CYANOGEN BROMIDE
HAZARDTEXT ®
Information to help in the initial response for evaluating chemical incidents
-IDENTIFICATION
SYNONYMS
IDENTIFIERS
SYNONYM REFERENCE
- (HSDB , 1999; RTECS , 1999)
USES/FORMS/SOURCES
Cyanogen bromide is used in organic synthesis, fumigating compositions and rat exterminants. It also is used as a parasiticide, a cyaniding reagent in gold extraction processes, a cellulose-products-treating agent, a military poison gas and a von Braun degradation agent (Ashford, 1994; Lewis, 1997; OHM/TADS , 1999). The compound is also used as a reagent in determining niacin and niacinamide, and in activating agarose for affinity chromatography (HSDB , 1999).
Cyanogen bromide can be produced from the action of bromine on potassium cyanide or from adding bromine to sodium cyanide (Ashford, 1994; Lewis, 1997). The industrial grade of the compound can be prepared by mixing sodium bromide, sodium chlorate, and sodium cyanide in 30 percent sulfuric acid (Budavari, 1996).
-CLINICAL EFFECTS
GENERAL CLINICAL EFFECTS
- Cyanogen bromide causes strong irritation of the eyes, nose, throat and respiratory tract. It can release bromine or hydrogen bromide during hydrolysis or thermal decomposition and produce eye and serious respiratory tract irritation with pulmonary edema or hemorrhages.
- Cyanogen bromide is a severe skin irritant, and can produce substantial dermal burns after direct contact. Ingestion might cause gastrointestinal irritation as well as systemic cyanide poisoning.
- RELEASED HYDROGEN CYANIDE -
Cyanogen bromide can release HYDROGEN CYANIDE gas. Hydrogen cyanide gas exposure may produce death within minutes. Lesser exposures may produce nausea, vomiting, palpitations, confusion, hyperventilation, anxiety and vertigo. Severe hypoxic signs in the absence of cyanosis suggest the diagnosis. Initially the patient may experience flushing, tachycardia, tachypnea, headache and dizziness. This may progress to agitation, stupor, coma, apnea, generalized convulsions, noncardiogenic pulmonary edema, bradycardia, cardiac arrhythmias or conduction abnormalities, hypotension, metabolic acidosis and death. Cyanosis is generally a late finding and does not occur until the stage of circulatory collapse and apnea.
- POTENTIAL HEALTH HAZARDS - EMERGENCY RESPONSE GUIDEBOOK, GUIDE 157 (ERG, 2004)
TOXIC; inhalation, ingestion or contact (skin, eyes) with vapors, dusts or substance may cause severe injury, burns, or death. Reaction with water or moist air will release toxic, corrosive or flammable gases. Reaction with water may generate much heat which will increase the concentration of fumes in the air. Fire will produce irritating, corrosive and/or toxic gases. Runoff from fire control or dilution water may be corrosive and/or toxic and cause pollution.
ACUTE CLINICAL EFFECTS
- The major toxic effects of cyanogen bromide are similar to those of HYDROGEN CYANIDE, combined with severe pulmonary irritation (EPA, 1985; Sittig, 1985; Budavari, 1989). It is a strong irritant of the eyes, skin, nose, throat, and respiratory tract (CHRIS , 1993; Sittig, 1985) OHM/TADS, 1993). Serious eye and respiratory irritation, with pulmonary edema or hemorrhages, can also potentially be caused by the release of BROMINE or HYDROGEN BROMIDE during hydrolysis or thermal decomposition (Barr, 1985; EPA, 1985) Sax & Lewis, 1989; (HSDB , 1993). Burns can occur from direct contact (CHRIS , 1993). Death from HYDROGEN CYANIDE poisoning can occur within minutes (Hall & Rumack, 1986).
- The adverse systemic health effects of cyanogen halides are due to cyanide poisoning; however, at lower concentrations these agents have more irritant than systemic toxic properties (Hartung, 1982). At lower concentrations (approximately 10 ppm), the effects of cyanogen bromide inhalation may be only those of respiratory tract irritation, lacrimation, and possible delayed pulmonary edema (HSDB , 1993; EPA, 1985). The lowest irritant concentration is 1.4 ppm for 10 minutes; exposure to 8 ppm for 10 minutes or 20 ppm for one minute is intolerable (HSDB , 1993).
