DIMETHOATE
HAZARDTEXT ®
Information to help in the initial response for evaluating chemical incidents
-IDENTIFICATION
SYNONYMS
DIMETHOATE AC-12880 AC-12682 AC-18682 ACETIC ACID, O,O-DIMETHYLDITHIOPHOSPHORYL-, N-MONOMETHYLAMIDE SALT AMERICAN CYANAMID 12880 BI-58 BI 58 EC 8014 BIS HC CEKUTHOATE CL 12880 CYGON CYGON 2-E CYGON 4E CYGON INSECTICIDE DAPHENE DE-FEND DEMOS-L40 DEVIGON DIMATE 267 DIMET DIMETATE DIMETHOAAT (Dutch) DIMETHOAT (German) DIMETHOATE-267 DIMETHOAT TECHNISCH 95% DIMETHOGEN O,O-DIMETHYLDITHIOPHOSPHORYLACETIC ACID, N-MONOMETHYLAMIDE SALT O,O-DIMETHYL-DITHIOPHOSPHORYLESSIGSAEURE MONOMETHYLAMID (German) O,O-DIMETHYL S-(2-(METHYLAMINO)-2-OXOETHYL) PHOSPHORODITHIOATE O,O-DIMETHYL-S-(N-METHYL-CARBAMOYL)-METHYL- DITHIOFOSFAAT (Dutch) (O,O-DIMETHYL-S-(N-METHYL-CARBAMOYL-METHYL)- DITHIOPHOSPHAT) (German) O,O-DIMETHYL METHYLCARBAMOYLMETHYL PHOSPHORODITHIOATE O,O-DIMETHYL S-METHYLCARBAMOYLMETHYL PHOSPHORODITHIOATE O,O-DIMETHYL S-(N-METHYLCARBAMOYLMETHYL) DITHIOPHOSPHATE O,O-DIMETHYL S-(N-METHYLCARBAMOYLMETHYL) PHOSPHORODITHIOATE O,O-DIMETHYL S-(N-METHYLCARBAMYLMETHYL) PHOSPHORODITHIOATE O,O-DIMETHYL S-(N-METHYLCARBAMYLMETHYL) THIOTHIONOPHOSPHATE O,O-DIMETHYL-S-(N-MONOMETHYL)-CARBAMYL METHYL DITHIOPHOSPHATE O,O-DIMETHYL-S-(2-OXO-3-AZA-BUTYL)-DITHIOPHOSPHAT (German) O,O-DIMETIL-S-(N-METIL-CARBAMOIL-METIL)-DITIOFOSFATO (Italian) DIMETON DIMEVUR DITHIOPHOSPHATE DE O,O-DIMETHYLE ET DES(-N-METHYLCARBAMOYL-METHYLE) (French) EI-12880 EXPERIMENTAL INSECTICIDE 12,880 FERKETHION FIP FORTION NM FOSFAMID FOSFOTOX FOSFOTOX R FOSFOTOX R 35 FOSTION MM L-395 LURGO S-METHYLCARBAMOYLMETHYL O,O-DIMETHYL PHOSPHORODITHIOATE N-MONOMETHYLAMIDE of O,O- DIMETHYLDITHIOPHOSPHORYLACETIC ACID NC-262 OMS 94 OMS 111 PEI 75 PERFECTHION PERFEKTHION PERFEKTION PHOSPHAMID PHOSPHAMIDE PHOSPHORODITHIOIC ACID, O,O-DIMETHYL ESTER, ESTER with 2-MERCAPTO-N-METHYLACETAMIDE PHOSPHORODITHIOIC ACID, O,O-DIMETHYL ESTER, S-ESTER with 2-MERCAPTO-N-METHYLACETAMIDE PHOSPHORODITHIOIC ACID, O,O-DIMETHYL-S- (2-(METHYLAMINO)-2-OXOETHYL) ESTER RACUSAN REBELATE ROGODIAL ROGOR ROGOR 40 ROGOR L ROGOR 20L ROGOR P ROXION ROXION U.A. SINORATOX SYSTOATE TRIMETION
IDENTIFIERS
Editor's Note: This material is not listed in the Emergency Response Guidebook. Based on the material's physical and chemical properties, toxicity, or chemical group, a guide has been assigned. For additional technical information, contact one of the emergency response telephone numbers listed under Public Safety Measures.
SYNONYM REFERENCE
- (RTECS , 1991; Budavari, 1989)Clayton & Clayton, 1981;(EPA, 1985; Sax & Lewis, 1989)
USES/FORMS/SOURCES
A more recent source states that the use of dimethoate has been restricted; dry formulations are no longer permitted (Sax & Lewis, 1987). It is used as a systemic and contact insecticide and acaricide (Hayes, 1982). Because of its relatively low toxicity to mammals, dimethoate has been used in veterinary medicine to control bots in livestock (Hayes, 1982).
Dimethoate is available as emulsifiable concentrates of 20, 40, and 50% technical grade, as a 30% concentrate for ultralow volume applications, and in 20% wettable powder and 5% granules (Hayes, 1982). GERMANY: Organophosphates are often mixed with oil for ease of application. This enhances their absorption and toxicity.
-CLINICAL EFFECTS
GENERAL CLINICAL EFFECTS
- The following are general effects due to organophosphates, which are due to the anticholinesterase activity of this class of compounds. All of these effects may not be documented for dimethoate, but could potentially occur in individual cases.
- USES: Dimethoate, an organophosphate compound, is used as a systemic and contact insecticide. It is registered for use in the US and other countries; however it is not available for residential use in the US.
- TOXICOLOGY: Organophosphates competitively inhibit pseudocholinesterase and acetylcholinesterase, preventing hydrolysis and inactivation of acetylcholine. Acetylcholine accumulates at nerve junctions, causing malfunction of the sympathetic, parasympathetic, and peripheral nervous systems and some of the CNS. Clinical signs of cholinergic excess can develop.
- EPIDEMIOLOGY: Exposure to organophosphates is common, but serious toxicity is unusual in the US. Common source of severe poisoning in developing countries.
MILD TO MODERATE POISONING: MUSCARINIC EFFECTS: Can include bradycardia, salivation, lacrimation, diaphoresis, vomiting, diarrhea, urination, and miosis. NICOTINIC EFFECTS: Tachycardia, hypertension, mydriasis, and muscle cramps. SEVERE POISONING: MUSCARINIC EFFECTS: Bronchorrhea, bronchospasm, and acute lung injury. NICOTINIC EFFECTS: Muscle fasciculations, weakness, and respiratory failure. CENTRAL EFFECTS: CNS depression, agitation, confusion, delirium, coma, and seizures. Hypotension, ventricular dysrhythmias, metabolic acidosis, pancreatitis, and hyperglycemia can also develop. DELAYED EFFECTS: Intermediate syndrome is characterized by paralysis of respiratory, cranial motor, neck flexor, and proximal limb muscles 1 to 4 days after apparent recovery from cholinergic toxicity, and prior to the development of delayed peripheral neuropathy. Manifestations can include the inability to lift the neck or sit up, ophthalmoparesis, slow eye movements, facial weakness, difficulty swallowing, limb weakness (primarily proximal), areflexia, and respiratory paralysis. Recovery begins 5 to 15 days after onset. Distal sensory-motor polyneuropathy may rarely develop 6 to 21 days following exposure to some organophosphate compounds, however, it has not yet been reported in humans after exposure to dimethoate. Characterized by burning or tingling followed by weakness beginning in the legs which then spreads proximally. In severe cases, it may result in spasticity or flaccidity. Recovery requires months and may not be complete. CHILDREN: May have different predominant signs and symptoms than adults (more likely CNS depression, stupor, coma, flaccidity, dyspnea, and seizures). Children may also have fewer muscarinic and nicotinic signs of intoxication (ie, secretions, bradycardia, fasciculations and miosis) as compared to adults. INHALATION EXPOSURE: Organophosphate vapors rapidly produce mucous membrane and upper airway irritation and bronchospasm, followed by systemic muscarinic, nicotinic and central effects if exposed to significant concentrations.
- POTENTIAL HEALTH HAZARDS - EMERGENCY RESPONSE GUIDEBOOK, GUIDE 152 (ERG, 2004)
Highly toxic, may be fatal if inhaled, swallowed or absorbed through skin. Contact with molten substance may cause severe burns to skin and eyes. Avoid any skin contact. Effects of contact or inhalation may be delayed. Fire may produce irritating, corrosive and/or toxic gases. Runoff from fire control or dilution water may be corrosive and/or toxic and cause pollution.
ACUTE CLINICAL EFFECTS
- Dimethoate can be absorbed by the ingestion, inhalation or dermal exposure routes (ILO, 1983). With an estimated oral LD50 of 15 to 30 mg/kg in humans, dimethoate is a highly toxic substance (Hayes & Laws, 1991). The actual lethal dose for humans depends on the route and rate of exposure, as well as on the medical treatment received (Hayes & Laws, 1991).
- Based on its acute oral LD50 of 28 to 600 mg/kg in rats, dimethoate would be considered in the moderately toxic group of organophosphates (Morgan, 1989). A wide range of acute LD50 values have been reported in different species, possibly due to increased toxicity upon storage in older studies. Some of this increased toxicity was attributed to a solvent effect when glycol ether solvents were used. Formulations in glycol ether solvents have been discontinued (Hayes & Laws, 1991).
- Dimethoate itself was not irritating to the eyes. However, severe irritation from occupational exposure has apparently been traced to bis(dimethoxythiophosphoryl) disulfide, which can be formed during neutralization of the acid intermediate (Hayes & Laws, 1991).
- Dimethoate produces a spectrum of acute effects typical of organophosphate compounds, but with a slow onset (ILO, 1983). The hallmark of organophosphate poisoning is inhibition of plasma pseudocholinesterase and erythrocyte acetylcholinesterase (Namba, 1972).
- Symptoms of organophosphate poisoning include nausea, vomiting, abdominal cramps, diarrhea, headache, giddiness, vertigo, weakness, sensation of tightness in the chest (after inhalation exposures), excessive tearing, loss of accommodation, ocular pain, blurring or dimness of vision, miosis, loss of muscle coordination, slurring of speech, fasciculations and twitching of muscles (particularly of tongue and eyelids) (Minton & Murray, 1988).
- Other acute effects include generalized profound weakness, mental confusion, disorientation, drowsiness, difficulty in breathing, excessive salivation and respiratory mucus, oronasal frothing, cyanosis, pulmonary rales and rhonchi, hypertension, hypotension, cardiac arrhythmias, random jerky movements, incontinence, convulsions, and coma (Minton & Murray, 1988).
- Death from organophosphate poisoning occurs primarily from respiratory arrest arising from failure of the respiratory center, paralysis of respiratory muscles, intense bronchoconstriction, or all three (HSDB , 1996). In severe cases when the patient has been unconscious for some time, brain damage can occur from lack of oxygen (ILO, 1983). Some symptoms of acute organophosphate poisoning, based upon experience with parathion, can persist for days to months. These include fatigue, ocular symptoms, EEG abnormalities, gastrointestinal complaints, excessive dreams, and intolerance to exposure to organophosphates (ILO, 1983).
- Delayed effects may be most pronounced with highly lipid-soluble phosphorothioates, such as dimethoate. After an initial period of apparent recovery, clinical effects may recur for up to several weeks after an acute exposure (Minton & Murray, 1988).
- In a case of dimethoate poisoning by subcutaneous injection, initial symptoms included dizziness, blurred vision, muscle fibrillations, abdominal cramps, and vomiting. Muscle fasciculations developed 16 hours later, together with pain and edema in the affected arm. Both serum and red blood cell cholinesterase levels were decreased and normalized very slowly. Other complications included metabolic acidosis, hyperthermia, leukocytosis, hypokalemia, sinus tachycardia, and elevated liver enzymes (Jovanovic et al, 1990). Adult respiratory distress syndrome (ARDS) and acute tubular necrosis developed in one case of fatal dimethoate overdose (Betrosian et al, 1995).
- Delayed toxicity can occur after exposure to dimethoate. Sudden collapse and death occurred 17 hours after apparent recovery in one case of dimethoate poisoning (Hayes & Laws, 1991). The mechanism for delayed onset or relapse may be a combination of its high lipid solubility and the requirement for metabolic activation.
- An "intermediate syndrome" has been described in patients who developed profound proximal muscle and cranial nerve weakness 1 to 4 days after dimethoate exposure and who had apparently recovered (Senanayake & Karalliedde, 1987; De Bleecker et al, 1992; De Bleecker et al, 1993).
- Some organophosphates can induce delayed neurological effects of a combined sensory-motor peripheral polyneuropathy. Sensation of numbness or tingling in the extremities may appear several weeks after acute exposure. It is not clear if all organophosphates have this activity (Cherniack, 1986; Wadia et al, 1987).
- Delayed neurotoxicity has been reported following acute human exposure to the closely related compound, omethoate (Curtes et al, 1981). Dimethoate was inactive in the standard atropinized hen assay for detecting delayed neurotoxicity, at a dose of 130 ppm in the diet for 4 weeks (Clayton & Clayton, 1994). Patients who developed an intermediate neurotoxicity syndrome from dimethoate overdose did not develop the classical delayed peripheral neuropathy (De Bleecker et al, 1993).
- Dimethoate poisoning has been associated with acute glaucoma (Francois & Verbraeken, 1977). This is unusual in that certain organophosphates are used in clinical practice to treat glaucoma (PDR, 1996).
- One case of acute pancreatitis has been reported following dermal exposure to dimethoate (Marsh et al, 1988). This may be related to the muscarinic effects of dimethoate, which are exerted through the parasympathetic nervous system on the exocrine glands. The possible contribution of excessive alcohol consumption was not taken into account in this case, however.
- Pulmonary aspiration of commercial organophosphate preparations which contain hydrocarbon solvents may cause potentially fatal chemical pneumonitis (Lund & Monteagudo, 1986).
- Di-methyl derivatives, such as dimethoate, produce a dimethylphosphorylated enzyme, which undergoes rapid spontaneous deactivation and/or "aging" by de-acylation; diethylphosphorylated enzyme is much slower to de-acylate (Johnson, 1989).
- The liver was the main site of distribution of (32P)-dimethoate and its derivatives after 24 hours in rats, but after 72 and 168 hours, the highest concentrations were in the skin and bones because of conversion to inorganic phosphate (Hayes & Laws, 1991).
- Pretreatment of rats with phenobarbital increased susceptibility to dimethoate (Hayes & Laws, 1991). This implies that dimethoate is activated by a cytochrome P450-dependent oxidative pathway.
- Phosphorothioates, such as dimethoate, must be metabolically activated by oxidation of the P=S bond to the phosphate form before producing toxicity; they therefore generally have a slower onset of toxic effects than do direct-acting organophosphate esters (Minton & Murray, 1988). The P=O derivatives of dimethoate may be up to 1,000 times more active than the parent compound for inhibition of human plasma cholinesterases (Hayes & Laws, 1991).
- Dimethoate is metabolized very rapidly in the liver to form at least four active metabolites (Sanderson & Edson, 1964; Hayes & Laws, 1991). One of the active species is thought to be dimethoxon, which is 75 to 100 times more potent than dimethoate in inhibiting rat brain cholinesterase (Hayes & Laws, 1991).
- Metabolites identified in rats after administration of (32)P-dimethoate included the monomethylphosphate, dimethylphosphate, thiophosphoric acid, dimethoate carboxylic acid, dimethylphosphorothioic acid, dimethoate carboxylic acid, and dimethylphosphorodithioic acid (Hassan, 1969).
- Urinary metabolites of dimethoate in mice included MeO(HS)P(O)SMe, MeO(HO)P(O)SMe, (MeO)(2)P(S)SMe, and (MeO)(2)P(O)SMe; these were shown to arise by S-methylation of the intermediate O,O-dialkyl phosphorodithoic acids in vivo, rather than from impurities (Mahajna et al, 1996).
CHRONIC CLINICAL EFFECTS
- In general, chronic exposure to organophosphate compounds can lead to cumulative depression of cholinesterase levels until a critical lack of activity causes symptoms of organophosphate poisoning to appear, in a pattern similar to that of acute poisoning (Coye et al, 1986). The level of chronic exposure which can be tolerated depends on the rate of uptake and degradation of the organophosphate in the body in relation to its potency in inhibiting acetylcholinesterase, and the rate of the individual's replenishment of acetylcholinesterase activity.
- An oral dose of 18 milligrams/day (approximately 0.26 milligram/kilogram/day) for 21 days did not inhibit cholinesterase in a human volunteer; an oral dose of 2.5 milligrams/day for 4 weeks had no effect in 20 human volunteers (Sanderson & Edson, 1964). The no-effect dose for cholinesterase inhibition in human volunteers was 15 mg/day for approximately 27 days (HSDB , 1996).
