network Mechanical Ventilation Protocol Summary, http://www.ardsnet.org/node/77791 (NHLBI ARDS Network, 2008)
    4) FLUIDS: Crystalloid solutions must be administered judiciously. Pulmonary artery monitoring may help. In general the pulmonary artery wedge pressure should be kept relatively low while still maintaining adequate cardiac output, blood pressure and urine output (Stolbach & Hoffman, 2011).
    5) ANTIBIOTICS: Indicated only when there is evidence of infection (Artigas et al, 1998).
    6) EXPERIMENTAL THERAPY: Partial liquid ventilation has shown promise in preliminary studies (Kollef & Schuster, 1995).
    7) CALFACTANT: In a multicenter, randomized, blinded trial, endotracheal instillation of 2 doses of 80 mL/m(2) calfactant (35 mg/mL of phospholipid suspension in saline) in infants, children, and adolescents with acute lung injury resulted in acute improvement in oxygenation and lower mortality; however, no significant decrease in the course of respiratory failure measured by duration of ventilator therapy, intensive care unit, or hospital stay was noted. Adverse effects (transient hypoxia and hypotension) were more frequent in calfactant patients, but these effects were mild and did not require withdrawal from the study (Wilson et al, 2005).
    8) However, in a multicenter, randomized, controlled, and masked trial, endotracheal instillation of up to 3 doses of calfactant (30 mg) in adults only with acute lung injury/ARDS due to direct lung injury was not associated with improved oxygenation and longer term benefits compared to the placebo group. It was also associated with significant increases in hypoxia and hypotension (Willson et al, 2015).
    C) HYPOTENSIVE EPISODE
    1) Hypotension has not been seen in human cases but may occur in significant exposures.
    2) SUMMARY
    a) Infuse 10 to 20 milliliters/kilogram of isotonic fluid and keep the patient supine. If hypotension persists, administer dopamine or norepinephrine. Consider central venous pressure monitoring to guide further fluid therapy.
    3) DOPAMINE
    a) DOSE: Begin at 5 micrograms per kilogram per minute progressing in 5 micrograms per kilogram per minute increments as needed (Prod Info dopamine hcl, 5% dextrose IV injection, 2004). If hypotension persists, dopamine may need to be discontinued and a more potent vasoconstrictor (eg, norepinephrine) should be considered (Prod Info dopamine hcl, 5% dextrose IV injection, 2004).
    b) CAUTION: If ventricular dysrhythmias occur, decrease rate of administration (Prod Info dopamine hcl, 5% dextrose IV injection, 2004). Extravasation may cause local tissue necrosis, administration through a central venous catheter is preferred (Prod Info dopamine hcl, 5% dextrose IV injection, 2004).
    4) NOREPINEPHRINE
    a) PREPARATION: 4 milligrams (1 amp) added to 1000 milliliters of diluent provides a concentration of 4 micrograms/milliliter of norepinephrine base. Norepinephrine bitartrate should be mixed in dextrose solutions (dextrose 5% in water, dextrose 5% in saline) since dextrose-containing solutions protect against excessive oxidation and subsequent potency loss. Administration in saline alone is not recommended (Prod Info norepinephrine bitartrate injection, 2005).
    b) DOSE
    1) ADULT: Dose range: 0.1 to 0.5 microgram/kilogram/minute (eg, 70 kg adult 7 to 35 mcg/min); titrate to maintain adequate blood pressure (Peberdy et al, 2010).
    2) CHILD: Dose range: 0.1 to 2 micrograms/kilogram/minute; titrate to maintain adequate blood pressure (Kleinman et al, 2010).
    3) CAUTION: Extravasation may cause local tissue ischemia, administration by central venous catheter is advised (Peberdy et al, 2010).

Inhalation Exposure

    6.7.1) DECONTAMINATION
    A) Move patient from the toxic environment to fresh air. Monitor for respiratory distress. If cough or difficulty in breathing develops, evaluate for hypoxia, respiratory tract irritation, bronchitis, or pneumonitis.
    B) OBSERVATION: Carefully observe patients with inhalation exposure for the development of any systemic signs or symptoms and administer symptomatic treatment as necessary.
    C) INITIAL TREATMENT: Administer 100% humidified supplemental oxygen, perform endotracheal intubation and provide assisted ventilation as required. Administer inhaled beta-2 adrenergic agonists, if bronchospasm develops. Consider systemic corticosteroids in patients with significant bronchospasm (National Heart,Lung,and Blood Institute, 2007). Exposed skin and eyes should be flushed with copious amounts of water.

Eye Exposure

    6.8.1) DECONTAMINATION
    A) EYE IRRIGATION, ROUTINE: Remove contact lenses and irrigate exposed eyes with copious amounts of room temperature 0.9% saline or water for at least 15 minutes. If irritation, pain, swelling, lacrimation, or photophobia persist after 15 minutes of irrigation, an ophthalmologic examination should be performed (Peate, 2007; Naradzay & Barish, 2006).

Dermal Exposure

    6.9.1) DECONTAMINATION
    A) DERMAL DECONTAMINATION
    1) DECONTAMINATION: Remove contaminated clothing and wash exposed area thoroughly with soap and water for 10 to 15 minutes. A physician may need to examine the area if irritation or pain persists (Burgess et al, 1999).
    2) Contaminated clothing should be decontaminated by thorough washing with soap and water. ECH will penetrate leather or rubber objects. Contaminated shoes or belts should be discarded.
    6.9.2) TREATMENT
    A) BURN
    1) Dermal reactions are often delayed several hours.
    2) Prolonged contact with leather soaked with ECH may cause severe blistering and necrosis (NIOSH, 1976).
    B) Treatment should include recommendations listed in the ORAL EXPOSURE section when appropriate.

Summary

    A) Toxic levels have not been established in humans.
    B) The no-effect air level in humans is estimated at 9 ppm.

Minimum Lethal Exposure

    A) ADULT
    1) The minimum lethal human dose to this agent has not been delineated.
    2) Epichlorohydrin is severely irritating to the eyes and respiratory tract, and to the skin. Exposure to 20 ppm for 1 hour reportedly causes temporary burning; exposure to 40 ppm reportedly causes 48 hours of irritation and exposure to 100 ppm may result in pulmonary edema and renal lesions. Skin contact with epichlorohydrin reportedly causes itching, erythema, edema, and sensitization depending upon exposure levels. Severe burns may also result from the use of improper protective clothing; epichlorohydrin easily penetrates leather shoes and gloves and may result in chemical burns (Baxter, 2000; (Bingham et al, 2001; Clayton & Clayton, 1993; Grant, 1993; Harbison, 1998; Hathaway et al, 1996; Lewis, 2000; Raffle et al, 1994).

Maximum Tolerated Exposure

    A) ADULT
    1) The maximum tolerated human exposure to this agent has not been delineated.
    2) Epichlorohydrin can damage the lungs, liver, and kidneys after chronic exposure; however, no statistically significant increases in cancer rates in cohort studies of exposed factory workers were found. Epichlorohydrin is listed as carcinogenic by several references based on animal studies (Hathaway et al, 1996; IARC, 1987; ILO, 1998; Lewis, 2000; Lewis, 2001; Lewis, 1998).