- Initial effects reported from acute CYANIDE poisoning include hyperpnea (increased rate and depth of breathing), tachypnea (quick, shallow breathing), tachycardia (increased heart rate), hypertension (high blood pressure), eye, skin, and respiratory tract irritation, headache, anxiety, and agitation (Vogel et al, 1981; Hall & Rumack, 1986).
- Symptoms of severe or late stages of CYANIDE poisoning include agitation, stupor, coma, apnea, generalized convulsions, pulmonary edema, bradycardia (slow heart rate), hypotension (low blood pressure), dilated pupils, and death (Stewart, 1974; Vogel et al, 1981; Graham et al, 1977).
- Lesser CYANIDE exposures may produce nausea, vomiting, palpitations, confusion, hyperventilation, anxiety, and vertigo (Hall & Rumack, 1986). Many of these same symptoms can be caused by exposure to SIMPLE ASPHYXIANTS , central nervous system depressants, or other substances which can cause hypoxia.
CHRONIC CLINICAL EFFECTS
- At the time of this review, no data were available to assess potential effects of chronic exposure to cyanogen bromide.
- Chronic exposure to CYANIDES has been reported to cause CNS effects such as insomnia, loss of memory, and tremors (Chaumont, 1960). Animal studies have confirmed the central nervous system as a target for the chronic toxicity of CYANIDE.
- Rats fed CYANIDE for 11 months suffered damage to the spinal cord (Philbrick, 1979). Other neurological effects include degeneration of the optic nerve resulting in blindness.
- The neurological effects of chronic exposure to CYANIDE may be due to its metabolites THIOCYANATE, and CYANATE. The exact mechanism(s) of the neurotoxicity caused by chronic exposure to CYANIDE is not known. Dermatitis has also been reported (Saia, 1970).
- Another important aspect of the chronic toxicity of CYANIDE is its goiterogenic effect. A goiter-like enlargement of the thyroid gland called ENDEMIC CRETINISM occurs in regions of the world where cassava root is a major portion of the diet (Ermans et al, 1972). Cassava liberates thiocyanate in the body which competes for uptake with iodine in the thyroid (Ermans et al, 1972).
- Enlargement of the thyroid gland has been reported with chronic occupational exposures to CYANIDE, and is thought to be due to accumulation of its less toxic metabolite, thiocyanate (El Ghawabi et al, 1975). Both the neurotoxic and goiterogenic effects have been produced in rats with chronic feeding of POTASSIUM CYANIDE (Philbrick, 1979), of which thiocyanate is a major metabolite (Okoh, 1983; Howard & Hanzal, 1955).
- In rats, the metabolites of CYANIDE may accumulate over long periods of chronic exposure (Tewe & Maner, 1981).
-MEDICAL TREATMENT
LIFE SUPPORT
- Support respiratory and cardiovascular function.
SUMMARY
- FIRST AID - EMERGENCY RESPONSE GUIDEBOOK, GUIDE 157 (ERG, 2004)
Move victim to fresh air. Call 911 or emergency medical service. Give artificial respiration if victim is not breathing. Do not use mouth-to-mouth method if victim ingested or inhaled the substance; give artificial respiration with the aid of a pocket mask equipped with a one-way valve or other proper respiratory medical device. Administer oxygen if breathing is difficult. Remove and isolate contaminated clothing and shoes. In case of contact with substance, immediately flush skin or eyes with running water for at least 20 minutes. For minor skin contact, avoid spreading material on unaffected skin. Keep victim warm and quiet. Effects of exposure (inhalation, ingestion or skin contact) to substance may be delayed. Ensure that medical personnel are aware of the material(s) involved and take precautions to protect themselves.