- Inhibition of cholinesterase was apparent with oral doses of 10 to 30 mg/day for 20 to 39 days; doses as high as 60 mg/day produced no apparent clinical effects (Hayes & Laws, 1991). Doses of 0.434 mg/kg/day or greater produced cholinesterase inhibition in humans after 20 days of oral exposure (HSDB , 1996; Edson et al, 1967). The no-effect dose was 0.2 mg/kg/day (Edson et al, 1967).
- Spraying applicators exposed for 12 days over a 2-week period did not have depressed cholinesterase levels following an estimated dermal dose of 176 to 8,100 mcg/cm(2)/day (Copplestone et al, 1976). An average reduction in plasma cholinesterase of 37.1% was seen in a group of greenhouse workers with mean dermal exposure to 914 mg/day and exposure by the respiratory route to 17 mg/day (Aljaghbir et al, 1992).
- Dermal sensitization has been reported with occupational exposure to dimethoate (Pambor & Bloch, 1985; Schena & Barba, 1992).
- No inhibition of cholinesterase was seen at a dose of 0.6 mg/kg/day in rats and 4 mg/kg/day in guinea pigs. The no-effect dietary dose in rats has been reported to be 1 to 32 ppm (Hayes & Laws, 1991). Cholinesterase inhibition was the only effect seen in rats given 5 milligrams/kilogram/day in the diet (Sanderson & Edson, 1964).
-FIRST AID
FIRST AID AND PREHOSPITAL TREATMENT
- PREHOSPITAL DECONTAMINATION
INGESTION: Prehospital gastrointestinal decontamination is NOT recommended because of the potential for early coma or seizures and aspiration. DERMAL: Remove contaminated clothing. Wash skin thoroughly with soap and water. Systemic toxicity can result from dermal exposure. OCULAR: Copious eye irrigation.
Universal precautions should be followed by all individuals (i.e., first responders, emergency medical, and emergency department personnel) caring for the patient to avoid contamination. Nitrile gloves are suggested. Avoid direct contact with contaminated clothing, objects or body fluids. Vomiting containing organophosphates should be placed in a closed impervious container for proper disposal.
- DECONTAMINATION OF SPILLS/SUMMARY
A variety of methods have been described for organophosphate spill decontamination, most of which depends on changing the pH to promote hydrolysis to inactive phosphate diester compounds (EPA, 1978). The rate of hydrolysis depends on both the specific organophosphate compound involved and the increase in pH caused by the detoxicant used (EPA, 1978; EPA, 1975). NOTE - Do NOT use a MIXTURE of BLEACH and ALKALI for DECONTAMINATING ACEPHATE ORGANOPHOSPHATES such as ORTHENE(R). This can cause release of toxic acetyl chloride, acetylene, and phosgene gas. Spills of acephate organophosphates should be decontaminated by absorption and scrubbing with concentrated detergent (Ford JE, 1989).
Treatment of the spilled material with alkaline substances such as sodium carbonate (soda ash), sodium bicarbonate (baking soda), calcium hydroxide (slaked or hydrated lime), calcium hydroxide (lime or lime water, when in dilute solutions), and calcium carbonate (limestone) may be used for detoxification (EPA, 1975a). Chlorine-active compounds such as sodium hypochlorite (household bleach) or calcium hypochlorite (bleaching powder, chlorinated lime) may also be used to detoxify organophosphate spills (EPA, 1975a). While ammonia compounds have also been suggested as alternate detoxicants for organophosphate spills, UNDER NO CIRCUMSTANCES SHOULD AMMONIA EVER BE COMBINED WITH A CHLORINE-ACTIVE COMPOUND (BLEACH) AS HIGHLY IRRITATING CHLORAMINE GAS MAY BE EVOLVED.
- SMALL SPILL DECONTAMINATION
Three cups of Arm & Hammer washing soda (sodium carbonate) or Arm & Hammer baking soda (sodium bicarbonate) may be combined with one-half cup of household bleach and added to a plastic bucket of water. The washing soda is more alkaline and may be more efficacious, if available. Wear rubber gloves, and use a respirator certified effective against toxic vapors. Several washes may be required for decontamination (EPA, 1978). Spilled liquid may first be adsorbed with soil, sweeping compound, sawdust, or dry sand and then both the adsorbed material and the floor decontaminated with one of the above solutions (EPA, 1975a). NOTE - Do NOT use a COMBINATION of BLEACH and ALKALI to DECONTAMINATE ACEPHATE or ACETYL ORGANOPHOSPHATE COMPOUNDS such as ORTHENE(R). Spills involving acephate organophosphates should be decontaminated by the following procedure - Isolate and ventilate the area; keep sources of fire away; wear rubber or neoprene gloves and overshoes; get fire-fighting equipment ready; contain any liquid spill around the edge and absorb with Zorb-All(R) or similar material; dispose of absorbed or dry material in disposable containers; scrub the spilled area with concentrated detergent such as TIDE(R), ALL(R) or similar product; reabsorb scrubbing liquid and dispose as above; dispose of cleaning materials and contaminated clothing; wash gloves, overshoes and shovel with concentrated detergent. Call the National Pesticide Telecommunications Network for further assistance at 1-800-858-7378 or on the web at http://nptn.orst.edu.
- LARGE SPILL DECONTAMINATION
Sprinkle or spray the area with a mixture of one gallon of sodium hypochlorite (bleach) mixed with one gallon of water. Then spread calcium hydroxide (hydrated or slaked lime) liberally over the area and allow to stand for at least one hour (Pesticide User's Guide, 1976). Wear rubber gloves, and use a respirator certified effective against toxic vapors. Several washes may be required for decontamination (EPA, 1978). Other decontamination methods may be recommended by manufacturers of specific agents. Check containers, labels, or product literature for possible instructions regarding spill decontamination. NOTE - Do NOT USE a COMBINATION of BLEACH and ALKALI to DECONTAMINATE ACEPHATE or ACETYL ORGANOPHOSPHATE COMPOUNDS such as ORTHENE(R). Spills involving acephate organophosphates should be decontaminated by the following procedure - Isolate and ventilate the area; keep sources of fire away; wear rubber or neoprene gloves and overshoes; get fire-fighting equipment ready; contain any liquid spill around the edge and absorb with Zorb-All(R) or similar material; dispose of absorbed or dry material in disposable containers; scrub the spilled area with concentrated detergent such as TIDE(R), ALL(R) or similar product; reabsorb scrubbing liquid and dispose as above; dispose of cleaning materials and contaminated clothing; wash gloves, overshoes and shovel with concentrated detergent.
FURTHER CONTACT INFORMATION For further information contact the National Pesticide Telecommunications Network at 1-800-858-7378 or contact on the web at http://nptn.orst.edu. Disposal of large quantities or contamination of large areas may be regulated by various governmental agencies and reporting may be required. For small pesticide spills or for further information call the pesticide manufacturer or the National Pesticide Information Center (NPIC) at 1-800-858-7378. The National Response Center (NRC) is the federal point of contact for reporting of spills and can be reached at 1-800-424-8802. For those without 800 access, contact 202-267-2675. CHEMTREC can provide technical and hazardous materials information and can be reached at 1-800-424-9300 in the US; or 703-527-3887 outside the US.
ANTIDOTES
-MEDICAL TREATMENT
LIFE SUPPORT
- Support respiratory and cardiovascular function.
SUMMARY
- FIRST AID - EMERGENCY RESPONSE GUIDEBOOK, GUIDE 152 (ERG, 2004)
Move victim to fresh air. Call 911 or emergency medical service. Give artificial respiration if victim is not breathing. Do not use mouth-to-mouth method if victim ingested or inhaled the substance; give artificial respiration with the aid of a pocket mask equipped with a one-way valve or other proper respiratory medical device. Administer oxygen if breathing is difficult. Remove and isolate contaminated clothing and shoes. In case of contact with substance, immediately flush skin or eyes with running water for at least 20 minutes. For minor skin contact, avoid spreading material on unaffected skin. Keep victim warm and quiet. Effects of exposure (inhalation, ingestion or skin contact) to substance may be delayed. Ensure that medical personnel are aware of the material(s) involved and take precautions to protect themselves.
PREHOSPITAL DECONTAMINATION INGESTION: Prehospital gastrointestinal decontamination is NOT recommended because of the potential for early coma or seizures and aspiration. DERMAL: Remove contaminated clothing. Wash skin thoroughly with soap and water. Systemic toxicity can result from dermal exposure. OCULAR: Copious eye irrigation.
PERSONNEL PROTECTION Universal precautions should be followed by all individuals (i.e., first responders, emergency medical, and emergency department personnel) caring for the patient to avoid contamination. Nitrile gloves are suggested. Avoid direct contact with contaminated clothing, objects or body fluids. Vomiting containing organophosphates should be placed in a closed impervious container for proper disposal.
DECONTAMINATION OF SPILLS/SUMMARY A variety of methods have been described for organophosphate spill decontamination, most of which depends on changing the pH to promote hydrolysis to inactive phosphate diester compounds (EPA, 1978). The rate of hydrolysis depends on both the specific organophosphate compound involved and the increase in pH caused by the detoxicant used (EPA, 1978; EPA, 1975). NOTE - Do NOT use a MIXTURE of BLEACH and ALKALI for DECONTAMINATING ACEPHATE ORGANOPHOSPHATES such as ORTHENE(R). This can cause release of toxic acetyl chloride, acetylene, and phosgene gas. Spills of acephate organophosphates should be decontaminated by absorption and scrubbing with concentrated detergent (Ford JE, 1989).
Treatment of the spilled material with alkaline substances such as sodium carbonate (soda ash), sodium bicarbonate (baking soda), calcium hydroxide (slaked or hydrated lime), calcium hydroxide (lime or lime water, when in dilute solutions), and calcium carbonate (limestone) may be used for detoxification (EPA, 1975a). Chlorine-active compounds such as sodium hypochlorite (household bleach) or calcium hypochlorite (bleaching powder, chlorinated lime) may also be used to detoxify organophosphate spills (EPA, 1975a). While ammonia compounds have also been suggested as alternate detoxicants for organophosphate spills, UNDER NO CIRCUMSTANCES SHOULD AMMONIA EVER BE COMBINED WITH A CHLORINE-ACTIVE COMPOUND (BLEACH) AS HIGHLY IRRITATING CHLORAMINE GAS MAY BE EVOLVED.
SMALL SPILL DECONTAMINATION Three cups of Arm & Hammer washing soda (sodium carbonate) or Arm & Hammer baking soda (sodium bicarbonate) may be combined with one-half cup of household bleach and added to a plastic bucket of water. The washing soda is more alkaline and may be more efficacious, if available. Wear rubber gloves, and use a respirator certified effective against toxic vapors. Several washes may be required for decontamination (EPA, 1978). Spilled liquid may first be adsorbed with soil, sweeping compound, sawdust, or dry sand and then both the adsorbed material and the floor decontaminated with one of the above solutions (EPA, 1975a). NOTE - Do NOT use a COMBINATION of BLEACH and ALKALI to DECONTAMINATE ACEPHATE or ACETYL ORGANOPHOSPHATE COMPOUNDS such as ORTHENE(R). Spills involving acephate organophosphates should be decontaminated by the following procedure - Isolate and ventilate the area; keep sources of fire away; wear rubber or neoprene gloves and overshoes; get fire-fighting equipment ready; contain any liquid spill around the edge and absorb with Zorb-All(R) or similar material; dispose of absorbed or dry material in disposable containers; scrub the spilled area with concentrated detergent such as TIDE(R), ALL(R) or similar product; reabsorb scrubbing liquid and dispose as above; dispose of cleaning materials and contaminated clothing; wash gloves, overshoes and shovel with concentrated detergent. Call the National Pesticide Telecommunications Network for further assistance at 1-800-858-7378 or on the web at http://nptn.orst.edu.
LARGE SPILL DECONTAMINATION Sprinkle or spray the area with a mixture of one gallon of sodium hypochlorite (bleach) mixed with one gallon of water. Then spread calcium hydroxide (hydrated or slaked lime) liberally over the area and allow to stand for at least one hour (Pesticide User's Guide, 1976). Wear rubber gloves, and use a respirator certified effective against toxic vapors. Several washes may be required for decontamination (EPA, 1978). Other decontamination methods may be recommended by manufacturers of specific agents. Check containers, labels, or product literature for possible instructions regarding spill decontamination. NOTE - Do NOT USE a COMBINATION of BLEACH and ALKALI to DECONTAMINATE ACEPHATE or ACETYL ORGANOPHOSPHATE COMPOUNDS such as ORTHENE(R). Spills involving acephate organophosphates should be decontaminated by the following procedure - Isolate and ventilate the area; keep sources of fire away; wear rubber or neoprene gloves and overshoes; get fire-fighting equipment ready; contain any liquid spill around the edge and absorb with Zorb-All(R) or similar material; dispose of absorbed or dry material in disposable containers; scrub the spilled area with concentrated detergent such as TIDE(R), ALL(R) or similar product; reabsorb scrubbing liquid and dispose as above; dispose of cleaning materials and contaminated clothing; wash gloves, overshoes and shovel with concentrated detergent.
FURTHER CONTACT INFORMATION For further information contact the National Pesticide Telecommunications Network at 1-800-858-7378 or contact on the web at http://nptn.orst.edu. Disposal of large quantities or contamination of large areas may be regulated by various governmental agencies and reporting may be required. For small pesticide spills or for further information call the pesticide manufacturer or the National Pesticide Information Center (NPIC) at 1-800-858-7378. The National Response Center (NRC) is the federal point of contact for reporting of spills and can be reached at 1-800-424-8802. For those without 800 access, contact 202-267-2675. CHEMTREC can provide technical and hazardous materials information and can be reached at 1-800-424-9300 in the US; or 703-527-3887 outside the US.
ANTIDOTES
-RANGE OF TOXICITY
MINIMUM LETHAL EXPOSURE
One man died after drinking approximately 200 milliliters of an unknown formulation of dimethoate, but a woman survived an entire 250-milliliter bottle of 20% concentration after aggressive emergency treatment (Hayes, 1982). The actual lethal dose of an organophosphate can vary widely and depends strongly on the route and rate of exposure and on the aggressiveness of the treatment used, as well as on pre-existing conditions in the individual.
MAXIMUM TOLERATED EXPOSURE
The lowest published toxic dose in man has been reported to range from 286 to 300 milligrams/kilogram by the oral route. Sensory effects, fasciculations, bradycardia, hypotension, and coma occurred (RTECS , 1988). Children may be more sensitive to organophosphates than adults (Zwiener & Ginsburg, 1988). An oral dose of 18 milligrams/day (approximately 0.26 milligram/kilogram/day) for 21 days did not inhibit cholinesterase in a human volunteer. An oral dose of 2.5 milligrams/day for 4 weeks had no effect in 20 human volunteers (Sanderson & Edson, 1964). Inhibition of cholinesterase was apparent from oral doses of 10 to 30 milligrams/day for 20 to 39 days, and doses as high as 60 milligrams/day produced no apparent clinical effects (Hayes, 1982). In general, the likelihood of poisoning varies with the inherent toxicity of the insecticide, but serious poisonings and deaths have occurred following environmental exposures to compounds presumed to have relatively low toxic potential (Baker et al, 1978; Dunphy et al, 1980).
The World Health Organization (WHO) has classified dimethoate, technical grade, as moderately hazardous (class II) as a pesticide (World Health Organization, 2006).
In a team of 12 men spraying and mixing dimethoate for 12 days over a 2-week period in the Sudan, whole blood cholinesterase was not depressed relative to pre-exposure levels. They had not been spraying for 2 weeks prior to the first cholinesterase determination. Greatest exposure occurred on the lower leg (approximately 1 microgram/square centimeter). Total calculated dermal exposure per day ranged from 176 to 8,100 micrograms/square centimeter, and respiratory exposure was 5 to 29 micrograms/day. Exposures were estimated by gas chromatography of benzene extracts from cellulose pads worn at various places on the clothing and body. Under these conditions of exposure, the applicators did not exhibit signs of organophosphate poisoning (Copplestone et al, 1976). While results of field studies are necessarily subject to some variability, this study did use concurrent controls of unexposed persons (the two field supervisors) and also corrected for recovery of the dimethoate from the sampling pads. The latter is especially important because of the relative lability of dimethoate.
Six workers were monitored for dermal and respiratory exposure to dimethoate during spraying of tomatoes in a green house. The mean dermal exposure was 914 mg/day and the mean respiratory exposure was 17 mg/day. These exposures resulted in a 37.1 percent reduction in plasma cholinesterase in the workmen, a value which exceeds the limits set by WHO (Aljaghbir et al, 1992).