Workplace Standards

    A) ACGIH TLV Values for CAS106-89-8 (American Conference of Governmental Industrial Hygienists, 2010):
    1) Editor's Note: The listed values are recommendations or guidelines developed by ACGIH(R) to assist in the control of health hazards. They should only be used, interpreted and applied by individuals trained in industrial hygiene. Before applying these values, it is imperative to read the introduction to each section in the current TLVs(R) and BEI(R) Book and become familiar with the constraints and limitations to their use. Always consult the Documentation of the TLVs(R) and BEIs(R) before applying these recommendations and guidelines.
    a) Adopted Value
    1) Epichlorohydrin
    a) TLV:
    1) TLV-TWA: 0.5 ppm
    2) TLV-STEL:
    3) TLV-Ceiling:
    b) Notations and Endnotes:
    1) Carcinogenicity Category: A3
    2) Codes: Skin
    3) Definitions:
    a) A3: Confirmed Animal Carcinogen with Unknown Relevance to Humans: The agent is carcinogenic in experimental animals at a relatively high dose, by route(s) of administration, at site(s), of histologic type(s), or by mechanism(s) that may not be relevant to worker exposure. Available epidemiologic studies do not confirm an increased risk of cancer in exposed humans. Available evidence does not suggest that the agent is likely to cause cancer in humans except under uncommon or unlikely routes or levels of exposure.
    b) Skin: This refers to the potential significant contribution to the overall exposure by the cutaneous route, including mucous membranes and the eyes, either by contact with vapors or, of likely greater significance, by direct skin contact with the substance. It should be noted that although some materials are capable of causing irritation, dermatitis, and sensitization in workers, these properties are not considered relevant when assigning a skin notation. Rather, data from acute dermal studies and repeated dose dermal studies in animals or humans, along with the ability of the chemical to be absorbed, are integrated in the decision-making toward assignment of the skin designation. Use of the skin designation provides an alert that air sampling would not be sufficient by itself in quantifying exposure from the substance and that measures to prevent significant cutaneous absorption may be warranted. Please see "Definitions and Notations" (in TLV booklet) for full definition.
    c) TLV Basis - Critical Effect(s): URT irr; male repro
    d) Molecular Weight: 92.53
    1) For gases and vapors, to convert the TLV from ppm to mg/m(3):
    a) [(TLV in ppm)(gram molecular weight of substance)]/24.45
    2) For gases and vapors, to convert the TLV from mg/m(3) to ppm:
    a) [(TLV in mg/m(3))(24.45)]/gram molecular weight of substance
    e) Additional information:

    B) NIOSH REL and IDLH Values for CAS106-89-8 (National Institute for Occupational Safety and Health, 2007):
    1) Listed as: Epichlorohydrin
    2) REL:
    a) TWA:
    b) STEL:
    c) Ceiling:
    d) Carcinogen Listing: (Ca) NIOSH considers this substance to be a potential occupational carcinogen (See Appendix A in the NIOSH Pocket Guide to Chemical Hazards).
    e) Skin Designation: Not Listed
    f) Note(s): See Appendix A
    3) IDLH:
    a) IDLH: 75 ppm
    b) Note(s): Ca
    1) Ca: NIOSH considers this substance to be a potential occupational carcinogen (See Appendix A).

    C) Carcinogenicity Ratings for CAS106-89-8 :
    1) ACGIH (American Conference of Governmental Industrial Hygienists, 2010): A3 ; Listed as: Epichlorohydrin
    a) A3 :Confirmed Animal Carcinogen with Unknown Relevance to Humans: The agent is carcinogenic in experimental animals at a relatively high dose, by route(s) of administration, at site(s), of histologic type(s), or by mechanism(s) that may not be relevant to worker exposure. Available epidemiologic studies do not confirm an increased risk of cancer in exposed humans. Available evidence does not suggest that the agent is likely to cause cancer in humans except under uncommon or unlikely routes or levels of exposure.
    2) EPA (U.S. Environmental Protection Agency, 2011): B2 ; Listed as: Epichlorohydrin
    a) B2 : Probable human carcinogen - based on sufficient evidence of carcinogenicity in animals.
    3) IARC (International Agency for Research on Cancer (IARC), 2016; International Agency for Research on Cancer, 2015; IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, 2010; IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, 2010a; IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, 2008; IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, 2007; IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, 2006; IARC, 2004): 2A ; Listed as: Epichlorohydrin
    a) 2A : The agent (mixture) is probably carcinogenic to humans. The exposure circumstance entails exposures that are probably carcinogenic to humans. This category is used when there is limited evidence of carcinogenicity in humans and sufficient evidence of carcinogenicity in experimental animals. In some cases, an agent (mixture) may be classified in this category when there is inadequate evidence of carcinogenicity in humans and sufficient evidence of carcinogenicity in experimental animals and strong evidence that the carcinogenesis is mediated by a mechanism that also operates in humans. Exceptionally, an agent, mixture or exposure circumstance may be classified in this category solely on the basis of limited evidence of carcinogenicity in humans.
    4) NIOSH (National Institute for Occupational Safety and Health, 2007): Ca ; Listed as: Epichlorohydrin
    a) Ca : NIOSH considers this substance to be a potential occupational carcinogen (See Appendix A in the NIOSH Pocket Guide to Chemical Hazards).
    5) MAK (DFG, 2002): Category 2 ; Listed as: Epichlorohydrin
    a) Category 2 : Substances that are considered to be carcinogenic for man because sufficient data from long-term animal studies or limited evidence from animal studies substantiated by evidence from epidemiological studies indicate that they can make a significant contribution to cancer risk. Limited data from animal studies can be supported by evidence that the substance causes cancer by a mode of action that is relevant to man and by results of in vitro tests and short-term animal studies.
    6) NTP (U.S. Department of Health and Human Services, Public Health Service, National Toxicology Project ): R ; Listed as: Epichlorohydrin
    a) R : RAHC = Reasonably anticipated to be a human carcinogen

    D) OSHA PEL Values for CAS106-89-8 (U.S. Occupational Safety, and Health Administration (OSHA), 2010):
    1) Listed as: Epichlorohydrin
    2) Table Z-1 for Epichlorohydrin:
    a) 8-hour TWA:
    1) ppm: 5
    a) Parts of vapor or gas per million parts of contaminated air by volume at 25 degrees C and 760 torr.
    2) mg/m3: 19
    a) Milligrams of substances per cubic meter of air. When entry is in this column only, the value is exact; when listed with a ppm entry, it is approximate.
    3) Ceiling Value:
    4) Skin Designation: Yes
    5) Notation(s): Not Listed

Toxicity Information

    7.7.1) TOXICITY VALUES
    A) References: (RTECS, 2002)
    1) LD50- (INTRAPERITONEAL)MOUSE:
    a) 170 mg/kg
    2) LD50- (ORAL)MOUSE:
    a) 195 mg/kg -- behavioral changes
    3) LD50- (SKIN)MOUSE:
    a) 250 mg/kg
    4) LD50- (INTRAPERITONEAL)RAT:
    a) 133 mg/kg -- increased urine volume
    5) LD50- (ORAL)RAT:
    a) 90 mg/kg -- increased urine volume
    6) LD50- (SUBCUTANEOUS)RAT:
    a) 150 mg/kg -- increased urine volume
    7) TCLo- (INHALATION)HUMAN:
    a) 20 ppm -- affected sense organs
    b) 40 ppm for 2H -- affected respiratory system
    8) TCLo- (INHALATION)MOUSE:
    a) 25 ppm for 6H/90D-I -- caused changes in sense organs and liver
    9) TCLo- (INHALATION)RAT:
    a) Female, 100 ppm for 7H at 6-15D of pregnancy -- affected fertility
    b) Male, 50 ppm for 6H at 50D prior to mating -- affected fertility
    c) 100 ppm for 6H/30D-C -- induced tumors
    d) 20 mg/m3 for 24H/14W-C -- affected brain, behavior, and blood
    e) 170 mg/m(3) for 3H/17W-C -- caused respiratory and renal changes

Toxicologic Mechanism

    A) Epichlorohydrin is an alkylating agent which causes a delayed reaction (NIOSH, 1976).