CYANIDE POISONING The treatment of cyanogen bromide poisoning is essentially that for cyanide intoxication. Establish respiration; avoid mouth-to-mouth resuscitation if possible during CPR to prevent self-poisoning. Immediately begin therapy with 100% oxygen. Be prepared for endotracheal intubation if necessary. Rescuers must not enter areas with potential high airborne concentrations of this agent without self-contained breathing apparatus (SCBA) to avoid becoming secondary victims. Avoid direct dermal contact with cyanide contaminated patient or gastric contents. Administer 100% oxygen: Establish secure large bore IV. A cyanide antidote, either hydroxocobalamin OR the sodium nitrite/sodium thiosulfate kit, should be administered to patients with symptomatic poisoning. HYDROXOCOBALAMIN: ADULT DOSE: 5 g (two 2.5 g vials each reconstituted with 100 mL sterile 0.9% saline) administered as an intravenous infusion over 15 minutes. For severe poisoning, a second dose of 5 g may be infused intravenously over 15 minutes to 2 hours, depending on the patient's condition. CHILDREN: Limited experience; a dose of 70 mg/kg has been used in pediatric patients. The Cyanide Antidote Kit is administered as follows: SODIUM NITRITE: Adult: 10 mL (300 mg) of a 3% solution IV at a rate of 2.5 to 5 mL/minute; Child (with normal hemoglobin concentration): 0.2 mL/kg (6 mg/kg) of a 3% solution IV at a rate of 2.5 to 5 mL/minute, not to exceed 10 mL (300 mg). Repeat one-half of initial sodium nitrite dose one-half hour later if there is inadequate clinical response. Calculate pediatric doses precisely to avoid potentially life-threatening methemoglobinemia. Use with caution if carbon monoxide poisoning is also suspected. Monitor blood pressure carefully. Reduce nitrite administration rate if hypotension occurs. SODIUM THIOSULFATE: Administer sodium thiosulfate IV immediately following sodium nitrite. DOSE: ADULT: 50 mL (12.5 g) of a 25% solution; CHILD: 1 mL/kg (250 mg/kg) of a 25% solution, not to exceed 50 mL (12.5 g) total dose. A second dose, one-half of the first dose, may be administered if signs of cyanide toxicity reappear.
SODIUM BICARBONATE: Administer 1 mEq/kg IV to acidotic patients. SEIZURES: Administer a benzodiazepine; DIAZEPAM (ADULT: 5 to 10 mg IV initially; repeat every 5 to 20 minutes as needed. CHILD: 0.1 to 0.5 mg/kg IV over 2 to 5 minutes; up to a maximum of 10 mg/dose. May repeat dose every 5 to 10 minutes as needed) or LORAZEPAM (ADULT: 2 to 4 mg IV initially; repeat every 5 to 10 minutes as needed, if seizures persist. CHILD: 0.05 to 0.1 mg/kg IV over 2 to 5 minutes, up to a maximum of 4 mg/dose; may repeat in 5 to 15 minutes as needed, if seizures continue). Consider phenobarbital or propofol if seizures recur after diazepam 30 mg (adults) or 10 mg (children greater than 5 years). Monitor for hypotension, dysrhythmias, respiratory depression, and need for endotracheal intubation. Evaluate for hypoglycemia, electrolyte disturbances, and hypoxia.