No cholinesterase inhibition occurred in rats given a cumulative dose of 0.6 milligram/kilogram/day of dimethoate; the no-effect dose for guinea pigs was 4 milligrams/kilogram/day. No inhibition was seen in rats given 0.5 milligram/kilogram/day in the diet. Cholinesterase inhibition was the only effect seen in rats given 5 milligrams/kilogram/day in the diet (Sanderson & Edson, 1964). The no-effect dietary dose in rats has been reported to be 1 to 32 ppm (Hayes, 1982). The no-effect dietary dose for inhibition of erythrocyte and plasma cholinesterase in dogs was 10 and 50 ppm respectively (Hayes, 1982).
- Carcinogenicity Ratings for CAS60-51-5 :
ACGIH (American Conference of Governmental Industrial Hygienists, 2010): Not Listed EPA (U.S. Environmental Protection Agency, 2011): Not Assessed under the IRIS program. ; Listed as: Dimethoate IARC (International Agency for Research on Cancer (IARC), 2016; International Agency for Research on Cancer, 2015; IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, 2010; IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, 2010a; IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, 2008; IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, 2007; IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, 2006; IARC, 2004): Not Listed NIOSH (National Institute for Occupational Safety and Health, 2007): Not Listed MAK (DFG, 2002): Not Listed NTP (U.S. Department of Health and Human Services, Public Health Service, National Toxicology Project ): Not Listed
TOXICITY AND RISK ASSESSMENT VALUES
- EPA Risk Assessment Values for CAS60-51-5 (U.S. Environmental Protection Agency, 2011):
Oral: Slope Factor: RfD: 2x10(-4) mg/kg-day
Inhalation: Drinking Water:
References: RTECS, 1991 Budavari & O'Neil, 1989; Hayes, 1982 HSDB, 1991 LD50- (ORAL)CAT: LD50- (ORAL)CHICKEN: LD50- (ORAL)DOG: LD50- (INTRAPERITONEAL)GUINEA_PIG: LD50- (ORAL)GUINEA_PIG: LD50- (INTRAPERITONEAL)HAMSTER: LD50- (ORAL)HAMSTER: LD50- (SUBCUTANEOUS)HAMSTER: LD50- (ORAL)HUMAN: LD50- (INTRAPERITONEAL)MOUSE: LD50- (ORAL)MOUSE: LD50- (SUBCUTANEOUS)MOUSE: LD50- (ORAL)RABBIT: LD50- (SKIN)RABBIT: LD50- (INTRAPERITONEAL)RAT: LD50- (INTRAVENOUS)RAT: LD50- (ORAL)RAT: LD50- (SKIN)RAT: LD50- (SUBCUTANEOUS)RAT:
CALCULATIONS
-STANDARDS AND LABELS
WORKPLACE STANDARDS
- ACGIH TLV Values for CAS60-51-5 (American Conference of Governmental Industrial Hygienists, 2010):
- AIHA WEEL Values for CAS60-51-5 (AIHA, 2006):
- NIOSH REL and IDLH Values for CAS60-51-5 (National Institute for Occupational Safety and Health, 2007):
- OSHA PEL Values for CAS60-51-5 (U.S. Occupational Safety, and Health Administration (OSHA), 2010):
- OSHA List of Highly Hazardous Chemicals, Toxics, and Reactives for CAS60-51-5 (U.S. Occupational Safety and Health Administration, 2010):
ENVIRONMENTAL STANDARDS
- EPA CERCLA, Hazardous Substances and Reportable Quantities for CAS60-51-5 (U.S. Environmental Protection Agency, 2010):
Listed as: Phosphorodithioic acid, O,O-dimethyl S-[2(methylamino)-2-oxoethyl] ester Final Reportable Quantity, in pounds (kilograms): Additional Information: Listed as: Dimethoate Final Reportable Quantity, in pounds (kilograms): Additional Information:
- EPA CERCLA, Hazardous Substances and Reportable Quantities, Radionuclides for CAS60-51-5 (U.S. Environmental Protection Agency, 2010):
- EPA RCRA Hazardous Waste Number for CAS60-51-5 (U.S. Environmental Protection Agency, 2010b):
Listed as: Dimethoate P or U series number: P044 Footnote: Listed as: Phosphorodithioic acid, O,O-dimethyl S-[2-(methylamino)-2-oxoethyl] ester P or U series number: P044 Footnote: Editor's Note: The D, F, and K series waste numbers and Appendix VIII to Part 261 -- Hazardous Constituents were not included. Please refer to 40 CFR Part 261.
- EPA SARA Title III, Extremely Hazardous Substance List for CAS60-51-5 (U.S. Environmental Protection Agency, 2010):
Listed as: Dimethoate Reportable Quantity, in pounds: 10 Threshold Planning Quantity, in pounds: Note(s): Not Listed
- EPA SARA Title III, Community Right-to-Know for CAS60-51-5 (40 CFR 372.65, 2006; 40 CFR 372.28, 2006):
- DOT List of Marine Pollutants for CAS60-51-5 (49 CFR 172.101 - App. B, 2005):
- EPA TSCA Inventory for CAS60-51-5 (EPA, 2005):
SHIPPING REGULATIONS
- DOT -- Table of Hazardous Materials and Special Provisions (49 CFR 172.101, 2005):
- ICAO International Shipping Name (ICAO, 2002):
LABELS
- NFPA Hazard Ratings for CAS60-51-5 (NFPA, 2002):
-HANDLING AND STORAGE
SUMMARY
Patients poisoned by dermal exposure to organophosphate compounds should be treated by a medical team wearing rubber gloves and aprons. It may be necessary for medical personnel to wear respirators if the patient has been poisoned by exposure to high airborne concentrations. No leather items not fully covered by rubber or impervious plastic should be worn by the treatment team. The patient's clothing should be placed in a sealed plastic bag to prevent further contamination and disposed of as hazardous waste. Local authorities should be consulted regarding appropriate toxic waste disposal. Leather clothing items are extremely difficult to decontaminate, and often must be disposed of by incineration. If medical personnel are accidentally exposed, decontamination procedures as outlined in the DERMAL EXPOSURE section, should be followed.
STORAGE
Store in sealed original containers, in well-aired, fresh and dry storehouses or in shaded and possibly well-aired places (HSDB , 1991).
- ROOM/CABINET RECOMMENDATIONS
Chemical formulations must be stored above 45 degrees F, and temperature should not exceed 25 to 30 degrees C (HSDB , 1991). Storage areas must be located at suitable distance from inhabited buildings, animal shelters, and food stores; moreover, they must be inaccessible to unauthorized persons, children and domestic animals (HSDB , 1991).
-PERSONAL PROTECTION
SUMMARY
- RECOMMENDED PROTECTIVE CLOTHING - EMERGENCY RESPONSE GUIDEBOOK, GUIDE 152 (ERG, 2004)
Wear positive pressure self-contained breathing apparatus (SCBA). Wear chemical protective clothing that is specifically recommended by the manufacturer. It may provide little or no thermal protection. Structural firefighters' protective clothing provides limited protection in fire situations ONLY; it is not effective in spill situations where direct contact with the substance is possible.
- Wear full protective clothing when working in the vicinity of spills or leaks or when fighting fires (AAR, 1987).
- First responders, emergency medical, and emergency department personnel should take proper precautions (wear rubber gowns, rubber aprons, rubber gloves, etc) when treating patients with organophosphate poisoning to avoid contamination. Emesis containing organophosphates should be placed in closed impervious containers for proper disposal.
- DECONTAMINATION: Remove contaminated clothing. Wash the skin, including the hair, beneath the nails, groin, and umbilical area, three times.
A single washing with soap and water can remove up to 80 to 92 percent of an organophosphate on the skin if done immediately (Fredriksson, 1961). If delayed, the same procedure may remove only 50 to 70 percent. Following a soap and water wash, a second wash with 95 percent ethanol will leave only about a 5 to 10 percent organophosphate residue (Fredriksson, 1961). The best results of skin decontamination are achieved with a thorough soap and water wash, followed by a 95 percent ethanol wash, followed by a second soap and water wash (Fredriksson, 1961). Tincture of green soap contains 30 percent ethanol, and has been recommended for dermal decontamination of organophosphate exposures.
- LEATHER: Leather absorbs organophosphates and is extremely difficult to decontaminate. Rescuers should not wear leather items that are not completely covered by rubber or impervious plastic. Contaminated leather items may need to be disposed of by incineration.
RESPIRATORY PROTECTION
- Refer to "Recommendations for respirator selection" in the NIOSH Pocket Guide to Chemical Hazards on TOMES Plus(R) for respirator information.
PROTECTIVE CLOTHING
- CHEMICAL PROTECTIVE CLOTHING. Search results for CAS 60-51-5.
-PHYSICAL HAZARDS
FIRE HAZARD
Editor's Note: This material is not listed in the Emergency Response Guidebook. Based on the material's physical and chemical properties, toxicity, or chemical group, a guide has been assigned. For additional technical information, contact one of the emergency response telephone numbers listed under Public Safety Measures. POTENTIAL FIRE OR EXPLOSION HAZARDS - EMERGENCY RESPONSE GUIDEBOOK, GUIDE 152 (ERG, 2004) Combustible material: may burn but does not ignite readily. Containers may explode when heated. Runoff may pollute waterways. Substance may be transported in a molten form.
When heated to decomposition, dimethoate releases highly toxic fumes of oxides of carbon, nitrogen, phosphorus, and sulfur (Sax & Lewis, 1989).
- FLAMMABILITY CLASSIFICATION
- NFPA Flammability Rating for CAS60-51-5 (NFPA, 2002):
- FIRE CONTROL/EXTINGUISHING AGENTS
- SMALL FIRE PRECAUTIONS - EMERGENCY RESPONSE GUIDEBOOK, GUIDE 152 (ERG, 2004)
- LARGE FIRE PRECAUTIONS - EMERGENCY RESPONSE GUIDEBOOK, GUIDE 152 (ERG, 2004)
Water spray, fog or regular foam. Move containers from fire area if you can do it without risk. Dike fire control water for later disposal; do not scatter the material. Use water spray or fog; do not use straight streams.
- TANK OR CAR/TRAILER LOAD FIRE PRECAUTIONS - EMERGENCY RESPONSE GUIDEBOOK, GUIDE 152 (ERG, 2004)
Fight fire from maximum distance or use unmanned hose holders or monitor nozzles. Do not get water inside containers. Cool containers with flooding quantities of water until well after fire is out. Withdraw immediately in case of rising sound from venting safety devices or discoloration of tank. ALWAYS stay away from tanks engulfed in fire. For massive fire, use unmanned hose holders or monitor nozzles; if this is impossible, withdraw from area and let fire burn.
- NFPA Extinguishing Methods for CAS60-51-5 (NFPA, 2002):
- Choose an extinguishing agent suitable for fires in surrounding material (AAR, 1987).
- Water may be used in flooding quantities as fog (AAR, 1987).
When heated to decomposition, dimethoate releases highly toxic fumes of oxides of carbon, nitrogen, phosphorus, and sulfur (Sax & Lewis, 1989).
DUST/VAPOR HAZARD
- When heated to decomposition, dimethoate releases highly toxic fumes of oxides of carbon, nitrogen, phosphorus, and sulfur (Sax & Lewis, 1989).
REACTIVITY HAZARD
- When heated to decomposition, dimethoate releases highly toxic fumes of oxides of carbon, nitrogen, phosphorus, and sulfur (Sax & Lewis, 1989).
EVACUATION PROCEDURES
- Editor's Note: This material is not listed in the Table of Initial Isolation and Protective Action Distances.
- SPILL - PUBLIC SAFETY EVACUATION DISTANCES - EMERGENCY RESPONSE GUIDEBOOK, GUIDE 152 (ERG, 2004)
Increase, in the downwind direction, as necessary, the isolation distance of at least 50 meters (150 feet) for liquids and at least 25 meters (75 feet) for solids in all directions.
- FIRE - PUBLIC SAFETY EVACUATION DISTANCES - EMERGENCY RESPONSE GUIDEBOOK, GUIDE 152 (ERG, 2004)
If tank, rail car or tank truck is involved in a fire, ISOLATE for 800 meters (1/2 mile) in all directions; also, consider initial evacuation for 800 meters (1/2 mile) in all directions.
- PUBLIC SAFETY MEASURES - EMERGENCY RESPONSE GUIDEBOOK, GUIDE 152 (ERG, 2004)
CALL Emergency Response Telephone Number on Shipping Paper first. If Shipping Paper not available or no answer, refer to appropriate telephone number: MEXICO: SETIQ: 01-800-00-214-00 in the Mexican Republic; For calls originating in Mexico City and the Metropolitan Area: 5559-1588; For calls originating elsewhere, call: 011-52-555-559-1588.
CENACOM: 01-800-00-413-00 in the Mexican Republic; For calls originating in Mexico City and the Metropolitan Area: 5550-1496, 5550-1552, 5550-1485, or 5550-4885; For calls originating elsewhere, call: 011-52-555-550-1496, or 011-52-555-550-1552; 011-52-555-550-1485, or 011-52-555-550-4885.
ARGENTINA: CIQUIME: 0-800-222-2933 in the Republic of Argentina; For calls originating elsewhere, call: +54-11-4613-1100.
BRAZIL: PRÓ-QUÍMICA: 0-800-118270 (Toll-free in Brazil); For calls originating elsewhere, call: +55-11-232-1144 (Collect calls are accepted).
COLUMBIA: CISPROQUIM: 01-800-091-6012 in Colombia; For calls originating in Bogotá, Colombia, call: 288-6012; For calls originating elsewhere, call: 011-57-1-288-6012.
CANADA: UNITED STATES:
For additional details see the section entitled "WHO TO CALL FOR ASSISTANCE" under the ERG Instructions. As an immediate precautionary measure, isolate spill or leak area in all directions for at least 50 meters (150 feet) for liquids and at least 25 meters (75 feet) for solids. Keep unauthorized personnel away. Stay upwind. Keep out of low areas.
- Downwind evacuation should be considered if this material is involved in a fire or if a large discharge has occurred (AAR, 1987).
- AIHA ERPG Values for CAS60-51-5 (AIHA, 2006):
- DOE TEEL Values for CAS60-51-5 (U.S. Department of Energy, Office of Emergency Management, 2010):
Listed as Dimethoate TEEL-0 (units = mg/m3): 6 TEEL-1 (units = mg/m3): 15 TEEL-2 (units = mg/m3): 30 TEEL-3 (units = mg/m3): 30 Definitions: TEEL-0: The threshold concentration below which most people will experience no adverse health effects. TEEL-1: The airborne concentration (expressed as ppm [parts per million] or mg/m(3) [milligrams per cubic meter]) of a substance above which it is predicted that the general population, including susceptible individuals, could experience notable discomfort, irritation, or certain asymptomatic, nonsensory effects. However, these effects are not disabling and are transient and reversible upon cessation of exposure. TEEL-2: The airborne concentration (expressed as ppm or mg/m(3)) of a substance above which it is predicted that the general population, including susceptible individuals, could experience irreversible or other serious, long-lasting, adverse health effects or an impaired ability to escape. TEEL-3: The airborne concentration (expressed as ppm or mg/m(3)) of a substance above which it is predicted that the general population, including susceptible individuals, could experience life-threatening adverse health effects or death.
- AEGL Values for CAS60-51-5 (National Research Council, 2010; National Research Council, 2009; National Research Council, 2008; National Research Council, 2007; NRC, 2001; NRC, 2002; NRC, 2003; NRC, 2004; NRC, 2004; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2006; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2007; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2005; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2005; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2007; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2006; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2006; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2006; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2006; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2006; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2006; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2006; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2006; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2006; United States Environmental Protection Agency Office of Pollution Prevention and Toxics, 2006; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2006; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2007; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2007; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2008; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2008; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2007; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2008; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2007; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2008; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2007; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2009; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2009; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2009; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2009; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2009; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2009; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2009; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2009; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2009; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2009; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2009; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2008; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2008; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2008; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2008; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2008; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2008; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2008; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2009; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2008; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2008; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2008; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2009; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2008; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2008; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2008; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2008; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2008; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2008; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2008; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2007; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2006; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2006; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2006; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2007; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2007; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2007; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2007; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2007; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2005; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2005; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2005; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2005; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2005; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2005; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2005; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2005; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2007; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2005; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2006; 62 FR 58840, 1997; 65 FR 14186, 2000; 65 FR 39264, 2000; 65 FR 77866, 2000; 66 FR 21940, 2001; 67 FR 7164, 2002; 68 FR 42710, 2003; 69 FR 54144, 2004):
- NIOSH IDLH Values for CAS60-51-5 (National Institute for Occupational Safety and Health, 2007):
CONTAINMENT/WASTE TREATMENT OPTIONS
SPILL OR LEAK PRECAUTIONS - EMERGENCY RESPONSE GUIDEBOOK, GUIDE 152 (ERG, 2004) ELIMINATE all ignition sources (no smoking, flares, sparks or flames in immediate area). Do not touch damaged containers or spilled material unless wearing appropriate protective clothing. Stop leak if you can do it without risk. Prevent entry into waterways, sewers, basements or confined areas. Cover with plastic sheet to prevent spreading. Absorb or cover with dry earth, sand or other non-combustible material and transfer to containers. DO NOT GET WATER INSIDE CONTAINERS.