Physical Characteristics

    A) Epichlorohydrin is a mobile, colorless, flammable, and reactive liquid. Its odor has been described as sweet and pungent or chloroform-like (Ashford, 2001; Budavari, 1996; Bingham et al, 2001; Lewis, 2000; Lewis, 2001; Lewis, 1998; Raffle et al, 1994; Verschueren, 1983).

Molecular Weight

    A) 92.53

General Bibliography

    1) 40 CFR 372.28: Environmental Protection Agency - Toxic Chemical Release Reporting, Community Right-To-Know, Lower thresholds for chemicals of special concern. National Archives and Records Administration (NARA) and the Government Printing Office (GPO). Washington, DC. Final rules current as of Apr 3, 2006.
    2) 40 CFR 372.65: Environmental Protection Agency - Toxic Chemical Release Reporting, Community Right-To-Know, Chemicals and Chemical Categories to which this part applies. National Archives and Records Association (NARA) and the Government Printing Office (GPO), Washington, DC. Final rules current as of Apr 3, 2006.
    3) 49 CFR 172.101 - App. B: Department of Transportation - Table of Hazardous Materials, Appendix B: List of Marine Pollutants. National Archives and Records Administration (NARA) and the Government Printing Office (GPO), Washington, DC. Final rules current as of Aug 29, 2005.
    4) 49 CFR 172.101: Department of Transportation - Table of Hazardous Materials. National Archives and Records Administration (NARA) and the Government Printing Office (GPO), Washington, DC. Final rules current as of Aug 11, 2005.
    5) 62 FR 58840: Notice of the National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances - Proposed AEGL Values, Environmental Protection Agency, NAC/AEGL Committee. National Archives and Records Administration (NARA) and the Government Publishing Office (GPO), Washington, DC, 1997.
    6) 65 FR 14186: Notice of the National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances - Proposed AEGL Values, Environmental Protection Agency, NAC/AEGL Committee. National Archives and Records Administration (NARA) and the Government Publishing Office (GPO), Washington, DC, 2000.
    7) 65 FR 39264: Notice of the National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances - Proposed AEGL Values, Environmental Protection Agency, NAC/AEGL Committee. National Archives and Records Administration (NARA) and the Government Publishing Office (GPO), Washington, DC, 2000.
    8) 65 FR 77866: Notice of the National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances - Proposed AEGL Values, Environmental Protection Agency, NAC/AEGL Committee. National Archives and Records Administration (NARA) and the Government Publishing Office (GPO), Washington, DC, 2000.
    9) 66 FR 21940: Notice of the National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances - Proposed AEGL Values, Environmental Protection Agency, NAC/AEGL Committee. National Archives and Records Administration (NARA) and the Government Publishing Office (GPO), Washington, DC, 2001.
    10) 67 FR 7164: Notice of the National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances - Proposed AEGL Values, Environmental Protection Agency, NAC/AEGL Committee. National Archives and Records Administration (NARA) and the Government Publishing Office (GPO), Washington, DC, 2002.
    11) 68 FR 42710: Notice of the National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances - Proposed AEGL Values, Environmental Protection Agency, NAC/AEGL Committee. National Archives and Records Administration (NARA) and the Government Publishing Office (GPO), Washington, DC, 2003.
    12) 69 FR 54144: Notice of the National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances - Proposed AEGL Values, Environmental Protection Agency, NAC/AEGL Committee. National Archives and Records Administration (NARA) and the Government Publishing Office (GPO), Washington, DC, 2004.
    13) ACGIH: Documentation of the Threshold Limit Values and Biological Exposure Indices, 6th ed, Am Conference of Govt Ind Hyg, Inc, Cincinnati, OH, 1991.
    14) ACGIH: Documentation of the Threshold Limit Values, 5th ed, Am Conference of Govt Ind Hyg, Inc, Cincinnati, OH, 1986.
    15) AIHA: 2006 Emergency Response Planning Guidelines and Workplace Environmental Exposure Level Guides Handbook, American Industrial Hygiene Association, Fairfax, VA, 2006.
    16) Alaspaa AO, Kuisma MJ, Hoppu K, et al: Out-of-hospital administration of activated charcoal by emergency medical services. Ann Emerg Med 2005; 45:207-12.
    17) American Conference of Governmental Industrial Hygienists : ACGIH 2010 Threshold Limit Values (TLVs(R)) for Chemical Substances and Physical Agents and Biological Exposure Indices (BEIs(R)), American Conference of Governmental Industrial Hygienists, Cincinnati, OH, 2010.
    18) Ansell-Edmont: SpecWare Chemical Application and Recommendation Guide. Ansell-Edmont. Coshocton, OH. 2001. Available from URL: http://www.ansellpro.com/specware. As accessed 10/31/2001.
    19) Artigas A, Bernard GR, Carlet J, et al: The American-European consensus conference on ARDS, part 2: ventilatory, pharmacologic, supportive therapy, study design strategies, and issues related to recovery and remodeling.. Am J Respir Crit Care Med 1998; 157:1332-1347.
    20) Ashford R: Ashford's Dictionary of Industrial Chemicals, 2nd ed, Wavelength Publications Ltd, London, England, 2001.
    21) Ashford R: Ashford's Dictionary of Industrial Chemicals, Wavelength Publications Ltd, London, England, 1994.
    22) Bata Shoe Company: Industrial Footwear Catalog, Bata Shoe Company, Belcamp, MD, 1995.
    23) Best Manufacturing: ChemRest Chemical Resistance Guide. Best Manufacturing. Menlo, GA. 2002. Available from URL: http://www.chemrest.com. As accessed 10/8/2002.
    24) Best Manufacturing: Degradation and Permeation Data. Best Manufacturing. Menlo, GA. 2004. Available from URL: http://www.chemrest.com/DomesticPrep2/. As accessed 04/09/2004.
    25) Bingham E, Cohrssen B, & Powell CH: Patty's Toxicology, Vol 6. 5th ed, John Wiley & Sons, New York, NY, 2001.
    26) Bond GG, Flores GH, & Shellenberger RJ: Nested case-control study of lung cancer among chemical workers. Am J Epidemiol 1986; 124:53-66.
    27) Boss Manufacturing Company: Work Gloves, Boss Manufacturing Company, Kewanee, IL, 1998.
    28) Brower RG, Matthay AM, & Morris A: Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Eng J Med 2000; 342:1301-1308.
    29) Budavari S: The Merck Index, 12th ed, Merck & Co, Inc, Whitehouse Station, NJ, 1996.
    30) Bukvic N, Bavaro P, & Soleo L: Increment of sister chromatid exchange frequencies (SCE) due to epichlorohydrin (ECH) in vitro treatment in human lymphocytes. Terato Carcin Muta 2000; 20(5):313-320.
    31) Burgess JL, Kirk M, Borron SW, et al: Emergency department hazardous materials protocol for contaminated patients. Ann Emerg Med 1999; 34(2):205-212.
    32) CHRIS : CHRIS Hazardous Chemical Data. US Department of Transportation, US Coast Guard. Washington, DC (Internet Version). Edition expires 11/30/2002; provided by Truven Health Analytics Inc., Greenwood Village, CO.
    33) CHRIS : CHRIS Hazardous Chemical Data. US Department of Transportation, US Coast Guard. Washington, DC (Internet Version). Edition expires 2000; provided by Truven Health Analytics Inc., Greenwood Village, CO.
    34) Caravati EM, Knight HH, & Linscott MS: Esophageal laceration and charcoal mediastinum complicating gastric lavage. J Emerg Med 2001; 20:273-276.
    35) Cataletto M: Respiratory Distress Syndrome, Acute(ARDS). In: Domino FJ, ed. The 5-Minute Clinical Consult 2012, 20th ed. Lippincott Williams & Wilkins, Philadelphia, PA, 2012.
    36) ChemFab Corporation: Chemical Permeation Guide Challenge Protective Clothing Fabrics, ChemFab Corporation, Merrimack, NH, 1993.
    37) Cheng TJ, Hwang SJ, & Kuo HW: Exposure to epichlorohydrin and dimethylformamide, glutathion-S-transferases and sister chromatid exchange frequencies in peripheral lymphocytes. Arch Toxicol 1999; 73:282-287.
    38) Chyka PA, Seger D, Krenzelok EP, et al: Position paper: Single-dose activated charcoal. Clin Toxicol (Phila) 2005; 43(2):61-87.
    39) Clayton GD & Clayton FE: Patty's Industrial Hygiene and Toxicology, Vol 2, 3rd ed, John Wiley & Sons, New York, NY, 1982.
    40) Clayton GD & Clayton FE: Patty's Industrial Hygiene and Toxicology, Vol 2A, Toxicology, 4th ed, John Wiley & Sons, New York, NY, 1993.
    41) Comasec Safety, Inc.: Chemical Resistance to Permeation Chart. Comasec Safety, Inc.. Enfield, CT. 2003. Available from URL: http://www.comasec.com/webcomasec/english/catalogue/mtabgb.html. As accessed 4/28/2003.
    42) Comasec Safety, Inc.: Product Literature, Comasec Safety, Inc., Enfield, CT, 2003a.