METHEMOGLOBINEMIA If excessive methemoglobinemia occurs, some authors have suggested that methylene blue should not be used because it could cause release of cyanide from the cyanmethemoglobin complex. Such authors have suggested that emergency exchange transfusion is the treatment of choice. Hyperbaric oxygen therapy could be used to support the patient while preparations for exchange transfusion are being made. However, methylene or toluidine blue have been used successfully in this setting without worsening the course of the cyanide poisoning. There is some controversy over whether or not the induction of methemoglobinemia is the sodium nitrite mechanism of action in cyanide poisoning. As long as intensive care monitoring and further antidote doses (if required) are available, methylene blue can most likely be safely administered in this setting. METHEMOGLOBINEMIA: Determine the methemoglobin concentration and evaluate the patient for clinical effects of methemoglobinemia (ie, dyspnea, headache, fatigue, CNS depression, tachycardia, metabolic acidosis). Treat patients with symptomatic methemoglobinemia with methylene blue (this usually occurs at methemoglobin concentrations above 20% to 30%, but may occur at lower methemoglobin concentrations in patients with anemia, or underlying pulmonary or cardiovascular disorders). Administer oxygen while preparing for methylene blue therapy. METHYLENE BLUE: INITIAL DOSE/ADULT OR CHILD: 1 mg/kg IV over 5 to 30 minutes; a repeat dose of up to 1 mg/kg may be given 1 hour after the first dose if methemoglobin levels remain greater than 30% or if signs and symptoms persist. NOTE: Methylene blue is available as follows: 50 mg/10 mL (5 mg/mL or 0.5% solution) single-dose ampules and 10 mg/1 mL (1% solution) vials. Additional doses may sometimes be required. Improvement is usually noted shortly after administration if diagnosis is correct. Consider other diagnoses or treatment options if no improvement has been observed after several doses. If intravenous access cannot be established, methylene blue may also be given by intraosseous infusion. Methylene blue should not be given by subcutaneous or intrathecal injection. NEONATES: DOSE: 0.3 to 1 mg/kg. Concomitant use of methylene blue with serotonergic drugs, including serotonin reuptake inhibitors (SRIs), selective serotonin reuptake inhibitors (SSRIs), serotonin and norepinephrine reuptake inhibitors (SNRIs), tricyclic antidepressants (TCAs), norepinephrine-dopamine reuptake inhibitors (NDRIs), triptans, and ergot alkaloids may increase the risk of potentially fatal serotonin syndrome.
HYPERBARIC OXYGEN AND HEMODIALYSIS: May be useful in severe cases not responsive to supportive and antidotal therapy. ACUTE LUNG INJURY: Maintain ventilation and oxygenation and evaluate with frequent arterial blood gases and/or pulse oximetry monitoring. Early use of PEEP and mechanical ventilation may be needed. HYPOTENSION: Infuse 10 to 20 mL/kg isotonic fluid. If hypotension persists, administer dopamine (5 to 20 mcg/kg/min) or norepinephrine (ADULT: begin infusion at 0.5 to 1 mcg/min; CHILD: begin infusion at 0.1 mcg/kg/min); titrate to desired response. ALTERNATE ANTIDOTES
INHALATION EXPOSURE INHALATION: Move patient to fresh air. Monitor for respiratory distress. If cough or difficulty breathing develops, evaluate for respiratory tract irritation, bronchitis, or pneumonitis. Administer oxygen and assist ventilation as required. Treat bronchospasm with an inhaled beta2-adrenergic agonist. Consider systemic corticosteroids in patients with significant bronchospasm. ACUTE LUNG INJURY: Maintain ventilation and oxygenation and evaluate with frequent arterial blood gases and/or pulse oximetry monitoring. Early use of PEEP and mechanical ventilation may be needed.
DERMAL EXPOSURE DECONTAMINATION: Remove contaminated clothing and jewelry and place them in plastic bags. Wash exposed areas with soap and water for 10 to 15 minutes with gentle sponging to avoid skin breakdown. A physician may need to examine the area if irritation or pain persists (Burgess et al, 1999). Some chemicals can produce systemic poisoning by absorption through intact skin. Carefully observe patients with dermal exposure for the development of any systemic signs or symptoms and administer symptomatic treatment as necessary.
EYE EXPOSURE DECONTAMINATION: Remove contact lenses and irrigate exposed eyes with copious amounts of room temperature 0.9% saline or water for at least 15 minutes. If irritation, pain, swelling, lacrimation, or photophobia persist after 15 minutes of irrigation, the patient should be seen in a healthcare facility.
ORAL/PARENTERAL EXPOSURE In symptomatic patients, skip these steps until other major emergency measures including use of Cyanide Antidote Kit and other life support measures have been instituted. Perform gastric lavage with a large bore tube after endotracheal intubation. GASTRIC LAVAGE: Consider after ingestion of a potentially life-threatening amount of poison if it can be performed soon after ingestion (generally within 1 hour). Protect airway by placement in the head down left lateral decubitus position or by endotracheal intubation. Control any seizures first. ACTIVATED CHARCOAL: Administer charcoal as a slurry (240 mL water/30 g charcoal). Usual dose: 25 to 100 g in adults/adolescents, 25 to 50 g in children (1 to 12 years), and 1 g/kg in infants less than 1 year old.