RECOMMENDED PROTECTIVE CLOTHING - EMERGENCY RESPONSE GUIDEBOOK, GUIDE 152 (ERG, 2004) Wear positive pressure self-contained breathing apparatus (SCBA). Wear chemical protective clothing that is specifically recommended by the manufacturer. It may provide little or no thermal protection. Structural firefighters' protective clothing provides limited protection in fire situations ONLY; it is not effective in spill situations where direct contact with the substance is possible.
DECONTAMINATION OF SPILLS A variety of methods have been described for organophosphate spill decontamination, most of which depend on changing the pH to promote hydrolysis to inactive phosphate diester compounds (EPA, 1978). The rate of hydrolysis depends on both the specific organophosphate compound involved and the increase in pH caused by the detoxicant used (EPA, 1978; EPA, 1975a). Treatment of the spilled material with alkaline substances such as sodium carbonate (soda ash), sodium bicarbonate (baking soda), calcium hydroxide (slaked or hydrated lime), calcium hydroxide (lime or lime water, when in dilute solutions), and calcium carbonate (limestone) may be used for detoxification (EPA, 1975b). Alternatively, the material can be inactivated with strong detergent (Ford, 1989). While ammonia compounds have also been suggested as alternate detoxicants for organophosphate spills, UNDER NO CIRCUMSTANCES SHOULD AMMONIA EVER BE COMBINED WITH A CHLORINE-ACTIVE COMPOUND (BLEACH) AS HIGHLY IRRITATING CHLORAMINE GAS MAY BE EVOLVED. Other decontamination methods may be recommended by manufacturers of specific agents. Check containers, labels, or product literature for possible instructions regarding decontamination of spills.
Disposal of large quantities or contamination of large areas may be regulated by various governmental agencies, and reporting may be required. Water spray may be used to reduce or knock down vapors (AAR, 1987).
Isolate and ventilate the area. Keep sources of fire away. Wear rubber or neoprene gloves and overshoes and an approved respirator. Get fire-fighting equipment ready. Contain any liquid spill around the edge and absorb with Zorb-All (R), soil, sweeping compound, sawdust, dry sand or similar material. Dispose of absorbed or dry material in disposable containers (Ford, 1989) EPA, 1975b). Scrub the spilled area with concentrated detergent such as TIDE(R), ALL(R), or similar material. Re-absorb scrubbing liquid and dispose as above (Ford, 1989). Several washes may be required for decontamination (EPA, 1978).
Isolate and ventilate the area. Keep sources of fire away. Wear rubber or neoprene gloves and overshoes and approved personal protection equipment. Get fire-fighting equipment ready (Ford, 1989). Treatment of the spilled material with alkaline substances such as sodium carbonate (soda ash), sodium bicarbonate (baking soda), calcium hydroxide (slaked or hydrated lime, lime or lime water when in dilute solutions), and calcium carbonate (crushed limestone) may be used for detoxification (EPA, 1975a). Contain any liquid spill around the edge and absorb with Zorb-All (R), soil, sweeping compound, sawdust, dry sand or similar material. Dispose of absorbed or dry material in disposable containers (Ford, 1989) EPA, 1975b). After the bulk of the material has been removed, further decontaminate spoiled surfaces with alkaline treatment as described above, or with concentrated alkaline detergent. Absorb and dispose of waste water as described above. Water spray may be used to reduce or knock down vapors (AAR, 1987). Disposal of large quantities or contamination of large areas may be regulated by various governmental agencies, and reporting may be required. Consult the local Emergency Response Committee for guidance.
-ENVIRONMENTAL HAZARD MANAGEMENT
POLLUTION HAZARD
- Release of dimethoate to the environment will result from its production and use as a contact and systemic insecticide. The USEPA has cancelled the registration of dust formulations of dimethoate and prohibits its application without the use of personal protective equipment (HSDB, 2003).
ENVIRONMENTAL FATE AND KINETICS
OTHER Terrestrial Fate: If dimethoate is released to the soil, it will not adsorb to the soil and will be subject to considerable leaching (HSDB , 1991). Terrestrial Fate: It should not be susceptible to hydrolysis in soils (HSDB , 1991). Terrestrial Fate: Biodegradation may be an important fate process with 77 percent degradation reported in clay loam soil in 2 weeks compared to 18 and 20 percent degradation in the same soil that had been autoclaved or irradiated (HSDB , 1991). Terrestrial Fate: Soil half-lives ranging from 2.5 to 16 days have been reported (HSDB , 1991). Aquatic Fate: If released to water, dimethoate will not be expected to sorb to sediment, to hydrolyze, or to bioconcentrate in aquatic organisms (HSDB , 1991). Aquatic Fate: Direct photolysis and evaporation from water are not expected to be important processes (HSDB , 1991). It may be subject to biodegradation based on a half-life of 8 weeks in raw river water (Eichelberger & Litchtenberg, 1971). Atmospheric Fate: If dimethoate is released to the atmosphere, it may be subject to oxidation (HSDB , 1991). Atmospheric Fate: The estimated vapor phase half-life in the atmosphere is 2.83 days as a result of H atom abstraction by photochemically produced hydroxyl radicals (HSDB , 1991).
ENVIRONMENTAL TOXICITY
- Published Values (HSDB , 1991)
1. LC50 GAMMARUS LACUSTRIS: 0.20 mg/l/96h 2. LC50 PTERONARCYS: 0.043 mg/l/96h 3. LC50 RAINBOW TROUT: 6.2 mg/l/96h 4. LC50 BLUEGILL: 6.0 mg/l/96h 5. LC50 JAPANESE QUAIL: 346 mg/l 5-day diet 6. LC50 RING-NECKED PHEASANT: 332 mg/l 5-day diet 7. LC50 MALLARD DUCK: 1011 mg/l in 5-day diet 8. LD50 (ORAL) REDWINGED BLACKBIRD: 6.60-17.8 mg/kg 9. LD50 (ORAL) STARLING: 31.6 mg/kg 10. LD50 (ORAL) PHEASANT: 15 mg/kg 11. LD50 (ORAL) SPARROW: 22 mg/kg 12. LD50 (ORAL) BLACKBIRD: 26 mg/kg 13. LC50 MOSQUITO FISH: 40-60 mg/l 14. LD50 HONEY BEE: 0.9 mcg/bee 15. LC50 RAINBOW TROUT: 58.0 mg/l/24h 16. LC50 CARP: 22.39 mg/l/168h 17. LD50 (ORAL) MALLARD DUCK (MALE): 41.7 mg/kg 18. LD50 (ORAL) MALLARD DUCK (FEMALE): 63.5 mg/kg
- The effect of dimethoate, sprayed on farmlands, was studied for several weeks on three species of endogenous birds. The birds studied were Savannah Sparrow, Song Sparrow, and America Finch. Sampled birds were treated with 0.24 grams of dimethoate per square meter of seeds given on the morning of the 16 days of the study. The results show the birds to be temporarily intoxicated, losing some of their motor skills. This is a dangerous condition, since it inhibits the ability of the birds to find food and render them more vulnerable to predators (Brunet & Cyr, 1992).
-PHYSICAL/CHEMICAL PROPERTIES
MOLECULAR WEIGHT
DESCRIPTION/PHYSICAL STATE
- Dimethoate occurs as colorless crystals with a camphor-like odor (Hayes, 1982).
VAPOR PRESSURE
- 8.5x10(-6) mmHg (at 25 degrees C) (Worthing & Walker, 1983)
- 1.1 mPa (at 25 degrees C) (Hartley & Kidd, 1987)
- Because of its low vapor pressure, the vapor hazard of dimethoate is minimal (Sanderson & Edson, 1964).
DENSITY
- OTHER TEMPERATURE AND/OR PRESSURE
SOLID: 1.277 g/cm(3) (at 65 degrees C) (Budavari, 1989) SOLID: 1.281 g/cm(3) (at 50 degrees C) (Hayes, 1982)
FREEZING/MELTING POINT
51-52.5 degrees C; 125 degrees F (Budavari, 1989; EPA, 1985) 45-47 degrees C; 113-117 degrees F (technical product) (EPA, 1985)
BOILING POINT
- 117 degrees C (at 0.1 mmHg) (Hartley & Kidd, 1987)
FLASH POINT
- 130-132 degrees C (Clayton & Clayton, 1982)
SOLUBILITY
very slightly soluble in water (Budavari, 1989) > 5000 mg/L (HSDB , 1991) 25,000 ppm (Kenaga, 1980) 2-3% (Spencer, 1982)
soluble in most organic solvents, except saturated hydrocarbons (Budavari, 1989) ACETONE: very soluble (Sunshine, 1969) AROMATIC HYDROCARBONS: slightly soluble (Sunshine, 1969) CHLOROFORM: very soluble (Sunshine, 1969) CYCLOHEXANONE: soluble (Spencer, 1982) DIETHYL ETHER: slightly soluble (Sunshine, 1969) ETHANOL: very soluble (Sunshine, 1969) HEXANE: slightly soluble (Spencer, 1982) METHANOL: soluble (Spencer, 1982) PETROLEUM ETHER: insoluble (Sunshine, 1969) XYLENE: slightly soluble (Spencer, 1982)
OCTANOL/WATER PARTITION COEFFICIENT
- log Kow = 0.05 (HSDB , 1991)
HENRY'S CONSTANT
- 1.0x10(-10) atm-m(3)/mol (Ehrenfeld et al, 1986)
SPECTRAL CONSTANTS
-REFERENCES
GENERAL BIBLIOGRAPHY- 40 CFR 372.28: Environmental Protection Agency - Toxic Chemical Release Reporting, Community Right-To-Know, Lower thresholds for chemicals of special concern. National Archives and Records Administration (NARA) and the Government Printing Office (GPO). Washington, DC. Final rules current as of Apr 3, 2006.
- 40 CFR 372.65: Environmental Protection Agency - Toxic Chemical Release Reporting, Community Right-To-Know, Chemicals and Chemical Categories to which this part applies. National Archives and Records Association (NARA) and the Government Printing Office (GPO), Washington, DC. Final rules current as of Apr 3, 2006.
- 49 CFR 172.101 - App. B: Department of Transportation - Table of Hazardous Materials, Appendix B: List of Marine Pollutants. National Archives and Records Administration (NARA) and the Government Printing Office (GPO), Washington, DC. Final rules current as of Aug 29, 2005.
- 49 CFR 172.101: Department of Transportation - Table of Hazardous Materials. National Archives and Records Administration (NARA) and the Government Printing Office (GPO), Washington, DC. Final rules current as of Aug 11, 2005.
- 62 FR 58840: Notice of the National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances - Proposed AEGL Values, Environmental Protection Agency, NAC/AEGL Committee. National Archives and Records Administration (NARA) and the Government Publishing Office (GPO), Washington, DC, 1997.
- 65 FR 14186: Notice of the National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances - Proposed AEGL Values, Environmental Protection Agency, NAC/AEGL Committee. National Archives and Records Administration (NARA) and the Government Publishing Office (GPO), Washington, DC, 2000.
- 65 FR 39264: Notice of the National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances - Proposed AEGL Values, Environmental Protection Agency, NAC/AEGL Committee. National Archives and Records Administration (NARA) and the Government Publishing Office (GPO), Washington, DC, 2000.
- 65 FR 77866: Notice of the National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances - Proposed AEGL Values, Environmental Protection Agency, NAC/AEGL Committee. National Archives and Records Administration (NARA) and the Government Publishing Office (GPO), Washington, DC, 2000.
- 66 FR 21940: Notice of the National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances - Proposed AEGL Values, Environmental Protection Agency, NAC/AEGL Committee. National Archives and Records Administration (NARA) and the Government Publishing Office (GPO), Washington, DC, 2001.
- 67 FR 7164: Notice of the National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances - Proposed AEGL Values, Environmental Protection Agency, NAC/AEGL Committee. National Archives and Records Administration (NARA) and the Government Publishing Office (GPO), Washington, DC, 2002.
- 68 FR 42710: Notice of the National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances - Proposed AEGL Values, Environmental Protection Agency, NAC/AEGL Committee. National Archives and Records Administration (NARA) and the Government Publishing Office (GPO), Washington, DC, 2003.
- 69 FR 54144: Notice of the National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances - Proposed AEGL Values, Environmental Protection Agency, NAC/AEGL Committee. National Archives and Records Administration (NARA) and the Government Publishing Office (GPO), Washington, DC, 2004.
- AIHA: 2006 Emergency Response Planning Guidelines and Workplace Environmental Exposure Level Guides Handbook, American Industrial Hygiene Association, Fairfax, VA, 2006.
- AMA Department of DrugsAMA Department of Drugs: AMA Evaluations Subscription, American Medical Association, Chicago, IL, 1992.
- Afanasiev VV, Biderman FM, & Sosutziu AM: A controlled trial of the use of carbohemoperfusion during the prehospital period for the treatment of lethal acute organophosphate poisoning (Abstract). Vet Human Toxicol 1992; 34:362.
- Afifi NA, Ramadan A, & el Aziz MI: Influence of dimethoate on testicular and epididymal organs, testosterone plasma level and their tissue residues in rats. Dtsch Tierarztl Wochenschr 1991; 98:419-423.
- Albright RK, Kram BW, & White RP: Malathion exposure associated with acute renal failure (Letter). JAMA 1983; 250:2469.
- Aldridge WM & Barnes JM: Esterase and neurotoxicity of some organophorus compounds. Biochem Pharmacol 1966; 15:549-554.
- Aljaghbir MT, Salhab AS, & Hamarsheh FA: Dermal and inhalation exposure to dimethoate. Arch Environ Contam Toxicol 1992; 22:358-361.
- Altintop L, Aygun D, Sahin H, et al: In acute organophosphate poisoning, the efficacy of hemoperfusion on clinical status and mortality. J Intensive Care Med 2005; 20(6):346-350.
- American Conference of Governmental Industrial Hygienists : ACGIH 2010 Threshold Limit Values (TLVs(R)) for Chemical Substances and Physical Agents and Biological Exposure Indices (BEIs(R)), American Conference of Governmental Industrial Hygienists, Cincinnati, OH, 2010.
- American Heart Association: 2005 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation 2005; 112(24 Suppl):IV 1-203. Available from URL: http://circ.ahajournals.org/content/vol112/24_suppl/. As accessed 12/14/2005.
- Amos WC Jr & Hall A: Malathion poisoning treated with protopam. Ann Intern Med 1965; 62:1013-1016.
- Anon: Organophosphate insecticide poisoning among siblings-Mississippi. MMWR 1984; 43:592-594.
- Antonijevic B & Stojiljkovic MP: Unequal efficacy of pyridinium oximes in acute organophosphate poisoning. Clin Med Res 2007; 5(1):71-82.
- Artigas A, Bernard GR, Carlet J, et al: The American-European consensus conference on ARDS, part 2: ventilatory, pharmacologic, supportive therapy, study design strategies, and issues related to recovery and remodeling.. Am J Respir Crit Care Med 1998; 157:1332-1347.
- Baker EL, Warren M, & Zack M: Epidemic malathion poisoning in Pakistan malaria workers. Lancet 1978; 1:31-34.
- Balali-Mood M & Shariat M: Treatment of organophosphate poisoning. experience of nerve agents and acute pesticide poisoning on the effects of oximes. J Physiol (Paris) 1998; 92(5-6):375-378.
- Balali-Mood M, Ayati MH, & li-Akbarian H: Effect of high doses of sodium bicarbonate in acute organophosphorous pesticide poisoning. Clin Toxicol (Phila) 2005; 43(6):571-574.
- Ballantyne B: Oximes and visual disturbances: A review and experimental findings (Abstract). Presented at the AACT/AAPCC/ABMT/CAPCC Annual Scientific Meeting, Vancouver, BC (Sept 27-Oct 2), 1987.
- Bar-Meir E, Schein O, Eisenkraft A, et al: Guidelines for treating cardiac manifestations of organophosphates poisoning with special emphasis on long QT and Torsades De Pointes. Crit Rev Toxicol 2007; 37(3):279-285.
- Barckow D, Neuhaus G, & Erdmann WD: Zur Behandlung der schweren Parathion (E 605)-Vergifting mit dem Cholinesterase-Reaktivator Obidoxim (Toxogonin). Arch Toxicol 1969; 24:133-146.
- Bardin PG & Van Eeden SF: Organophosphate poisoning: grading the severity and comparing treatment between atropine and glycopyrrolate. Crit Care Med 1990; 18:956-960.
- Bardin PG, Van Eeden SF, & Joubert JR: Intensive care management of acute organophosphate poisoning. A 7-year experience in the western Cape. S Afr Med J 1987; 72:593-597.