    43) DFG: List of MAK and BAT Values 2002, Report No. 38, Deutsche Forschungsgemeinschaft, Commission for the Investigation of Health Hazards of Chemical Compounds in the Work Area, Wiley-VCH, Weinheim, Federal Republic of Germany, 2002.
    44) Dagnone D, Matsui D, & Rieder MJ: Assessment of the palatability of vehicles for activated charcoal in pediatric volunteers. Pediatr Emerg Care 2002; 18:19-21.
    45) De Rooij BM, Bogaard PJ, & Commandeur JNM: 3-Chloro-2-hydroxypropylmercapturic acid and alpha-chlorohydrin as biomarkers of occupational exposure to epichlorohydrin. Envir Toxicol Pharmacol 1997; 3(3):175-185.
    46) DuPont: DuPont Suit Smart: Interactive Tool for the Selection of Protective Apparel. DuPont. Wilmington, DE. 2002. Available from URL: http://personalprotection.dupont.com/protectiveapparel/suitsmart/smartsuit2/na_english.asp. As accessed 10/31/2002.
    47) DuPont: Permeation Guide for DuPont Tychem Protective Fabrics. DuPont. Wilmington, DE. 2003. Available from URL: http://personalprotection.dupont.com/en/pdf/tyvektychem/pgcomplete20030128.pdf. As accessed 4/26/2004.
    48) DuPont: Permeation Test Results. DuPont. Wilmington, DE. 2002a. Available from URL: http://www.tyvekprotectiveapprl.com/databases/default.htm. As accessed 7/31/2002.
    49) EPA: Search results for Toxic Substances Control Act (TSCA) Inventory Chemicals. US Environmental Protection Agency, Substance Registry System, U.S. EPA's Office of Pollution Prevention and Toxics. Washington, DC. 2005. Available from URL: http://www.epa.gov/srs/.
    50) ERG: Emergency Response Guidebook. A Guidebook for First Responders During the Initial Phase of a Dangerous Goods/Hazardous Materials Incident, U.S. Department of Transportation, Research and Special Programs Administration, Washington, DC, 2004.
    51) Ehrenfeld JR, Ong J, & Farino W: Controlling Volatile Emissions at Hazardous Waste Sites, Noyes Publication, Park Ridge, NJ, 1986, pp 393-401.
    52) Elliot CG, Colby TV, & Kelly TM: Charcoal lung. Bronchiolitis obliterans after aspiration of activated charcoal. Chest 1989; 96:672-674.
    53) FDA: Poison treatment drug product for over-the-counter human use; tentative final monograph. FDA: Fed Register 1985; 50:2244-2262.
    54) Golej J, Boigner H, Burda G, et al: Severe respiratory failure following charcoal application in a toddler. Resuscitation 2001; 49:315-318.
    55) Graff GR, Stark J, & Berkenbosch JW: Chronic lung disease after activated charcoal aspiration. Pediatrics 2002; 109:959-961.
    56) Grant WM: Toxicology of the Eye, 4th ed, Charles C Thomas, Springfield, IL, 1993.
    57) Guardian Manufacturing Group: Guardian Gloves Test Results. Guardian Manufacturing Group. Willard, OH. 2001. Available from URL: http://www.guardian-mfg.com/guardianmfg.html. As accessed 12/11/2001.
    58) Guenther Skokan E, Junkins EP, & Corneli HM: Taste test: children rate flavoring agents used with activated charcoal. Arch Pediatr Adolesc Med 2001; 155:683-686.
    59) HSDB : Hazardous Substances Data Bank. National Library of Medicine. Bethesda, MD (Internet Version). Edition expires 2000; provided by Truven Health Analytics Inc., Greenwood Village, CO.
    60) Haas CF: Mechanical ventilation with lung protective strategies: what works?. Crit Care Clin 2011; 27(3):469-486.
    61) Hagmar L, Bellander T, & Englander V: Mortality and cancer morbidity among workers in a chemical factory. Scand J Work Environ Health 1986; 12:545-551.
    62) Harbison RD: Hamilton & Hardy's Industrial Toxicology, 5th ed, Mosby-Year Books, St. Louis, MO, 1998.
    63) Harris CR & Filandrinos D: Accidental administration of activated charcoal into the lung: aspiration by proxy. Ann Emerg Med 1993; 22:1470-1473.
    64) Hathaway GJ, Proctor NH, & Hughes JP: Chemical Hazards of the Workplace, 4th ed, Van Nostrand Reinhold Company, New York, NY, 1996.
    65) Howard PH, Boethling RS, & Jarvis WF: Handbook of Environmental Degradation Rates, Lewis Publishers, Chelsea, MI, 1991.
    66) Howard PH: Handbook of Environmental Fate and Exposure Data for Organic Chemicals. Volume I: Large Production and Priority Pollutants, Lewis Publishers, Chelsea, MI, 1989.
    67) IARC Working Group on the Evaluation of Carcinogenic Risks to Humans : IARC Monographs on the Evaluation of Carcinogenic Risks to Humans: 1,3-Butadiene, Ethylene Oxide and Vinyl Halides (Vinyl Fluoride, Vinyl Chloride and Vinyl Bromide), 97, International Agency for Research on Cancer, Lyon, France, 2008.
    68) IARC Working Group on the Evaluation of Carcinogenic Risks to Humans : IARC Monographs on the Evaluation of Carcinogenic Risks to Humans: Formaldehyde, 2-Butoxyethanol and 1-tert-Butoxypropan-2-ol, 88, International Agency for Research on Cancer, Lyon, France, 2006.
    69) IARC Working Group on the Evaluation of Carcinogenic Risks to Humans : IARC Monographs on the Evaluation of Carcinogenic Risks to Humans: Household Use of Solid Fuels and High-temperature Frying, 95, International Agency for Research on Cancer, Lyon, France, 2010a.
    70) IARC Working Group on the Evaluation of Carcinogenic Risks to Humans : IARC Monographs on the Evaluation of Carcinogenic Risks to Humans: Smokeless Tobacco and Some Tobacco-specific N-Nitrosamines, 89, International Agency for Research on Cancer, Lyon, France, 2007.
    71) IARC Working Group on the Evaluation of Carcinogenic Risks to Humans : IARC Monographs on the Evaluation of Carcinogenic Risks to Humans: Some Non-heterocyclic Polycyclic Aromatic Hydrocarbons and Some Related Exposures, 92, International Agency for Research on Cancer, Lyon, France, 2010.
    72) IARC: International Agency for Reasearch on Cancer Monographs on the Evaluation of Carcinogenic Risk of Chemicals to Humans, International Agency for Research on Cancer, World Health Organization, Geneva, Switzerland, 1987.
    73) IARC: List of all agents, mixtures and exposures evaluated to date - IARC Monographs: Overall Evaluations of Carcinogenicity to Humans, Volumes 1-88, 1972-PRESENT. World Health Organization, International Agency for Research on Cancer. Lyon, FranceAvailable from URL: http://monographs.iarc.fr/monoeval/crthall.html. As accessed Oct 07, 2004.
    74) ICAO: Technical Instructions for the Safe Transport of Dangerous Goods by Air, 2003-2004. International Civil Aviation Organization, Montreal, Quebec, Canada, 2002.
    75) ILC Dover, Inc.: Ready 1 The Chemturion Limited Use Chemical Protective Suit, ILC Dover, Inc., Frederica, DE, 1998.
    76) ILO: Encyclopaedia of Occupational Health and Safety, 4th ed. Vol 1-4, International Labour Organization, Geneva, Switerland, 1998.
    77) ITI: Toxic and Hazardous Industrial Chemicals Safety Manual, The International Technical Information Institute, Tokyo, Japan, 1995.
    78) International Agency for Research on Cancer (IARC): IARC monographs on the evaluation of carcinogenic risks to humans: list of classifications, volumes 1-116. International Agency for Research on Cancer (IARC). Lyon, France. 2016. Available from URL: http://monographs.iarc.fr/ENG/Classification/latest_classif.php. As accessed 2016-08-24.
    79) International Agency for Research on Cancer: IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. World Health Organization. Geneva, Switzerland. 2015. Available from URL: http://monographs.iarc.fr/ENG/Classification/. As accessed 2015-08-06.
    80) Kappler, Inc.: Suit Smart. Kappler, Inc.. Guntersville, AL. 2001. Available from URL: http://www.kappler.com/suitsmart/smartsuit2/na_english.asp?select=1. As accessed 7/10/2001.
    81) Kimberly-Clark, Inc.: Chemical Test Results. Kimberly-Clark, Inc.. Atlanta, GA. 2002. Available from URL: http://www.kc-safety.com/tech_cres.html. As accessed 10/4/2002.
    82) Kleinman ME, Chameides L, Schexnayder SM, et al: 2010 American Heart Association guidelines for cardiopulmonary resuscitation and emergency cardiovascular care. Part 14: pediatric advanced life support. Circulation 2010; 122(18 Suppl.3):S876-S908.
    83) Kollef MH & Schuster DP: The acute respiratory distress syndrome. N Engl J Med 1995; 332:27-37.
    84) Kolman A, Spivak I, & Naslund M: Propylene oxide and epichlorohydrin induce DNA strand breaks in human diploid fibroblasts. Envir Molec Mutagenesis 1997; 30(1):40-46.
    85) LaCrosse-Rainfair: Safety Products, LaCrosse-Rainfair, Racine, WI, 1997.
    86) Landin HH, Grmmt T, & Laurent C: Monitoring of occupational exposure to epichlorohydrin by genetic effects and hemoglobin adducts. Mutation Res 1997; 381(2):217-226.
    87) Lane JM: Epichlorhydrin. Vet Hum Toxicol 1979; 21:438-439.
    88) Lewis RA: Lewis' Dictionary of Toxicology, Lewis Publishers, Boca Raton, FL, 1998.
    89) Lewis RJ: Hawley's Condensed Chemical Dictionary, 13th ed, John Wiley & Sons, Inc, New York, NY, 1997.