- Benson B, Tolo D, & McIntire M: Is the intermediate syndrome in organophosphate poisoning the result of insufficient oxime therapy?. J Toxicol Clin Toxicol 1992; 30:347-349.
- Betrosian A, Balla M, & Kafiri G: Multiple systems organ failure from organophosphate poisoning. Clin Toxicol 1995; 33:257-260.
- Bolgar G, Jojart G, & Turi J: Spontan szulessel vegzodott dimetoat (BI 58 EC) mergezett no terhessege. Orv Hetil 1985; 126:3213-3214.
- Borowitz SM: Prolonged organophosphate toxicity in a twenty-six-month-old child. J Pediatr 1988; 112:302-304.
- Brill DM, Maisel AS, & Prabhu R: Polymorphic ventricular tachycardia and other complex arrhythmias in organophosphate insecticide poisoning. J Electrocardiography 1984; 17:97-102.
- Brophy GM, Bell R, Claassen J, et al: Guidelines for the evaluation and management of status epilepticus. Neurocrit Care 2012; 17(1):3-23.
- Brower RG, Matthay AM, & Morris A: Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Eng J Med 2000; 342:1301-1308.
- Brown HW: Electroencephalographic changes and disturbance of brain function following human organophosphate exposure. Northwest Med 1971; 70:845-846.
- Brown SS: Personal Communication: Antidotes for Organophosphate Poisoning -- Analytical Aspects. Working paper for Joint IPCS/CEC Working Group, Newcastle-upon-Tyne, UK (13-17 March), 1989a.
- Brown SS: Personal Communication: Antidotes for Organophosphate Poisoning--Analytical Aspects. Working paper for Joint IPCS/CEC Working Group, Newcastle-upon-Tyne (13-17 March), 1989.
- Brunet R & Cyr A: The impact of dimethoate on rhythms of 3 granivorous bird species. Agric Ecosys Environ 1992; 41:327-336.
- Bryant DH: Asthma due to insecticide sensitivity. Aust NZ Med J 1985; 15:66-68.
- Buckley NA, Dawson AH, & Whyte IM: Organophosphate poisoning: peripheral vascular resistance - a measure of adequate atropinization. Clin Toxicol 1994; 32:61-68.
- Buckley NA, Eddleston M, & Szinicz L: Oximes for acute organophosphate pesticide poisoning. Cochrane Database Syst Rev 2005; 25(1):CD005085.
- Budavari S: The Merck Index, 11th ed, Merck & Co, Inc, Rahway, NJ, 1989.
- Burgess ED & Audette RJ: Limited effectiveness of charcoal hemoperfusion in malathion poisoning. Pharmacotherapy 1990; 10:410-412.
- Calesnick B, Christensen JA, & Richter M: Human toxicity of various oximes. Arch Environ Health 1967; 15:599-608.
- Caravati EM, Knight HH, & Linscott MS: Esophageal laceration and charcoal mediastinum complicating gastric lavage. J Emerg Med 2001; 20:273-276.
- Cataletto M: Respiratory Distress Syndrome, Acute(ARDS). In: Domino FJ, ed. The 5-Minute Clinical Consult 2012, 20th ed. Lippincott Williams & Wilkins, Philadelphia, PA, 2012.
- Chamberlain JM, Altieri MA, & Futterman C: A prospective, randomized study comparing intramuscular midazolam with intravenous diazepam for the treatment of seizures in children. Ped Emerg Care 1997; 13:92-94.
- Charlton NP , Lawrence DT , Brady WJ , et al: Termination of drug-induced torsades de pointes with overdrive pacing. Am J Emerg Med 2010; 28(1):95-102.
- Chatonnet A & Lockridge O: Comparison of butyrylcholinesterase and acetylcholinesterase. Biochem J 1989; 260:625-634.
- Cherian MA, Roshini C, Visalakshi J, et al: Biochemical and clinical profile after organophosphorus poisoning--a placebo-controlled trial using pralidoxime. J Assoc Physicians India 2005; 53:427-431.
- Cherniack MG: Organophosphorus esters and polyneuropathy. Ann Intern Med 1986; 104:264-266.
- Cherniack MG: Toxicological screening for organophosphorus-induced delayed neurotoxicity: complications in toxicity testing. Neurotoxicology 1988; 9:249-272.
- Chhabra ML & Sepaha GD: ECG and necropathy changes in organophosphorus compound (malathion) poisoning. Indian J Med Sci 1970; 24:424-429.
- Chin RF , Neville BG , Peckham C , et al: Treatment of community-onset, childhood convulsive status epilepticus: a prospective, population-based study. Lancet Neurol 2008; 7(8):696-703.
- Choonara IA & Rane A: Therapeutic drug monitoring of anticonvulsants state of the art. Clin Pharmacokinet 1990; 18:318-328.
- Chuang FR, Jang SW, & Lin JL: QTc prolongation indicates a poor prognosis in patients with organophosphate poisoning. Am J Emerg Med 1996; 14:451-453.
- Chyka PA, Seger D, Krenzelok EP, et al: Position paper: Single-dose activated charcoal. Clin Toxicol (Phila) 2005; 43(2):61-87.
- Clayton GD & Clayton FE: Patty's Industrial Hygiene and Toxicology, Vol 2C, Toxicology, 3rd ed, John Wiley & Sons, New York, NY, 1982, pp 4816-4818.
- Conyers RAJ & Goldsmith LE: A case of organophosphorus-induced psychosis. Med J Aust 1971; 1:27-29.
- Copplestone JP, Fakhri ZI, & Miles JW: Exposure to pesticides in agriculture: a survey of spraymen using dimethoate in the Sudan. Bull World Health Org 1976; 54:217-223.
- Corvino TF , Nahata MC , Angelos MG , et al: Availability, stability, and sterility of pralidoxime for mass casualty use. Ann Emerg Med 2006; 47(3):272-277.
- Courtney KD, Andrews JE, & Springer J: Teratogenic evaluation of the pesticides baygon, carbofuran, dimethoate and EPN. J Environ Sci Health 1985; B20:373-406.
- Coye MJ, Barnett PG, & Midtling JE: Clinical confirmation of organophosphate poisoning by serial cholinesterase analyses. Arch Intern Med 1987; 147:438-442.
- Coye MJ, Barnett PG, & Midtling JE: Clinical confirmation of organophosphate poisoning of agricultural workers. Am J Ind Med 1986; 10:399-409.
- Crispen C, Kempf J, & Greydanus DE: Intussusception as a possible complication of organophosphate overdose and/or treatment. Clin Pediatr 1985; 24:140.
- Curtes JP, Develay P, & Hubert JP: Late peripheral neuropathy due to an acute voluntary intoxication by organophosphate compounds. Clin Toxicol 1981; 18:1453-1462.
- DFG: List of MAK and BAT Values 2002, Report No. 38, Deutsche Forschungsgemeinschaft, Commission for the Investigation of Health Hazards of Chemical Compounds in the Work Area, Wiley-VCH, Weinheim, Federal Republic of Germany, 2002.
- Dagli AJ & Shaikh WA: Pancreatic involvement in malathion-anticholinesterase insecticide intoxication: a study of 75 cases. Br J Clin Pract 1983; 37:270-272.
- Daniels P & LePard A: Organophosphates: the pervasive poison. JEMS 1991; 16:76-79.
- Davies JE, Barquet AB, & Freed VH: Human pesticide poisoning by fat soluble organophosphate insecticide. Arch Environ Health 1975; 30:608.
- De Bleecker J, Van den Neucker K, & Colardyn F: Intermediate syndrome in organophosphorus poisoning: a prospective study. Crit Care Med 1993; 21:1706-1711.
- De Bleecker J, Van De Neucker K, & Willems J: The intermediate syndrome in organophosphate poisoning: presentation of a case and review of the literature. Clin Toxicol 1992; 30:321-329.
- De Kort WL, Kiestra SH, & Sangster B: The use of atropine and oximes in organophosphate intoxications: a modified approach. Clin Toxicol 1988; 26:199-208.
- Degraeve N & Moutschen J: Genotoxicity of an organophosphorus insecticide, dimethoate, in the mouse. Mutat Res 1983; 119:331-337.
- Degraeve N, Chollet MC, & Moutschen J: Evaluation of the mutagenic potential of four commercial mixtures of insecticides. Food Chem Toxicol 1984; 22:683-687.
- Dille JE & Smith PW: Central nervous system effects of chronic exposure to organophosphate insecticides. Aerospace Med 1964; 35:474-478.
- Dixon EM: Dilatation of the pupils in parathion poisoning. JAMA 1957; 163:444-445.
- Done AK: The great equalizers? II. anticholinesterases. Emerg Med 1979; 173-175.
- Dressel TD, Goodale RL, & Arneson MA: Pancreatitis as a complication of anticholinesterase insecticide intoxication. Ann Surg 1979; 189:199-204.
- Drew BJ, Ackerman MJ, Funk M, et al: Prevention of torsade de pointes in hospital settings: a scientific statement from the American Heart Association and the American College of Cardiology Foundation. J Am Coll Cardiol 2010; 55(9):934-947.
- Dunphy J, Kesselbrenner M, & Stevens A: Pesticide poisoning in an infant-California. MMWR 1980; 29:254-255.
- Durham WF & Hayes WJ: Organic phosphorous poisoning and its therapy. Arch Environ Health 1962; 5:27-53.
- EPA: EPA chemical profile on dimethoate, Environmental Protection Agency, Washington, DC, 1985.
- EPA: Guidelines for the Disposal of Small Quantities of Unused Pesticides (EPA-670/2-75-057), Environmental Protection Agency, Washington, DC, 1975a, pp 315-330.
- EPA: Handbook for Pesticide Disposal by Common Chemical Methods (SW-112c), Environmental Protection Agency, Washington, DC, 1975, pp 64-66.
- EPA: Identification and Description of Chemical Deactivation/Detoxification Methods for the Safe Disposal of Selected Pesticides (SW-156c), Environmental Protection Agency, Washington, DC, 1978, pp 44-88.
- EPA: Search results for Toxic Substances Control Act (TSCA) Inventory Chemicals. US Environmental Protection Agency, Substance Registry System, U.S. EPA's Office of Pollution Prevention and Toxics. Washington, DC. 2005. Available from URL: http://www.epa.gov/srs/.
- ERG: Emergency Response Guidebook. A Guidebook for First Responders During the Initial Phase of a Dangerous Goods/Hazardous Materials Incident, U.S. Department of Transportation, Research and Special Programs Administration, Washington, DC, 2004.
- Eddleston M, Buckley NA, Eyer P, et al: Management of acute organophosphorus pesticide poisoning. Lancet 2008; 371(9612):597-607.
- Eddleston M, Szinicz L, & Eyer P: Oximes in acute organophosphorus pesticide poisoning: a systemiatic review. Q J Med 2002; 95:275-283.
- Edson EF, Jones KH, & Watson WA: Safety of dimethoate insecticide. Br Med J 1967; 4:554-555.
- Ehrenfeld JR, Ong J, & Farino W: Controlling Volatile Emissions at Hazardous Waste Sites, Noyes Publications, Park Ridge, NJ, 1986, pp 393-401.
- Elliot CG, Colby TV, & Kelly TM: Charcoal lung. Bronchiolitis obliterans after aspiration of activated charcoal. Chest 1989; 96:672-674.
- Ellman GL, Courtney KD, & Andres V: A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 1961; 7:88-95.
- FDA: Poison treatment drug product for over-the-counter human use; tentative final monograph. FDA: Fed Register 1985; 50:2244-2262.
- Farrar HC, Wells TG, & Kearns GL: Use of continuous infusion of pralidoxime for treatment of organophosphate poisoning in children. J Pediatr 1990; 116:658-661.
- Finkelstein Y, Kushnir A, Raikhlin-Eisenkraft B, et al: Antidotal therapy of severe acute organophosphate poisoning: a multihospital study. Neurotoxicol Teratol 1989; 11(6):593-596.
- Finkelstein Y, Wolff M, & Biegon A: Brain acetylcholinesterase after acute parathion poisoning: a comparative quantitative histochemical analysis post mortem. Ann Neurol 1988; 24:252-257.
- Ford JE: Personal communication, Chevron Environmental Health Center, Inc, Richmond, CA, 1989.
- Ford JE: Personal communication. Chevron Environmental Health Center, Inc, 1989.
- Francois J & Verbraeken H: Glaucome aigu apres intoxication par un ester organo-phosphatique. Bull Soc Belge Ophthalmol 1977; 176:19-22.
- Fredriksson T: Percutaneous absorption of parathion and paraoxon. Arch Environ Health 1961; 3:67-70.
- Gallagher K, Kearney T, & Mangione A: A case report of organophosphate (OP) poisoning supporting the use of pralidoxime (2-PAM) by continuous IV infusion (abstract 102). Vet Hum Toxicol 1989; 31:355.
- Ganendran A: Organophosphate insecticide poisoning and its management. Anaesth Intens Care 1974; 4:361-368.
- Geetanjali D, Rita P, & Reddy PP: Effect of ascorbic acid on the detoxification of the insecticide dimethoate in the bone marrow erythrocytes of mice. Food Chem Toxicol 1993; 31:435-437.
- Gerkin R & Curry S: Persistently elevated plasma insecticide levels in severe methylparathion poisoning (Abstract). Vet Human Toxicol 1987; 29:483.
- Gershon S & Shaw FH: Psychiatric sequelae of chronic exposure to organophosphorus insecticides. Lancet 1961; 1:1371-1374.
- Gibel W, Lohs K, & Wildner GP: Experimental study on carcinogenic, hematotoxic, and hepatotoxic activity of phosphor-organic pesticides. Arch Geschwulstforsch 1973; 41:311-328.
- Golej J, Boigner H, Burda G, et al: Severe respiratory failure following charcoal application in a toddler. Resuscitation 2001; 49:315-318.
- Golsousidis H & Kokkas V: Use of 19,590 mg of atropine during 24 days of treatment, after a case of unusually severe parathion poisoning. Human Toxicol 1985; 4:339-340.
- Gordon JE & Shy CM: Agricultural chemical use and congenital cleft lip and/or palate. Arch Environ Health 1981; 36:213-220.
- Graff GR, Stark J, & Berkenbosch JW: Chronic lung disease after activated charcoal aspiration. Pediatrics 2002; 109:959-961.
- Grmec S, Mally S, & Klemen P: Glasgow Coma Scale Score and QTc interval in the prognosis of organophosphate poisoning. Acad Emerg Med 2004; 11(9):925-930.
- Grob D & Garlick WL: The toxic effects in man of the anticholinesterase insecticide parathion. Bull Johns Hopkins Hosp 1950; 87:106-129.
- Grob D & Johns RJ: Use of oximes in the treatment of intoxication by anticholinesterase compounds in normal subjects. Am J Med 1958; 24:497.
- Gupta RC: Acute malathion toxicosis and related enzymatic alterations in Bubalus bubalis: antidotal treatment with atropine, 2-PAM, and diazepam. J Toxicol Environ Health 1984; 14:291-303.
- Guven M, Sungur M, & Eser B: The effect of plasmapheresis on plasma cholinesterase levels in a patient with organophosphate poisoning. Human Experiment Toxicol 2004a; 23:365-368.
- Guven M, Sungur M, Eser B, et al: The effects of fresh frozen plasma on cholinesterase levels and outcomes in patients with organophosphate poisoning. J Toxicol Clin Toxicol 2004; 42(5):617-623.
- HEW: US Department of Health, Education and Welfare: Criteria for a Recommended Standard. Occupational exposure to parathion, US Government Printing Office, Washington, DC, 1976, pp 91.
- HSDB : Hazardous Substances Data Bank. National Library of Medicine. Bethesda, MD (Internet Version). Edition expires 1991; provided by Truven Health Analytics Inc., Greenwood Village, CO.
- HSDB : Hazardous Substances Data Bank. National Library of Medicine. Bethesda, MD (Internet Version). Edition expires Jul/31/1996; provided by Truven Health Analytics Inc., Greenwood Village, CO.
- Haas CF: Mechanical ventilation with lung protective strategies: what works?. Crit Care Clin 2011; 27(3):469-486.
- Haddad LM: Organophosphate poisoning-intermediate syndrome?. J Toxicol Clin Toxicol 1992; 30:331-332.
- Haddad LM: Organophosphates and other insecticides In: Haddad LM: Haddad LM, Winchester JF. Clinical management of poisoning and drug overdose, 2nd. W.B. Saunders Company, Philadelphia, 1990, pp 1076-87.
- Hall JG, Palliser PD, & Clarren SK: Congenital hypothalamic hamartoblastoma, hypopituitarism, imperforate anus, and postaxial polydactyly--a new syndrome? Part I: Clinical, causal and pathogenetic considerations. Am J Med Genet 1980; 7:47-74.
- Hansel TT, Neighbour H, Erin EM, et al: Glycopyrrolate causes prolonged bronchoprotection and bronchodilatation in patients with asthma. Chest 2005; 128(4):1974-1979.
- Harris CR & Filandrinos D: Accidental administration of activated charcoal into the lung: aspiration by proxy. Ann Emerg Med 1993; 22:1470-1473.
- Hartley D & Kidd H: The Agrochemicals Handbook, 2nd ed, The Royal Society of Chemistry, Nottingham, England, 1987.
- Hassan A: Biochem 1969; 18:2429-2438.
- Hayes WJ Jr & Laws ER Jr: Handbook of Pesticide Toxicology, Vol 2, Academic Press, Inc, San Diego, CA, 1991, pp 1015-1020.
- Hayes WJ Jr: Pesticides Studied in Man, Williams and Wilkins, Baltimore, MD, 1982, pp 284-435.
- Hayes WJ: Parathion poisoning and its treatment. JAMA 1965; 192:49-50.
- Heath DF: Organophosphorus Poisons, Pergamon Press, New York, NY, 1961, pp 170-174223-235.
- Hegenbarth MA & American Academy of Pediatrics Committee on Drugs: Preparing for pediatric emergencies: drugs to consider. Pediatrics 2008; 121(2):433-443.
- Hiraki K, Namba Y, & Taniguchi Y: Effect of 2-pyridine aldoxime methiodide (PAM) against parathion (Folidol) poisoning. Analysis of 39 cases. Naika Ryoiki 1958; 6:84.
- Hoda Q, Azfer MA, & Sinha SP: Modificatory effect of vitamin C and vitamin B-complex on meiotic inhibition induced by organophosphorous pesticide in mice Mus musculus. Internat J Vitam Nutr Res 1993; 63:48-51.
- Hodgson MJ & Parkinson DK: Diagnosis of organophosphate intoxication. N Engl J Med 1985; 313:329.
- Howland MA: Pralidoxime. In: Goldfrank LR, Flomenbaum N, Hoffman RS, et al, eds. Goldfrank's Toxicologic Emergencies, 9th ed. McGraw-Hill, New York, NY, 2011.
- Howland MA: Pralidoxime. In: Goldfrank LR, Flomenbaum N, Hoffman RS, et al, eds. Goldfrank's Toxicologic Emergencies. 8th ed., 8th ed. McGraw-Hill, New York, NY, 2006, pp -.
- Hui KS: Metabolic disturbances in organophosphate insecticide poisoning (Letter). Arch Pathol Lab Med 1983; 107:154.
- Hvidberg EF & Dam M: Clinical pharmacokinetics of anticonvulsants. Clin Pharmacokinet 1976; 1:161.
- IARC Working Group on the Evaluation of Carcinogenic Risks to Humans : IARC Monographs on the Evaluation of Carcinogenic Risks to Humans: 1,3-Butadiene, Ethylene Oxide and Vinyl Halides (Vinyl Fluoride, Vinyl Chloride and Vinyl Bromide), 97, International Agency for Research on Cancer, Lyon, France, 2008.
- IARC Working Group on the Evaluation of Carcinogenic Risks to Humans : IARC Monographs on the Evaluation of Carcinogenic Risks to Humans: Formaldehyde, 2-Butoxyethanol and 1-tert-Butoxypropan-2-ol, 88, International Agency for Research on Cancer, Lyon, France, 2006.
- IARC Working Group on the Evaluation of Carcinogenic Risks to Humans : IARC Monographs on the Evaluation of Carcinogenic Risks to Humans: Household Use of Solid Fuels and High-temperature Frying, 95, International Agency for Research on Cancer, Lyon, France, 2010a.
- IARC Working Group on the Evaluation of Carcinogenic Risks to Humans : IARC Monographs on the Evaluation of Carcinogenic Risks to Humans: Smokeless Tobacco and Some Tobacco-specific N-Nitrosamines, 89, International Agency for Research on Cancer, Lyon, France, 2007.
- IARC Working Group on the Evaluation of Carcinogenic Risks to Humans : IARC Monographs on the Evaluation of Carcinogenic Risks to Humans: Some Non-heterocyclic Polycyclic Aromatic Hydrocarbons and Some Related Exposures, 92, International Agency for Research on Cancer, Lyon, France, 2010.
- IARC: List of all agents, mixtures and exposures evaluated to date - IARC Monographs: Overall Evaluations of Carcinogenicity to Humans, Volumes 1-88, 1972-PRESENT. World Health Organization, International Agency for Research on Cancer. Lyon, FranceAvailable from URL: http://monographs.iarc.fr/monoeval/crthall.html. As accessed Oct 07, 2004.
- ICAO: Technical Instructions for the Safe Transport of Dangerous Goods by Air, 2003-2004. International Civil Aviation Organization, Montreal, Quebec, Canada, 2002.
- ILO: Encyclopaedia of Occupational Health and Safety, 3rd ed, International Labour Organization, Geneva, Switzerland, 1983, pp 1641.
- International Agency for Research on Cancer (IARC): IARC monographs on the evaluation of carcinogenic risks to humans: list of classifications, volumes 1-116. International Agency for Research on Cancer (IARC). Lyon, France. 2016. Available from URL: http://monographs.iarc.fr/ENG/Classification/latest_classif.php. As accessed 2016-08-24.
- International Agency for Research on Cancer: IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. World Health Organization. Geneva, Switzerland. 2015. Available from URL: http://monographs.iarc.fr/ENG/Classification/. As accessed 2015-08-06.
- Jager BV & Stagg GN: Toxicity of diacetyl monoxime and of pyridine-2-aldoxime methiodide in man. Bull John Hopkins Hosp 1958; 102:203.
- Jang SW, Lin JL, & Chuang FR: Electrocardiographic findings of organophosphorous intoxication in emergency department as predictors of prognosis: a retrospective analysis. Chang Keng: Hsueh-Chang Gung Med J 1995; 18:120-125.
- Johnson MK: Personal communication; Organophosphorus insecticides. Mechanisms of toxicity and clinical features, Working Paper for Joint IPCS/CEC Working Group, Newcastle-upon-Tyne, UK, 1989.
- Joshi UM & Thornburg JE: Interactions between cimetidine, methylparathion, and parathion. J Toxicol Environ Health 1986; 19:327-334.
- Joubert J & Joubert PH: Chorea and psychiatric changes in organophosphate poisoning. S Afr Med J 1988; 74:32-34.
- Jovanovic D, Maksimovic M, & Joksovic D: Oral forms of the oxime HI-6: a study of pharmacokinetics and tolerance after administration to healthy volunteers. Vet Human Toxicol 1990; 32:419-421.
- Jovanovic D: Pharmacokinetics of pralidoxime chloride. Arch Toxicol 1989; 63:416-418.
- Joy RM: Pesticides and Neurological Diseases, in: Ecobichon DJ & Joy RM (Eds), CRC Press, Inc, Boca Raton, FL, 1982, pp 126-132.
- Kamijo Y, Soma K, & Uchimiya H: A case of serious organophosphate poisoning treated by percutaneus cardiopulmonary support. Vet Human Toxicol 1999; 41(5):326-328.
- Karalliedde L, Senanayake N, & Ariaratnam A: Acute organophosphorus insecticide poisoning during pregnancy. Human Toxicol 1988; 7:363-364.
- Kassa J: Review of oximes in the antidotal treatment of poisoning by organophosphorous nerve agents. J Toxicol Clin Toxicol 2002; 40(6):803-816.
- Kenaga EE: Ecotoxicol and Environ Saf 1980; 4:26-38.
- Keren A, Tzivoni D, & Gavish D: Etiology, warning signs and therapy of torsade de pointes: a study of 10 patients. Circulation 1981; 64:1167-1174.
- Khan IA & Gowda RM: Novel therapeutics for treatment of long-QT syndrome and torsade de pointes. Int J Cardiol 2004; 95(1):1-6.
- Khera KS: Evaluation of dimethoate (Cygon 4E) for teratogenic activity in the cat. J Environ Pathol Toxicol 1979; 2:1283-1288.
- Kiss Z & Fazekas T: Organophosphate poisoning and complete heart block. J Royal Soc Med 1982; 73:138-139.
- Kleinman ME, Chameides L, Schexnayder SM, et al: 2010 American Heart Association guidelines for cardiopulmonary resuscitation and emergency cardiovascular care. Part 14: pediatric advanced life support. Circulation 2010; 122(18 Suppl.3):S876-S908.
- Klemmer HW, Reichert ER, & Yauger WL Jr: Five cases of intentional ingestion of 25% diazinon with treatment and recovery. Clin Toxicol 1978; 12:435-444.
- Kojima T, Yashiki M, & Ohtani M: Determination of dimethoate in blood and hemoperfusion cartridge following ingestion of formothion: a case study. Forens Sci Internat 1990; 48:79-88.
- Kollef MH & Schuster DP: The acute respiratory distress syndrome. N Engl J Med 1995; 332:27-37.
- Koppel C, Forycki Z, & Ibe K: Hemoperfusion in severe dimethoate poisoning. Intensive Care Med 1986; 12:110-112.
- Krieger RI & Thongsinthusak T: Metabolism and excretion of dimethoate following ingestion of overtolerance peas and a bolus dose. Food Chem Toxicol 1993; 31:177-182.
- Kurt TL: (Letter). Vet Human Toxicol 1988; 30:268-269.
- Kusic R, Jovanovic D, & Randjelovic S: HI-6 in man: Efficacy of the oxime in poisoning by organophosphorus insecticides. Human Exp Toxicol 1991; 10:113-118.
- Kventsel I, Berkovitch M, Reiss A, et al: Scopolamine treatment for severe extra-pyramidal signs following organophosphate (chlorpyrifos) ingestion. Clin Toxicol (Phila) 2005; 43(7):877-879.
- Lankisch PG, Muller CH, & Niederstadt H: Painless acute pancreatitis subsequent to anticholinesterase insecticide (Parathion) intoxication. Am J Gastroenterol 1990; 85:872-875.
- LeBlanc FN, Benson BE, & Gilg AB: A severe organophosphate poisoning requiring the use of an atropine drip. Clin Toxicol 1986; 24:69-76.
- Lerman Y & Gutman H: The use of respiratory stimulants in organophosphates' intoxication. Med Hypotheses 1988; 26:267-269.
- Levin HS & Rodnitzky RL: Behavioral effects of organophosphate pesticides in man. Clin Toxicol 1976; 9:391-405.
- Link MS, Berkow LC, Kudenchuk PJ, et al: Part 7: Adult Advanced Cardiovascular Life Support: 2015 American Heart Association Guidelines Update for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation 2015; 132(18 Suppl 2):S444-S464.
- Loddenkemper T & Goodkin HP: Treatment of Pediatric Status Epilepticus. Curr Treat Options Neurol 2011; Epub:Epub.
- Lopez-Carillo L & Lopez-Cervantes M: Effect of exposure to organophosphate pesticides on serum cholinesterase. Arch Environ Health 1993; 48:359-363.
- Lotti M: Treatment of acute organophosphate poisoning.. Med J Aust 1991; 154:51-5.
- Ludomirsky A, Klein HO, & Sarelli P: Q-T prolongation and polymorphous ("torsade de pointes") ventricular arrhythmias associated with organophosphorous insecticide poisoning. Am J Cardiol 1982; 49:1654-1658.
- Lund C & Monteagudo FSE: Therapeutic protocol No 1: Early management of organophosphate poisoning. S Afr Med J 1986; 69:6.
- Mahajna M, Quistad GB, & Casida JE: S-methylation of O,O-dialkyl phosphorodithioic acids - O,O,S-trimethyl phosphorodithioate and phosphorothiolate as metabolites of dimethoate. Chem Res Toxicol 1996; 9:1202-1206.
- Mandel JS, Berlinger NT, & Kay N: Organophosphate exposure inhibits non-specific esterase staining in human blood monocytes. Am J Ind Med 1989; 15:207-212.
- Manno EM: New management strategies in the treatment of status epilepticus. Mayo Clin Proc 2003; 78(4):508-518.
- Marsh WH, Vukov GA, & Conradi EC: Acute pancreatitis after cutaneous exposure to an organophosphate insecticide. Am J Gastroenterol 1988; 83:1158-1160.
- Martinez-Chuecos J, Jurado MDC, & Gimenez MP: Experience with hemoperfusion for organophosphate poisoning. Crit Care Med 1992; 20:1538-1543.
- Matsumiya N, Tanaka M, & Iwai M: Elevated amylase is related to the development of respiratory failure in organophosphate poisoning. Human Exp Toxicol 1996; 15:250-253.
- McDonough JH Jr, Jaax NK, & Crowley RA: Atropine and/or diazepam therapy protects against soman-induced neural and cardiac pathology. Fundam Appl Toxicol 1989; 13:256-276.
- Meller D, Fraser I, & Kryger M: Hyperglycemia in anticholinesterase poisoning. Canad Med Assoc J 1981; 124:745-748.
- Merrill DG & Mihn FG: Prolonged toxicity of organophosphate poisoning. Critical Care Med 1982; 10:550-551.
- Midtling JE, Barnett PG, & Coye MJ: Clinical management of field worker organophosphate poisoning. West J Med 1985; 142:514-518.
- Milby TH: Prevention and management of organophosphate poisoning. JAMA 1971; 216:2131-2133.
- Minton NA & Murray VSG: A review of organophosphate poisoning. Med Toxicol 1988; 3:350-375.
- Mohn G: 5-Methyltryptophan resistance mutations in Escherichia coli K-12. Mutagenic activity of monofunctional alkylating agents including organophosphorus insecticides. Mutat Res 1973; 20:7-15.
- Moore PG & James OF: Acute pancreatitis induced by acute organophosphate poisoning?. Postgrad Med J 1981; 57:660-662.
- Morgan DP: Recognition and Management of Pesticide Poisonings, 4th ed. EPA-540/9-88-0015, US Environmental Protection Agency, Government Printing Office, Washington, DC, 1989.
- Moriya M, Ohta T, & Watanabe K: Further mutagenicity studies on pesticides in bacterial reversion assay systems. Mutat Res 1983; 116:185-216.
- Muller FO & Hundt HKL: Chronic organophosphate poisoning. S Afr Med J 1980; 57:344-345.
- Munidasa UADD, Gawarammana IB, Kularatne SAM, et al: Survival pattern in patients with acute organophosphate poisoning receiving intensive care. J Toxicol Clin Toxicol 2004; 42(4):343-347.
- Murphy MR, Blick DW, & Dunn MA: Diazepam as a treatment for nerve agent poisoning in primates. Aviat Space Environ Med 1993; 64:110-115.
- NCI: Toxicology and Carcinogenesis Studies of Dimethoate, Report No 4; NIH Pub No 77. National Institutes of Health, 1977.
- NFPA: Fire Protection Guide to Hazardous Materials, 13th ed., National Fire Protection Association, Quincy, MA, 2002.
- NHLBI ARDS Network: Mechanical ventilation protocol summary. Massachusetts General Hospital. Boston, MA. 2008. Available from URL: http://www.ardsnet.org/system/files/6mlcardsmall_2008update_final_JULY2008.pdf. As accessed 2013-08-07.
- NRC: Acute Exposure Guideline Levels for Selected Airborne Chemicals - Volume 1, Subcommittee on Acute Exposure Guideline Levels, Committee on Toxicology, Board on Environmental Studies and Toxicology, Commission of Life Sciences, National Research Council. National Academy Press, Washington, DC, 2001.
- NRC: Acute Exposure Guideline Levels for Selected Airborne Chemicals - Volume 2, Subcommittee on Acute Exposure Guideline Levels, Committee on Toxicology, Board on Environmental Studies and Toxicology, Commission of Life Sciences, National Research Council. National Academy Press, Washington, DC, 2002.
- NRC: Acute Exposure Guideline Levels for Selected Airborne Chemicals - Volume 3, Subcommittee on Acute Exposure Guideline Levels, Committee on Toxicology, Board on Environmental Studies and Toxicology, Commission of Life Sciences, National Research Council. National Academy Press, Washington, DC, 2003.
- NRC: Acute Exposure Guideline Levels for Selected Airborne Chemicals - Volume 4, Subcommittee on Acute Exposure Guideline Levels, Committee on Toxicology, Board on Environmental Studies and Toxicology, Commission of Life Sciences, National Research Council. National Academy Press, Washington, DC, 2004.
- Namba T, Nolte CT, & Jackrel J: Poisoning due to organophosphate insecticides. Acute and chronic manifestations. Am J Med 1971a; 50:475-492.
- Namba T, Nolte CT, & Jackrel J: Poisoning due to organophosphate insecticides: acute and chronic manifestations. Am J Med 1971; 50:475-492.