    90) Lewis RJ: Hawley's Condensed Chemical Dictionary, 14th ed, John Wiley & Sons, Inc, New York, NY, 2001.
    91) Lewis RJ: Sax's Dangerous Properties of Industrial Materials, 10th ed, Van Nostrand Reinhold Company, New York, NY, 2000.
    92) Lewis RJ: Sax's Dangerous Properties of Industrial Materials, 9th ed, Van Nostrand Reinhold Company, New York, NY, 1996.
    93) MAPA Professional: Chemical Resistance Guide. MAPA North America. Columbia, TN. 2003. Available from URL: http://www.mapaglove.com/pro/ChemicalSearch.asp. As accessed 4/21/2003.
    94) MAPA Professional: Chemical Resistance Guide. MAPA North America. Columbia, TN. 2004. Available from URL: http://www.mapaglove.com/ProductSearch.cfm?id=1. As accessed 6/10/2004.
    95) Mar-Mac Manufacturing, Inc: Product Literature, Protective Apparel, Mar-Mac Manufacturing, Inc., McBee, SC, 1995.
    96) Marigold Industrial: US Chemical Resistance Chart, on-line version. Marigold Industrial. Norcross, GA. 2003. Available from URL: www.marigoldindustrial.com/charts/uschart/uschart.html. As accessed 4/14/2003.
    97) Memphis Glove Company: Permeation Guide. Memphis Glove Company. Memphis, TN. 2001. Available from URL: http://www.memphisglove.com/permeation.html. As accessed 7/2/2001.
    98) Milchert E, Goc W, & Myszkowski J: Recovery of epichlorohydrin and dichloropropanols from waste. J Chem Technol Biotechnol 1993; 56:109-111.
    99) Montgomery Safety Products: Montgomery Safety Products Chemical Resistant Glove Guide, Montgomery Safety Products, Canton, OH, 1995.
    100) NFPA: Fire Protection Guide to Hazardous Materials, 12th ed, National Fire Protection Association, Quincy, MA, 1997.
    101) NFPA: Fire Protection Guide to Hazardous Materials, 13th ed., National Fire Protection Association, Quincy, MA, 2002.
    102) NHLBI ARDS Network: Mechanical ventilation protocol summary. Massachusetts General Hospital. Boston, MA. 2008. Available from URL: http://www.ardsnet.org/system/files/6mlcardsmall_2008update_final_JULY2008.pdf. As accessed 2013-08-07.
    103) NIOSH: Criteria for a recommended standard: Occupational exposure to epichlorohydrin. HEW Publication No NIOSH 76-206, Superintendent of Documents, U.S.Environmental Protection Agency, Government Printing Office, Washington, DC, 1976.
    104) NRC: Acute Exposure Guideline Levels for Selected Airborne Chemicals - Volume 1, Subcommittee on Acute Exposure Guideline Levels, Committee on Toxicology, Board on Environmental Studies and Toxicology, Commission of Life Sciences, National Research Council. National Academy Press, Washington, DC, 2001.
    105) NRC: Acute Exposure Guideline Levels for Selected Airborne Chemicals - Volume 2, Subcommittee on Acute Exposure Guideline Levels, Committee on Toxicology, Board on Environmental Studies and Toxicology, Commission of Life Sciences, National Research Council. National Academy Press, Washington, DC, 2002.
    106) NRC: Acute Exposure Guideline Levels for Selected Airborne Chemicals - Volume 3, Subcommittee on Acute Exposure Guideline Levels, Committee on Toxicology, Board on Environmental Studies and Toxicology, Commission of Life Sciences, National Research Council. National Academy Press, Washington, DC, 2003.
    107) NRC: Acute Exposure Guideline Levels for Selected Airborne Chemicals - Volume 4, Subcommittee on Acute Exposure Guideline Levels, Committee on Toxicology, Board on Environmental Studies and Toxicology, Commission of Life Sciences, National Research Council. National Academy Press, Washington, DC, 2004.
    108) Naradzay J & Barish RA: Approach to ophthalmologic emergencies. Med Clin North Am 2006; 90(2):305-328.
    109) Nat-Wear: Protective Clothing, Hazards Chart. Nat-Wear. Miora, NY. 2001. Available from URL: http://www.natwear.com/hazchart1.htm. As accessed 7/12/2001.
    110) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for 1,2,3-Trimethylbenzene (Proposed). United States Environmental Protection Agency. Washington, DC. 2006k. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d68a&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    111) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for 1,2,4-Trimethylbenzene (Proposed). United States Environmental Protection Agency. Washington, DC. 2006m. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d68a&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    112) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for 1,2-Butylene Oxide (Proposed). United States Environmental Protection Agency. Washington, DC. 2008d. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648083cdbb&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    113) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for 1,2-Dibromoethane (Proposed). United States Environmental Protection Agency. Washington, DC. 2007g. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064802796db&disposition=attachment&contentType=pdf. As accessed 2010-08-18.
    114) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for 1,3,5-Trimethylbenzene (Proposed). United States Environmental Protection Agency. Washington, DC. 2006l. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d68a&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    115) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for 2-Ethylhexyl Chloroformate (Proposed). United States Environmental Protection Agency. Washington, DC. 2007b. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648037904e&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    116) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Acrylonitrile (Proposed). United States Environmental Protection Agency. Washington, DC. 2007c. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648028e6a3&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    117) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Adamsite (Proposed). United States Environmental Protection Agency. Washington, DC. 2007h. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020fd29&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    118) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Agent BZ (3-quinuclidinyl benzilate) (Proposed). United States Environmental Protection Agency. Washington, DC. 2007f. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064803ad507&disposition=attachment&contentType=pdf. As accessed 2010-08-18.
    119) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Allyl Chloride (Proposed). United States Environmental Protection Agency. Washington, DC. 2008. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648039d9ee&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    120) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Aluminum Phosphide (Proposed). United States Environmental Protection Agency. Washington, DC. 2005b. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c5ed&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    121) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Arsenic Trioxide (Proposed). United States Environmental Protection Agency. Washington, DC. 2007m. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480220305&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    122) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Automotive Gasoline Unleaded (Proposed). United States Environmental Protection Agency. Washington, DC. 2009a. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a7cc17&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    123) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Biphenyl (Proposed). United States Environmental Protection Agency. Washington, DC. 2005j. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064801ea1b7&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    124) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Bis-Chloromethyl Ether (BCME) (Proposed). United States Environmental Protection Agency. Washington, DC. 2006n. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648022db11&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    125) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Boron Tribromide (Proposed). United States Environmental Protection Agency. Washington, DC. 2008a. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064803ae1d3&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    126) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Bromine Chloride (Proposed). United States Environmental Protection Agency. Washington, DC. 2007d. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648039732a&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    127) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Bromoacetone (Proposed). United States Environmental Protection Agency. Washington, DC. 2008e. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064809187bf&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    128) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Calcium Phosphide (Proposed). United States Environmental Protection Agency. Washington, DC. 2005d. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c5ed&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    129) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Carbonyl Fluoride (Proposed). United States Environmental Protection Agency. Washington, DC. 2008b. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064803ae328&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    130) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Carbonyl Sulfide (Proposed). United States Environmental Protection Agency. Washington, DC. 2007e. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648037ff26&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    131) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Chlorobenzene (Proposed). United States Environmental Protection Agency. Washington, DC. 2008c. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064803a52bb&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    132) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Cyanogen (Proposed). United States Environmental Protection Agency. Washington, DC. 2008f. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064809187fe&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    133) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Dimethyl Phosphite (Proposed). United States Environmental Protection Agency. Washington, DC. 2009. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a7cbf3&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    134) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Diphenylchloroarsine (Proposed). United States Environmental Protection Agency. Washington, DC. 2007l. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020fd29&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    135) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Ethyl Isocyanate (Proposed). United States Environmental Protection Agency. Washington, DC. 2008h. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648091884e&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    136) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Ethyl Phosphorodichloridate (Proposed). United States Environmental Protection Agency. Washington, DC. 2008i. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480920347&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    137) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Ethylbenzene (Proposed). United States Environmental Protection Agency. Washington, DC. 2008g. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064809203e7&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    138) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Ethyldichloroarsine (Proposed). United States Environmental Protection Agency. Washington, DC. 2007j. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020fd29&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    139) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Germane (Proposed). United States Environmental Protection Agency. Washington, DC. 2008j. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480963906&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    140) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Hexafluoropropylene (Proposed). United States Environmental Protection Agency. Washington, DC. 2006. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064801ea1f5&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    141) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Ketene (Proposed). United States Environmental Protection Agency. Washington, DC. 2007. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020ee7c&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    142) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Magnesium Aluminum Phosphide (Proposed). United States Environmental Protection Agency. Washington, DC. 2005h. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c5ed&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    143) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Magnesium Phosphide (Proposed). United States Environmental Protection Agency. Washington, DC. 2005g. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c5ed&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    144) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Malathion (Proposed). United States Environmental Protection Agency. Washington, DC. 2009k. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064809639df&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    145) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Mercury Vapor (Proposed). United States Environmental Protection Agency. Washington, DC. 2009b. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a8a087&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    146) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Methyl Isothiocyanate (Proposed). United States Environmental Protection Agency. Washington, DC. 2008k. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480963a03&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    147) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Methyl Parathion (Proposed). United States Environmental Protection Agency. Washington, DC. 2008l. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480963a57&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    148) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Methyl tertiary-butyl ether (Proposed). United States Environmental Protection Agency. Washington, DC. 2007a. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064802a4985&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    149) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Methylchlorosilane (Proposed). United States Environmental Protection Agency. Washington, DC. 2005. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c5f4&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    150) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Methyldichloroarsine (Proposed). United States Environmental Protection Agency. Washington, DC. 2007i. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020fd29&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    151) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Methyldichlorosilane (Proposed). United States Environmental Protection Agency. Washington, DC. 2005a. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c646&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    152) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Nitrogen Mustard (HN1 CAS Reg. No. 538-07-8) (Proposed). United States Environmental Protection Agency. Washington, DC. 2006a. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d6cb&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    153) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Nitrogen Mustard (HN2 CAS Reg. No. 51-75-2) (Proposed). United States Environmental Protection Agency. Washington, DC. 2006b. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d6cb&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    154) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Nitrogen Mustard (HN3 CAS Reg. No. 555-77-1) (Proposed). United States Environmental Protection Agency. Washington, DC. 2006c. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d6cb&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    155) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Nitrogen Tetroxide (Proposed). United States Environmental Protection Agency. Washington, DC. 2008n. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648091855b&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    156) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Nitrogen Trifluoride (Proposed). United States Environmental Protection Agency. Washington, DC. 2009l. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480963e0c&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    157) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Parathion (Proposed). United States Environmental Protection Agency. Washington, DC. 2008o. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480963e32&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    158) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Perchloryl Fluoride (Proposed). United States Environmental Protection Agency. Washington, DC. 2009c. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a7e268&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    159) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Perfluoroisobutylene (Proposed). United States Environmental Protection Agency. Washington, DC. 2009d. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a7e26a&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    160) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Phenyl Isocyanate (Proposed). United States Environmental Protection Agency. Washington, DC. 2008p. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648096dd58&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    161) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Phenyl Mercaptan (Proposed). United States Environmental Protection Agency. Washington, DC. 2006d. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020cc0c&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    162) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Phenyldichloroarsine (Proposed). United States Environmental Protection Agency. Washington, DC. 2007k. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020fd29&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    163) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Phorate (Proposed). United States Environmental Protection Agency. Washington, DC. 2008q. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648096dcc8&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    164) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Phosgene (Draft-Revised). United States Environmental Protection Agency. Washington, DC. 2009e. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a8a08a&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    165) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Phosgene Oxime (Proposed). United States Environmental Protection Agency. Washington, DC. 2009f. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a7e26d&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    166) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Potassium Cyanide (Proposed). United States Environmental Protection Agency. Washington, DC. 2009g. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a7cbb9&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    167) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Potassium Phosphide (Proposed). United States Environmental Protection Agency. Washington, DC. 2005c. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c5ed&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    168) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Propargyl Alcohol (Proposed). United States Environmental Protection Agency. Washington, DC. 2006e. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020ec91&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    169) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Selenium Hexafluoride (Proposed). United States Environmental Protection Agency. Washington, DC. 2006f. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020ec55&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    170) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Silane (Proposed). United States Environmental Protection Agency. Washington, DC. 2006g. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d523&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    171) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Sodium Cyanide (Proposed). United States Environmental Protection Agency. Washington, DC. 2009h. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a7cbb9&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
    172) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Sodium Phosphide (Proposed). United States Environmental Protection Agency. Washington, DC. 2005i. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c5ed&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    173) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Strontium Phosphide (Proposed). United States Environmental Protection Agency. Washington, DC. 2005f. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c5ed&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    174) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Sulfuryl Chloride (Proposed). United States Environmental Protection Agency. Washington, DC. 2006h. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020ec7a&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    175) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Tear Gas (Proposed). United States Environmental Protection Agency. Washington, DC. 2008s. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648096e551&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    176) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Tellurium Hexafluoride (Proposed). United States Environmental Protection Agency. Washington, DC. 2009i. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a7e2a1&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    177) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Tert-Octyl Mercaptan (Proposed). United States Environmental Protection Agency. Washington, DC. 2008r. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648096e5c7&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    178) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Tetramethoxysilane (Proposed). United States Environmental Protection Agency. Washington, DC. 2006j. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d632&disposition=attachment&contentType=pdf. As accessed 2010-08-17.
    179) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Trimethoxysilane (Proposed). United States Environmental Protection Agency. Washington, DC. 2006i. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d632&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    180) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Trimethyl Phosphite (Proposed). United States Environmental Protection Agency. Washington, DC. 2009j. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a7d608&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    181) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Trimethylacetyl Chloride (Proposed). United States Environmental Protection Agency. Washington, DC. 2008t. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648096e5cc&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    182) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Zinc Phosphide (Proposed). United States Environmental Protection Agency. Washington, DC. 2005e. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c5ed&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    183) National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for n-Butyl Isocyanate (Proposed). United States Environmental Protection Agency. Washington, DC. 2008m. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064808f9591&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
    184) National Heart,Lung,and Blood Institute: Expert panel report 3: guidelines for the diagnosis and management of asthma. National Heart,Lung,and Blood Institute. Bethesda, MD. 2007. Available from URL: http://www.nhlbi.nih.gov/guidelines/asthma/asthgdln.pdf.
    185) National Institute for Occupational Safety and Health: NIOSH Pocket Guide to Chemical Hazards, U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, Cincinnati, OH, 2007.
    186) National Research Council : Acute exposure guideline levels for selected airborne chemicals, 5, National Academies Press, Washington, DC, 2007.
    187) National Research Council: Acute exposure guideline levels for selected airborne chemicals, 6, National Academies Press, Washington, DC, 2008.
    188) National Research Council: Acute exposure guideline levels for selected airborne chemicals, 7, National Academies Press, Washington, DC, 2009.
    189) National Research Council: Acute exposure guideline levels for selected airborne chemicals, 8, National Academies Press, Washington, DC, 2010.
    190) Neese Industries, Inc.: Fabric Properties Rating Chart. Neese Industries, Inc.. Gonzales, LA. 2003. Available from URL: http://www.neeseind.com/new/TechGroup.asp?Group=Fabric+Properties&Family=Technical. As accessed 4/15/2003.
    191) None Listed: Position paper: cathartics. J Toxicol Clin Toxicol 2004; 42(3):243-253.
    192) North: Chemical Resistance Comparison Chart - Protective Footwear . North Safety. Cranston, RI. 2002. Available from URL: http://www.linkpath.com/index2gisufrm.php?t=N-USA1. As accessed April 30, 2004.
    193) North: eZ Guide Interactive Software. North Safety. Cranston, RI. 2002a. Available from URL: http://www.northsafety.com/feature1.htm. As accessed 8/31/2002.
    194) OHM/TADS : Oil and Hazardous Materials/Technical Assistance Data System. US Environmental Protection Agency. Washington, DC (Internet Version). Edition expires 2000; provided by Truven Health Analytics Inc., Greenwood Village, CO.