- Namba T: Diagnosis and treatment of organophosphate insecticide poisoning. Med Times 1972; 100:100-126.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for 1,2,3-Trimethylbenzene (Proposed). United States Environmental Protection Agency. Washington, DC. 2006k. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d68a&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for 1,2,4-Trimethylbenzene (Proposed). United States Environmental Protection Agency. Washington, DC. 2006m. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d68a&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for 1,2-Butylene Oxide (Proposed). United States Environmental Protection Agency. Washington, DC. 2008d. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648083cdbb&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for 1,2-Dibromoethane (Proposed). United States Environmental Protection Agency. Washington, DC. 2007g. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064802796db&disposition=attachment&contentType=pdf. As accessed 2010-08-18.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for 1,3,5-Trimethylbenzene (Proposed). United States Environmental Protection Agency. Washington, DC. 2006l. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d68a&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for 2-Ethylhexyl Chloroformate (Proposed). United States Environmental Protection Agency. Washington, DC. 2007b. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648037904e&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Acrylonitrile (Proposed). United States Environmental Protection Agency. Washington, DC. 2007c. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648028e6a3&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Adamsite (Proposed). United States Environmental Protection Agency. Washington, DC. 2007h. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020fd29&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Agent BZ (3-quinuclidinyl benzilate) (Proposed). United States Environmental Protection Agency. Washington, DC. 2007f. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064803ad507&disposition=attachment&contentType=pdf. As accessed 2010-08-18.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Allyl Chloride (Proposed). United States Environmental Protection Agency. Washington, DC. 2008. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648039d9ee&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Aluminum Phosphide (Proposed). United States Environmental Protection Agency. Washington, DC. 2005b. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c5ed&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Arsenic Trioxide (Proposed). United States Environmental Protection Agency. Washington, DC. 2007m. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480220305&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Automotive Gasoline Unleaded (Proposed). United States Environmental Protection Agency. Washington, DC. 2009a. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a7cc17&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Biphenyl (Proposed). United States Environmental Protection Agency. Washington, DC. 2005j. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064801ea1b7&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Bis-Chloromethyl Ether (BCME) (Proposed). United States Environmental Protection Agency. Washington, DC. 2006n. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648022db11&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Boron Tribromide (Proposed). United States Environmental Protection Agency. Washington, DC. 2008a. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064803ae1d3&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Bromine Chloride (Proposed). United States Environmental Protection Agency. Washington, DC. 2007d. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648039732a&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Bromoacetone (Proposed). United States Environmental Protection Agency. Washington, DC. 2008e. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064809187bf&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Calcium Phosphide (Proposed). United States Environmental Protection Agency. Washington, DC. 2005d. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c5ed&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Carbonyl Fluoride (Proposed). United States Environmental Protection Agency. Washington, DC. 2008b. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064803ae328&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Carbonyl Sulfide (Proposed). United States Environmental Protection Agency. Washington, DC. 2007e. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648037ff26&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Chlorobenzene (Proposed). United States Environmental Protection Agency. Washington, DC. 2008c. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064803a52bb&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Cyanogen (Proposed). United States Environmental Protection Agency. Washington, DC. 2008f. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064809187fe&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Dimethyl Phosphite (Proposed). United States Environmental Protection Agency. Washington, DC. 2009. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a7cbf3&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Diphenylchloroarsine (Proposed). United States Environmental Protection Agency. Washington, DC. 2007l. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020fd29&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Ethyl Isocyanate (Proposed). United States Environmental Protection Agency. Washington, DC. 2008h. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648091884e&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Ethyl Phosphorodichloridate (Proposed). United States Environmental Protection Agency. Washington, DC. 2008i. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480920347&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Ethylbenzene (Proposed). United States Environmental Protection Agency. Washington, DC. 2008g. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064809203e7&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Ethyldichloroarsine (Proposed). United States Environmental Protection Agency. Washington, DC. 2007j. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020fd29&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Germane (Proposed). United States Environmental Protection Agency. Washington, DC. 2008j. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480963906&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Hexafluoropropylene (Proposed). United States Environmental Protection Agency. Washington, DC. 2006. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064801ea1f5&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Ketene (Proposed). United States Environmental Protection Agency. Washington, DC. 2007. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020ee7c&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Magnesium Aluminum Phosphide (Proposed). United States Environmental Protection Agency. Washington, DC. 2005h. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c5ed&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Magnesium Phosphide (Proposed). United States Environmental Protection Agency. Washington, DC. 2005g. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c5ed&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Malathion (Proposed). United States Environmental Protection Agency. Washington, DC. 2009k. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064809639df&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Mercury Vapor (Proposed). United States Environmental Protection Agency. Washington, DC. 2009b. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a8a087&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Methyl Isothiocyanate (Proposed). United States Environmental Protection Agency. Washington, DC. 2008k. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480963a03&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Methyl Parathion (Proposed). United States Environmental Protection Agency. Washington, DC. 2008l. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480963a57&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Methyl tertiary-butyl ether (Proposed). United States Environmental Protection Agency. Washington, DC. 2007a. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064802a4985&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Methylchlorosilane (Proposed). United States Environmental Protection Agency. Washington, DC. 2005. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c5f4&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Methyldichloroarsine (Proposed). United States Environmental Protection Agency. Washington, DC. 2007i. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020fd29&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Methyldichlorosilane (Proposed). United States Environmental Protection Agency. Washington, DC. 2005a. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c646&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Nitrogen Mustard (HN1 CAS Reg. No. 538-07-8) (Proposed). United States Environmental Protection Agency. Washington, DC. 2006a. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d6cb&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Nitrogen Mustard (HN2 CAS Reg. No. 51-75-2) (Proposed). United States Environmental Protection Agency. Washington, DC. 2006b. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d6cb&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Nitrogen Mustard (HN3 CAS Reg. No. 555-77-1) (Proposed). United States Environmental Protection Agency. Washington, DC. 2006c. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d6cb&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Nitrogen Tetroxide (Proposed). United States Environmental Protection Agency. Washington, DC. 2008n. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648091855b&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Nitrogen Trifluoride (Proposed). United States Environmental Protection Agency. Washington, DC. 2009l. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480963e0c&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Parathion (Proposed). United States Environmental Protection Agency. Washington, DC. 2008o. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480963e32&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Perchloryl Fluoride (Proposed). United States Environmental Protection Agency. Washington, DC. 2009c. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a7e268&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Perfluoroisobutylene (Proposed). United States Environmental Protection Agency. Washington, DC. 2009d. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a7e26a&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Phenyl Isocyanate (Proposed). United States Environmental Protection Agency. Washington, DC. 2008p. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648096dd58&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Phenyl Mercaptan (Proposed). United States Environmental Protection Agency. Washington, DC. 2006d. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020cc0c&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Phenyldichloroarsine (Proposed). United States Environmental Protection Agency. Washington, DC. 2007k. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020fd29&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Phorate (Proposed). United States Environmental Protection Agency. Washington, DC. 2008q. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648096dcc8&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Phosgene (Draft-Revised). United States Environmental Protection Agency. Washington, DC. 2009e. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a8a08a&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Phosgene Oxime (Proposed). United States Environmental Protection Agency. Washington, DC. 2009f. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a7e26d&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Potassium Cyanide (Proposed). United States Environmental Protection Agency. Washington, DC. 2009g. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a7cbb9&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Potassium Phosphide (Proposed). United States Environmental Protection Agency. Washington, DC. 2005c. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c5ed&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Propargyl Alcohol (Proposed). United States Environmental Protection Agency. Washington, DC. 2006e. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020ec91&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Selenium Hexafluoride (Proposed). United States Environmental Protection Agency. Washington, DC. 2006f. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020ec55&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Silane (Proposed). United States Environmental Protection Agency. Washington, DC. 2006g. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d523&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Sodium Cyanide (Proposed). United States Environmental Protection Agency. Washington, DC. 2009h. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a7cbb9&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Sodium Phosphide (Proposed). United States Environmental Protection Agency. Washington, DC. 2005i. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c5ed&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Strontium Phosphide (Proposed). United States Environmental Protection Agency. Washington, DC. 2005f. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c5ed&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Sulfuryl Chloride (Proposed). United States Environmental Protection Agency. Washington, DC. 2006h. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020ec7a&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Tear Gas (Proposed). United States Environmental Protection Agency. Washington, DC. 2008s. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648096e551&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Tellurium Hexafluoride (Proposed). United States Environmental Protection Agency. Washington, DC. 2009i. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a7e2a1&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Tert-Octyl Mercaptan (Proposed). United States Environmental Protection Agency. Washington, DC. 2008r. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648096e5c7&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Tetramethoxysilane (Proposed). United States Environmental Protection Agency. Washington, DC. 2006j. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d632&disposition=attachment&contentType=pdf. As accessed 2010-08-17.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Trimethoxysilane (Proposed). United States Environmental Protection Agency. Washington, DC. 2006i. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d632&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Trimethyl Phosphite (Proposed). United States Environmental Protection Agency. Washington, DC. 2009j. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a7d608&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Trimethylacetyl Chloride (Proposed). United States Environmental Protection Agency. Washington, DC. 2008t. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648096e5cc&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Zinc Phosphide (Proposed). United States Environmental Protection Agency. Washington, DC. 2005e. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c5ed&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for n-Butyl Isocyanate (Proposed). United States Environmental Protection Agency. Washington, DC. 2008m. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064808f9591&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Institute for Occupational Safety and Health: NIOSH Pocket Guide to Chemical Hazards, U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, Cincinnati, OH, 2007.
- National Research Council : Acute exposure guideline levels for selected airborne chemicals, 5, National Academies Press, Washington, DC, 2007.
- National Research Council: Acute exposure guideline levels for selected airborne chemicals, 6, National Academies Press, Washington, DC, 2008.
- National Research Council: Acute exposure guideline levels for selected airborne chemicals, 7, National Academies Press, Washington, DC, 2009.
- National Research Council: Acute exposure guideline levels for selected airborne chemicals, 8, National Academies Press, Washington, DC, 2010.
- Nehez M & Desi I: The effect of dimethoate on bone marrow cell chromosomes of rats in subchronic four-generation experiments. Ecotoxicol Environ Safety 1996; 33:103-109.
- Nehez M, Selypes A, & Scheufler H: Effect of dimethoate and O-demethyldimethoate on bone marrow cells of CFLP mice. Regul Toxicol Pharmacol 1983; 3:349-354.
- Nehez M, Toth C, & Desi I: The effect of dimethoate, dichlorvos, and parathion-methyl on bone marrow cell chromosomes of rats in subchronic experiments in vivo. Ecotoxicol Environ Saf 1994; 29:365-371.
- Neumar RW , Otto CW , Link MS , et al: Part 8: adult advanced cardiovascular life support: 2010 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation 2010; 122(18 Suppl 3):S729-S767.
- None Listed: Position paper: cathartics. J Toxicol Clin Toxicol 2004; 42(3):243-253.
- Nora JJ, Nora AH, & Sommerville RJ: Maternal exposure to potential teratogens. JAMA 1967; 202:1065-1069.
- Okonek S, Tonnis HJ, & Baldamus CA: Hemoperfusion versus hemodialysis in the management of patients severely poisoned by organophosphorus insecticides and bipyridyl herbicides. Artif Organs 1979; 3:341-345.
- Osorio AM, Ames RG, & Rosenberg J: Investigation of a fatality among parathion applicators in California. Am J Ind Med 1991; 20:533-546.
- PDR: Physicians' Desk Reference, Medical Economics Company, Inc, Oradell, NJ, 1989, pp 1330.
- Pajoumand A, Shadnia S, Rezaie A, et al: Benefits of magnesium sulfate in the management of acute human poisoning by organophosphorus insecticides. Human Experi Toxicol 2004; 23:565-569.
- Pambor M & Bloch Y: Dimethoat und Dithiocarbamat als berufliche Kontakallergene bei einer Agrotechnikerin. Dermatol Monatsschr 1985; 161:401-405.
- Pawar KS, Bhoite RR, Pillay CP, et al: Continuous pralidoxime infusion versus repeated bolus injection to treat organophosphorus pesticide poisoning: a randomised controlled trial. Lancet 2006; 368(9553):2136-2141.
- Peberdy MA , Callaway CW , Neumar RW , et al: 2010 American Heart Association guidelines for cardiopulmonary resuscitation and emergency cardiovascular care science. Part 9: post–cardiac arrest care. Circulation 2010; 122(18 Suppl 3):S768-S786.
- Peng A, Meng FQ, Sun LF, et al: Therapeutic efficacy of charcoal hemoperfusion in patients with acute severe dichlorvos poisoning. Acta Pharmacol Sin 2004; 25(1):15-21.
- Perera PM, Shahmy S, Gawarammana I, et al: Comparison of two commonly practiced atropinization regimens in acute organophosphorus and carbamate poisoning, doubling doses vs. ad hoc: a prospective observational study. Hum Exp Toxicol 2008; 27(6):513-518.
- Perez Guillermo F, Martinez Pretel CM, & Tarin Royo F: Prolonged suxamethonium-induced neuromuscular blockade associated with organophosphate poisoning. Br J Anaesth 1988; 61:233-236.
- Perold JG & Bezuidenhout DJJ: Chronic organophosphate poisoning. S Afr Med J 1980; 57:7-54.
- Perticone F, Ceravolo R, & Cuccurullo O: Prolonged magnesium sulfate infusion in the treatment of ventricular tachycardia in acquired long QT syndrome. Clin Drug Inverst 1997; 13:229-236.
- Pesticide User's Guide: Chapter IX, Decontamination, In: Pesticide User's Guide, Colorado State University, Fort Collins, CO, 1976, pp 11-16.
- Peter JV, Moran JL, & Graham P: Oxime therapy and outcomes in human organophosphate poisoning: an evaluation using meta-analytic techniques. Crit Care Med 2006; 34(2):502-510.
- Pollack MM, Dunbar BS, & Holbrook PR: Aspiration of activated charcoal and gastric contents. Ann Emerg Med 1981; 10:528-529.
- Product Information: ATROPEN(R) IM injection, atropine IM injection. Meridian Medical Technologies, Inc (per manufacturer), Columbia, MD, 2005.
- Product Information: ATNAA ANTIDOTE TREATMENT – NERVE AGENT, AUTO-INJECTOR intramuscular injection solution, atropine pralidoxime chloride intramuscular injection solution. Meridian Medical Technologies, Inc (per Manufacturer), Columbia, MD, 2002.
- Product Information: DUODOTE(TM) IM injection, atropine, pralidoxime chloride IM injection. Meridian Medical Technologies,Inc, Columbia, MD, 2006.
- Product Information: DUONEB(R) inhalation solution, ipratropium bromide albuterol sulfate inhalation solution. Dey, Napa, CA, 2005.
- Product Information: DuoDote(R) intramuscular injection solution, atropine and pralidoxime chloride intramuscular injection solution. Meridian Medical Technologies(TM), Inc. (per Manufacturer), Columbia, MD, 2011.
- Product Information: Isuprel(TM) intravenous injection, intramuscular injection, subcutaneous injection, intracardiac injection, isoproterenol HCl intravenous injection, intramuscular injection, subcutaneous injection, intracardiac injection. Hospira, Inc. (per FDA), Lake Forest, IL, 2013.
- Product Information: PRALIDOXIME CHLORIDE intramuscular injection, pralidoxime chloride intramuscular injection. Meridian Medical Technologies, Inc. (per DailyMed), Columbia, MD, 2003.
- Product Information: PROTOPAM(R) CHLORIDE injection, pralidoxime chloride injection. Baxter Healthcare Corporation, Deerfield, IL, 2006.
- Product Information: PROTOPAM(R) Chloride injection, pralidoxime chloride injection. Baxter Healthcare Corporation, Deerfield, IL, 2010.
- Product Information: ROBINUL(R) injection, glycopyrrolate injection. Baxter Healthcare Corporation, Deerfield, IL, 2006.
- Product Information: TOXOGONIN(R) IV injection, chloride obidoxime IV injection. Merck, Chile, 2007.
- Product Information: Toxogonin(R), obidoxime chloride. E Merck, Darmstadt, 1989.
- Product Information: diazepam IM, IV injection, diazepam IM, IV injection. Hospira, Inc (per Manufacturer), Lake Forest, IL, 2008.
- Product Information: diazepam autoinjector IM injection solution, diazepam autoinjector IM injection solution. Meridian Medical Technologies Inc, Columbia, MD, 2005.
- Product Information: dopamine hcl, 5% dextrose IV injection, dopamine hcl, 5% dextrose IV injection. Hospira,Inc, Lake Forest, IL, 2004.
- Product Information: lorazepam IM, IV injection, lorazepam IM, IV injection. Akorn, Inc, Lake Forest, IL, 2008.
- Product Information: magnesium sulfate heptahydrate IV, IM injection, solution, magnesium sulfate heptahydrate IV, IM injection, solution. Hospira, Inc. (per DailyMed), Lake Forest, IL, 2009.
- Product Information: norepinephrine bitartrate injection, norepinephrine bitartrate injection. Sicor Pharmaceuticals,Inc, Irvine, CA, 2005.
- Product Information: pralidoxime chloride intramuscular auto-imjector solution, pralidoxime chloride intramuscular auto-imjector solution. Meridian Medical Technologies, Inc. (per manufacturer), Columbia, MD, 2003.
- Prody CA, Dreyfus P, & Zamir R: De novo amplification within a "silent" human cholinesterase gene in a family subjected to prolonged exposure to organophosphorous insecticides. Proc Natl Acad Sci USA 1989; 86:690-694.
- RTECS : Registry of Toxic Effects of Chemical Substances. National Institute for Occupational Safety and Health. Cincinnati, OH (Internet Version). Edition expires 1988; provided by Truven Health Analytics Inc., Greenwood Village, CO.
- RTECS : Registry of Toxic Effects of Chemical Substances. National Institute for Occupational Safety and Health. Cincinnati, OH (Internet Version). Edition expires 1991; provided by Truven Health Analytics Inc., Greenwood Village, CO.
- RTECS : Registry of Toxic Effects of Chemical Substances. National Institute for Occupational Safety and Health. Cincinnati, OH (Internet Version). Edition expires Jul/31/1996; provided by Truven Health Analytics Inc., Greenwood Village, CO.
- Rahimi R, Nikfar S, & Abdollahi M: Increased morbidity and mortality in acute human organophosphate-poisoned patients treated by oximes: a meta-analysis of clinical trials. Hum Exp Toxicol 2006; 25(3):157-162.
- Rau NR, Nagaraj MV, Prakash PS, et al: Fatal pulmonary aspiration of oral activated charcoal. Br Med J 1988; 297:918-919.
- Reuber MD: Carcinogenicity of dimethoate. Environ Res 1984; 34:193-211.
- Rivett K & Potgieter PD: Diaphragmatic paralysis after organophosphate poisoning. S Afr Med J 1987; 72:881-882.
- Roberts D & Buckley NA: Alkalinisation for organophosphorus pesticide poisoning. Cochrane Database Syst Rev 2005; 25(1):CD004897.
- Roberts DM & Aaron CK: Management of acute organophosphorus pesticide poisoning. BMJ 2007; 334(7594):629-634.
- Rupa DS, Reddy PP, & Reddi OS: Frequencies of chromosomal aberrations in smokers exposed to pesticides in cotton fields. Mutat Res 1989; 222:37-41.
- Ryhanen R & Hanninen O: A simple method for the measurement of blood cholinesterase activities under field conditions. Gen Pharmacol 1987; 18:189-191.
- S Sweetman : Martindale: The Complete Drug Reference. Pharmaceutical Press. London, England (Internet Version). Edition expires 2002; provided by Truven Health Analytics Inc., Greenwood Village, CO.
- Salem MH: Effect of organophosphorus (dimethoate) and pyrethroid (deltamethrin) pesticides on semen characteristics in rabbits. J Environ Sci Health (B) 1988; 23:279-90.
- Sanderson DM & Edson EF: Toxicological properties of the organophosphorus insecticide dimethoate. Br J Ind Med 1964; 21:52-64.
- Savage EP, Keefe TJ, & Mounce LM: Chronic neurological sequelae of acute organophosphate pesticide poisoning. Arch Environ Health 1988; 43:38-45.
- Sax NI & Lewis RJ: Dangerous Properties of Industrial Materials, 7th ed, Van Nostrand Reinhold Co, New York, NY, 1989, pp 1405-1406.
- Sax NI & Lewis RJ: Hawley's Condensed Chemical Dictionary, 11th ed, Van Nostrand Reinhold Co, New York, NY, 1987, pp 408.
- Schardein JL: Chemically Induced Birth Defects, 2nd ed, Marcel Dekker, Inc, New York, NY, 1993.
- Schena D & Barba A: Erythema-multiforme-like contact dermatitis from dimethoate. Contact Dermatitis 1992; 27:116-117.
- Schexnayder S, Pames LP, & Kearns GL: The pharmacokinetics of Continuous infusion of pralidoxime in children with organophosphate poisoning. J Toxicol Clin Toxicol 1998; 36:549-555.
- Schroeckenstein DC, Bush RK, Chervinsky P, et al: Twelve-hour bronchodilation in asthma with a single aerosol dose of the anticholinergic compound glycopyrrolate. J Allergy Clin Immunol 1988; 82:115-119.
- Scott R, Besag FMC, & Neville BGR: Buccal midazolam and rectal diazepam for treatment of prolonged seizures in childhood and adolescence: a randomized trial. Lancet 1999; 353:623-626.
- Scott RJ: Repeated asystole following PAM in organophosphate self-poisoning. Anaesth Intensive Care 1986; 14:458-468.
- Selden BS & Curry SC: Prolonged succinylcholine-induced paralysis in organophosphate insecticide poisoning. Ann Emerg Med 1987; 16:215-217.
- Senanayake N & Karalliedde L: Neurotoxic effects of organophosphorus insecticides. N Engl J Med 1987; 316:761-763.
- Shahar E, Bentur Y, Bar-Joseph G, et al: Extrapyramidal parkinsonism complicating acute organophosphate insecticide poisoning. Pediatr Neurol 2005; 33(5):378-382.
- Shemesh I, Bourvin A, & Gold D: Chlorpyrifos poisoning treated with ipratropium and dantrolene: a case report. Clin Toxicol 1988; 26:495-498.
- Sidell FR & Borak J: Chemical warfare agents: II. Nerve agents. Ann Emerg Med 1992; 21:865-871.
- Sidell FR & Groff WA: The reactive ability of cholinesterase inhibited by VX and sarin in man. Toxicol Appl Pharmacol 1974; 27:241-252.
- Singh G, Avasthi G, & Khurana D: Neurophysiological monitoring of pharmacological manipulation in acute organophosphate (OP) poisoning. The effects of pralidoxime, magnesium sulfate and pancuronium. Electroencephalol Clin Neurophysiol 1998; 107:140-148.
- Singh S, Chaudhry D, & Behera D: Aggressive atropinisation and continuous pralidoxime (2-PAM) infusion in patients with severe organophosphae poisoning: experience of a northwest Indian hospital. Human Exp Toxicol 2001; 20:15-18.
- Smith DM: Organophosphorus poisoning from emergency use of a hand sprayer. Practitioner 1977; 218:877-883.
- Smith WM & Gallagher JJ: "Les torsades de pointes": an unusual ventricular arrhythmia. Ann Intern Med 1980; 93:578-584.
- Sofer S, Tal A, & Shahak E: Carbamate and organophosphate poisoning in early childhood. Pediatr Emerg Care 1989; 5:222-225.
- Sorensen K, Brodbeck U, & Rasmussen AG: Normal human serum contains two forms of acetylcholinesterase. Clin Chim Acta 1986; 158:1-6.
- Spencer EY: Guide to the Chemicals used in crop protection, 7th ed, Publication 1093, Research Institute, Agriculture: Information Canada, Ottawa, Canada, 1982.
- Sreenath TG, Gupta P, Sharma KK, et al: Lorazepam versus diazepam-phenytoin combination in the treatment of convulsive status epilepticus in children: A randomized controlled trial. Eur J Paediatr Neurol 2009; Epub:Epub.
- Srivastava MK & Raizada RB: Development effect of technical dimethoate in rats: maternal and fetal toxicity evaluation. Indian J Exp Biol 1996; 34:329-333.
- Stolbach A & Hoffman RS: Respiratory Principles. In: Nelson LS, Hoffman RS, Lewin NA, et al, eds. Goldfrank's Toxicologic Emergencies, 9th ed. McGraw Hill Medical, New York, NY, 2011.
- Sunshine I: CRC Handbook of Analytical Toxicology, The Chemical Rubber Co, Cleveland, OH, 1969.
- Tafuri J & Roberts J: Organophosphate poisoning. Ann Emerg Med 1987; 16:193-202.
- Tang X, Wang R, Xie H, et al: Repeated pulse intramuscular injection of pralidoxime chloride in severe acute organophosphorus pesticide poisoning. Am J Emerg Med 2013; 31(6):946-949.
- Thiermann H, Mast U, Klimmek R, et al: Cholinesterase status, pharmacokinetics and laboratory findings during obidoxime therapy in organophosphate poisoned patients. Hum Exp Toxicol 1997; 16(8):473-480.
- Thompson DF: Pralidoxime chloride continuous infusions. Ann Emerg Med 1987; 16:831-832.
- Tracey JA & Gallagher H: Use of glycopyrrolate and atropine in acute organophosphorus poisoning. Hum Exp Toxicol 1990; 9:99-100.
- Tripathi HL & Dewey WL: Comparison of the effects of diisopropylfluorophosphate, sarin, soman, and tabun on toxicity and brain acetylcholinesterase activity in mice. J Toxicol Environ Health 1989; 26:437-446.
- Tripathy NK: Genotoxicity of Rogor studied in the sex-linked recessive lethal test and wing, eye and female germ cell mosaic assays in Drosophila melanogaster. Mutat Res 1988; 206:351-360.
- U.S. Department of Energy, Office of Emergency Management: Protective Action Criteria (PAC) with AEGLs, ERPGs, & TEELs: Rev. 26 for chemicals of concern. U.S. Department of Energy, Office of Emergency Management. Washington, DC. 2010. Available from URL: http://www.hss.doe.gov/HealthSafety/WSHP/Chem_Safety/teel.html. As accessed 2011-06-27.
- U.S. Department of Health and Human Services, Public Health Service, National Toxicology Project : 11th Report on Carcinogens. U.S. Department of Health and Human Services, Public Health Service, National Toxicology Program. Washington, DC. 2005. Available from URL: http://ntp.niehs.nih.gov/INDEXA5E1.HTM?objectid=32BA9724-F1F6-975E-7FCE50709CB4C932. As accessed 2011-06-27.
- U.S. Environmental Protection Agency: Discarded commercial chemical products, off-specification species, container residues, and spill residues thereof. Environmental Protection Agency's (EPA) Resource Conservation and Recovery Act (RCRA); List of hazardous substances and reportable quantities 2010b; 40CFR(261.33, e-f):77-.
- U.S. Environmental Protection Agency: Integrated Risk Information System (IRIS). U.S. Environmental Protection Agency. Washington, DC. 2011. Available from URL: http://cfpub.epa.gov/ncea/iris/index.cfm?fuseaction=iris.showSubstanceList&list_type=date. As accessed 2011-06-21.
- U.S. Environmental Protection Agency: List of Radionuclides. U.S. Environmental Protection Agency. Washington, DC. 2010a. Available from URL: http://www.gpo.gov/fdsys/pkg/CFR-2010-title40-vol27/pdf/CFR-2010-title40-vol27-sec302-4.pdf. As accessed 2011-06-17.
- U.S. Environmental Protection Agency: List of hazardous substances and reportable quantities. U.S. Environmental Protection Agency. Washington, DC. 2010. Available from URL: http://www.gpo.gov/fdsys/pkg/CFR-2010-title40-vol27/pdf/CFR-2010-title40-vol27-sec302-4.pdf. As accessed 2011-06-17.
- U.S. Environmental Protection Agency: The list of extremely hazardous substances and their threshold planning quantities (CAS Number Order). U.S. Environmental Protection Agency. Washington, DC. 2010c. Available from URL: http://www.gpo.gov/fdsys/pkg/CFR-2010-title40-vol27/pdf/CFR-2010-title40-vol27-part355.pdf. As accessed 2011-06-17.
- U.S. Occupational Safety and Health Administration: Part 1910 - Occupational safety and health standards (continued) Occupational Safety, and Health Administration's (OSHA) list of highly hazardous chemicals, toxics and reactives. Subpart Z - toxic and hazardous substances. CFR 2010 2010; Vol6(SEC1910):7-.
- U.S. Occupational Safety, and Health Administration (OSHA): Process safety management of highly hazardous chemicals. 29 CFR 2010 2010; 29(1910.119):348-.
- United States Environmental Protection Agency Office of Pollution Prevention and Toxics: Acute Exposure Guideline Levels (AEGLs) for Vinyl Acetate (Proposed). United States Environmental Protection Agency. Washington, DC. 2006. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d6af&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
- Uzyurt G, Korfali G, & Sanin S: Intensive care management of organophosphorus intoxications (OPI) between 1963 and 1986 years (abstract), EAPCCT 15th Congress, Istanbul, Turkey, 1992.
- Vale JA, Kulig K, American Academy of Clinical Toxicology, et al: Position paper: Gastric lavage. J Toxicol Clin Toxicol 2004; 42:933-943.
- Vale JA: Position Statement: gastric lavage. American Academy of Clinical Toxicology; European Association of Poisons Centres and Clinical Toxicologists. J Toxicol Clin Toxicol 1997; 35:711-719.
- Van Bao T, Szabo I, & Ruzicska P: Chromosome aberrations in patients suffering acute organic phosphate insecticide intoxication. Humangenetik 1974; 24:33-57.
- Velazquez A: Indication for weak mutagenicity of the organophosphorus insecticide dimethoate in Drosophila melanogaster. Mutat Res 1986; 172:237-243.
- Vishwanath R & Jamil K: Mutagenic and genotoxic activities of certain organophosphorus compounds, using Ames Salmonella assay, with and without microsomal induction. Indian J Exp Biol 1986; 24:305-308.
- Von Kaulla K & Holmes JH: Changes following anticholinesterase exposures: blood coagulation studies. Arch Environ Health 1961; 2:168.
- Wadia RS & Amin RB: Fenthion poisoning (letter). J Pediatr 1988; 113:950.
- Wadia RS, Chitra S, & Amin RB: Electrophysiological studies in acute organophosphate poisoning. J Neurol Neurosurg Psychiatr 1987; 50:1442-1448.
- Ward SA, May DG, & Heath AJ: Carbaryl metabolism is inhibited by cimetidine in the isolated perfused rat liver and in man. J Toxicol Clin Toxicol 1988; 26:269-281.
- Weber M: The effect of dimethoate and vibrations on the fetal development of the rat. Anat Anz 1990; 170:221-226.
- Wedin GP, Pennente CM, & Sachdev SS: Renal involvement in organophosphate poisoning (Letter). JAMA 1984; 252:1408.
- Weizman Z & Sofer S: Acute pancreatitis in children with anticholinesterase insecticide intoxication. Pediatrics 1992; 90:204-206.
- Whorton MD & Obrinsky DL: Persistence of symptoms after mild to moderate acute organophosphate poisoning among 19 farm field workers. J Toxicol Environ Health 1983; 11:347-354.
- Willems JL: Poisoning by organophosphate insecticides: analysis of 53 human cases with regard to management and treatment. Acta Med Mil Belg 1981; 134:7-14.
- Wills JH: The measurement and significance of changes in the cholinesterase activities of erythrocytes and plasma in man and animals. CRC Crit Rev Toxicol 1972; 1:153-202.
- Willson DF, Truwit JD, Conaway MR, et al: The adult calfactant in acute respiratory distress syndrome (CARDS) trial. Chest 2015; 148(2):356-364.
- Wilson DF, Thomas NJ, Markovitz BP, et al: Effect of exogenous surfactant (calfactant) in pediatric acute lung injury. A randomized controlled trial. JAMA 2005; 293:470-476.
- Windler E, Dreyer M, & Runge M: Intoxikation mit dem organophosphat parathion (E-605) (German). Schweiz Med Wochenschr 1983; 113:861-862.
- World Health Organization: The WHO recommended classification of pesticides by hazard and guidelines to classification 2004. World Health Organization. Geneva, Switzerland. 2006. Available from URL: http://www.who.int/ipcs/publications/pesticides_hazard_rev_3.pdf. As accessed 2009-05-06.
- Worthing CR & Walker SB: Pesticide Manual - A World Compendium, 7th ed, The Lavenham Press Limited, Suffolk, Great Britain, 1983, pp 205.
- Wren C, Carson PHM, & Sanderson JM: Organophosphate poisoning and complete heart block. J Royal Soc Med 1981; 74:688-689.
- Yoshida M, Shimada E, & Yamanaka S: A case of acute poisoning with fenitrothion (Sumithion). Human Toxicol 1987; 6:403-406.
- Ziemen M: Platelet function and coagulation disorders in organophosphate intoxication. Klin Wochenschr 1984; 62:814-820.
- Zwiener RJ & Ginsburg CM: Organophosphate and carbamate poisoning in infants and children. Pediatrics 1988; 81:121-126.
- de Monchy JGR, Snoek WJ, & Sluiter HJ: Treatment of severe parathion intoxication. Vet Human Toxicol 1979; 21(Suppl):115-117.
- de Silva HJ, Wijewickrema R, & Senanayake N: Does pralidoxime affect outcome of management in acute organophosphorus poisoning?. Lancet 1992; 339(8802):1136-1138.
|