    195) OHM/TADS : Oil and Hazardous Materials/Technical Assistance Data System. US Environmental Protection Agency. Washington, DC (Internet Version). Edition expires 2002; provided by Truven Health Analytics Inc., Greenwood Village, CO.
    196) Peate WF: Work-related eye injuries and illnesses. Am Fam Physician 2007; 75(7):1017-1022.
    197) Peberdy MA , Callaway CW , Neumar RW , et al: 2010 American Heart Association guidelines for cardiopulmonary resuscitation and emergency cardiovascular care science. Part 9: post–cardiac arrest care. Circulation 2010; 122(18 Suppl 3):S768-S786.
    198) Pesselman RL & Feit MJ: Determination of residual epichlorhydrin and 3-chloropropanediol in water by gas chromatography with electron-capture detection. J Chromatogr 1988; 439:448-452.
    199) Playtex: Fits Tough Jobs Like a Glove, Playtex, Westport, CT, 1995.
    200) Plna K, Osterman-Golkar S, & Nogradi E: 32P post-labeling of 7-(chloro-2-hydroxypropyl)guanine in white blood cells of workers occupationally exposed to epichlorohydrin. Carcinogenesis 2000; 21(2):275-280.
    201) Pohanish RP & Greene SA: Rapid Guide to Chemical Incompatibilities, Van Nostrand Reinhold Company, New York, NY, 1997.
    202) Pohanish RP: Sittig's Handbook of Toxic and Hazardous Chemicals and Carcinogens, 4th ed, Noyes Publications / William Andrew Publishing, Norwich, NY, 2002.
    203) Pollack MM, Dunbar BS, & Holbrook PR: Aspiration of activated charcoal and gastric contents. Ann Emerg Med 1981; 10:528-529.
    204) Prens EP, De Jong G, & Van Joost Th: Sensitization to epichlorohydrin and epoxy system components. Contact Dermatitis 1986; 15:85-90.
    205) Proctor NH & Hughes JP: Chemical Hazards of the Workplace, JB Lippincott Co, Philadelphia, PA, 1978.
    206) Product Information: dopamine hcl, 5% dextrose IV injection, dopamine hcl, 5% dextrose IV injection. Hospira,Inc, Lake Forest, IL, 2004.
    207) Product Information: norepinephrine bitartrate injection, norepinephrine bitartrate injection. Sicor Pharmaceuticals,Inc, Irvine, CA, 2005.
    208) RTECS : Registry of Toxic Effects of Chemical Substances. National Institute for Occupational Safety and Health. Cincinnati, OH (Internet Version). Edition expires 2000; provided by Truven Health Analytics Inc., Greenwood Village, CO.
    209) Raffle PAB, Adams PH, & Baxter PJ: Hunter's Diseases of Occupations, Little, Brown, & Co, Boston, MA, 1994.
    210) Rau NR, Nagaraj MV, Prakash PS, et al: Fatal pulmonary aspiration of oral activated charcoal. Br Med J 1988; 297:918-919.
    211) River City: Protective Wear Product Literature, River City, Memphis, TN, 1995.
    212) Safety 4: North Safety Products: Chemical Protection Guide. North Safety. Cranston, RI. 2002. Available from URL: http://www.safety4.com/guide/set_guide.htm. As accessed 8/14/2002.
    213) Servus: Norcross Safety Products, Servus Rubber, Servus, Rock Island, IL, 1995.
    214) Sittig M: Handbook of Toxic and Hazardous Chemicals and Carcinogens, 3rd ed, Noyes Publications, Park Ridge, NJ, 1991.
    215) Spiller HA & Rogers GC: Evaluation of administration of activated charcoal in the home. Pediatrics 2002; 108:E100.
    216) Standard Safety Equipment: Product Literature, Standard Safety Equipment, McHenry, IL, 1995.
    217) Stolbach A & Hoffman RS: Respiratory Principles. In: Nelson LS, Hoffman RS, Lewin NA, et al, eds. Goldfrank's Toxicologic Emergencies, 9th ed. McGraw Hill Medical, New York, NY, 2011.
    218) Thakore S & Murphy N: The potential role of prehospital administration of activated charcoal. Emerg Med J 2002; 19:63-65.
    219) Tingley: Chemical Degradation for Footwear and Clothing. Tingley. South Plainfield, NJ. 2002. Available from URL: http://www.tingleyrubber.com/tingley/Guide_ChemDeg.pdf. As accessed 10/16/2002.
    220) Trelleborg-Viking, Inc.: Chemical and Biological Tests (database). Trelleborg-Viking, Inc.. Portsmouth, NH. 2002. Available from URL: http://www.trelleborg.com/protective/. As accessed 10/18/2002.
    221) Trelleborg-Viking, Inc.: Trellchem Chemical Protective Suits, Interactive manual & Chemical Database. Trelleborg-Viking, Inc.. Portsmouth, NH. 2001.
    222) Tsai SP, Gilstrap EL, & Ross CE: Mortality study of employees with potential exposure to epichlorohydrin: a 10-year update. Occup Envir Medicine 1996; 53(5):299-304.
    223) U.S. Department of Energy, Office of Emergency Management: Protective Action Criteria (PAC) with AEGLs, ERPGs, & TEELs: Rev. 26 for chemicals of concern. U.S. Department of Energy, Office of Emergency Management. Washington, DC. 2010. Available from URL: http://www.hss.doe.gov/HealthSafety/WSHP/Chem_Safety/teel.html. As accessed 2011-06-27.
    224) U.S. Department of Health and Human Services, Public Health Service, National Toxicology Project : 11th Report on Carcinogens. U.S. Department of Health and Human Services, Public Health Service, National Toxicology Program. Washington, DC. 2005. Available from URL: http://ntp.niehs.nih.gov/INDEXA5E1.HTM?objectid=32BA9724-F1F6-975E-7FCE50709CB4C932. As accessed 2011-06-27.
    225) U.S. Environmental Protection Agency: Discarded commercial chemical products, off-specification species, container residues, and spill residues thereof. Environmental Protection Agency's (EPA) Resource Conservation and Recovery Act (RCRA); List of hazardous substances and reportable quantities 2010b; 40CFR(261.33, e-f):77-.
    226) U.S. Environmental Protection Agency: Integrated Risk Information System (IRIS). U.S. Environmental Protection Agency. Washington, DC. 2011. Available from URL: http://cfpub.epa.gov/ncea/iris/index.cfm?fuseaction=iris.showSubstanceList&list_type=date. As accessed 2011-06-21.
    227) U.S. Environmental Protection Agency: List of Radionuclides. U.S. Environmental Protection Agency. Washington, DC. 2010a. Available from URL: http://www.gpo.gov/fdsys/pkg/CFR-2010-title40-vol27/pdf/CFR-2010-title40-vol27-sec302-4.pdf. As accessed 2011-06-17.
    228) U.S. Environmental Protection Agency: List of hazardous substances and reportable quantities. U.S. Environmental Protection Agency. Washington, DC. 2010. Available from URL: http://www.gpo.gov/fdsys/pkg/CFR-2010-title40-vol27/pdf/CFR-2010-title40-vol27-sec302-4.pdf. As accessed 2011-06-17.
    229) U.S. Environmental Protection Agency: The list of extremely hazardous substances and their threshold planning quantities (CAS Number Order). U.S. Environmental Protection Agency. Washington, DC. 2010c. Available from URL: http://www.gpo.gov/fdsys/pkg/CFR-2010-title40-vol27/pdf/CFR-2010-title40-vol27-part355.pdf. As accessed 2011-06-17.
    230) U.S. Occupational Safety and Health Administration: Part 1910 - Occupational safety and health standards (continued) Occupational Safety, and Health Administration's (OSHA) list of highly hazardous chemicals, toxics and reactives. Subpart Z - toxic and hazardous substances. CFR 2010 2010; Vol6(SEC1910):7-.
    231) U.S. Occupational Safety, and Health Administration (OSHA): Process safety management of highly hazardous chemicals. 29 CFR 2010 2010; 29(1910.119):348-.
    232) United States Environmental Protection Agency Office of Pollution Prevention and Toxics: Acute Exposure Guideline Levels (AEGLs) for Vinyl Acetate (Proposed). United States Environmental Protection Agency. Washington, DC. 2006. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d6af&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
    233) Vale JA, Kulig K, American Academy of Clinical Toxicology, et al: Position paper: Gastric lavage. J Toxicol Clin Toxicol 2004; 42:933-943.
    234) Vale JA: Position Statement: gastric lavage. American Academy of Clinical Toxicology; European Association of Poisons Centres and Clinical Toxicologists. J Toxicol Clin Toxicol 1997; 35:711-719.
    235) Verschueren K: Handbook of Environmental Data on Organic Chemicals, 2nd ed, Van Nostrand Reinhold Co, New York, NY, 1983.
    236) Wells Lamont Industrial: Chemical Resistant Glove Application Chart. Wells Lamont Industrial. Morton Grove, IL. 2002. Available from URL: http://www.wellslamontindustry.com. As accessed 10/31/2002.
    237) Willson DF, Truwit JD, Conaway MR, et al: The adult calfactant in acute respiratory distress syndrome (CARDS) trial. Chest 2015; 148(2):356-364.
    238) Wilson DF, Thomas NJ, Markovitz BP, et al: Effect of exogenous surfactant (calfactant) in pediatric acute lung injury. A randomized controlled trial. JAMA 2005; 293:470-476.
    239) Windholz M, Budavari S, & Blumetti RF: The Merck Index, 10th ed, Merck & Company, Inc, Rahway, NJ, 1983.
    240) Workrite: Chemical Splash Protection Garments, Technical Data and Application Guide, W.L. Gore Material Chemical Resistance Guide, Workrite, Oxnard, CA, 1997.