Administer 100% oxygen. Establish secure large bore IV. A cyanide antidote, either hydroxocobalamin OR the sodium nitrite/sodium thiosulfate kit, should be administered to patients with symptomatic poisoning. HYDROXOCOBALAMIN: ADULT DOSE: 5 g (two 2.5 g vials each reconstituted with 100 mL sterile 0.9% saline) administered as an intravenous infusion over 15 minutes. For severe poisoning, a second dose of 5 g may be infused intravenously over 15 minutes to 2 hours, depending on the patient's condition. CHILDREN: Limited experience; a dose of 70 mg/kg has been used in pediatric patients. The Cyanide Antidote Kit is administered as follows: SODIUM NITRITE: Adult: 10 mL (300 mg) of a 3% solution IV at a rate of 2.5 to 5 mL/minute; Child (with normal hemoglobin concentration): 0.2 mL/kg (6 mg/kg) of a 3% solution IV at a rate of 2.5 to 5 mL/minute, not to exceed 10 mL (300 mg). Repeat one-half of initial sodium nitrite dose one-half hour later if there is inadequate clinical response. Calculate pediatric doses precisely to avoid potentially life-threatening methemoglobinemia. Use with caution if carbon monoxide poisoning is also suspected. Monitor blood pressure carefully. Reduce nitrite administration rate if hypotension occurs. SODIUM THIOSULFATE: Administer sodium thiosulfate IV immediately following sodium nitrite. DOSE: ADULT: 50 mL (12.5 g) of a 25% solution; CHILD: 1 mL/kg (250 mg/kg) of a 25% solution, not to exceed 50 mL (12.5 g) total dose. A second dose, one-half of the first dose, may be administered if signs of cyanide toxicity reappear.
SODIUM BICARBONATE: Administer 1 mEq/kg IV to acidotic patients. SEIZURES: Administer a benzodiazepine; DIAZEPAM (ADULT: 5 to 10 mg IV initially; repeat every 5 to 20 minutes as needed. CHILD: 0.1 to 0.5 mg/kg IV over 2 to 5 minutes; up to a maximum of 10 mg/dose. May repeat dose every 5 to 10 minutes as needed) or LORAZEPAM (ADULT: 2 to 4 mg IV initially; repeat every 5 to 10 minutes as needed, if seizures persist. CHILD: 0.05 to 0.1 mg/kg IV over 2 to 5 minutes, up to a maximum of 4 mg/dose; may repeat in 5 to 15 minutes as needed, if seizures continue). Consider phenobarbital or propofol if seizures recur after diazepam 30 mg (adults) or 10 mg (children greater than 5 years). Monitor for hypotension, dysrhythmias, respiratory depression, and need for endotracheal intubation. Evaluate for hypoglycemia, electrolyte disturbances, and hypoxia.
ACUTE LUNG INJURY: Maintain ventilation and oxygenation and evaluate with frequent arterial blood gases and/or pulse oximetry monitoring. Early use of PEEP and mechanical ventilation may be needed. HYPOTENSION: Infuse 10 to 20 mL/kg isotonic fluid. If hypotension persists, administer dopamine (5 to 20 mcg/kg/min) or norepinephrine (ADULT: begin infusion at 0.5 to 1 mcg/min; CHILD: begin infusion at 0.1 mcg/kg/min); titrate to desired response. HYPERBARIC OXYGEN AND HEMODIALYSIS: May be useful in severe cases not responsive to supportive and antidotal therapy. If respiratory tract irritation or respiratory depression is evident, monitor arterial blood gases, chest x-ray, and pulmonary function tests. Whole blood cyanide levels may be obtained to document the poisoning and response to treatment. METHEMOGLOBINEMIA If excessive methemoglobinemia occurs, some authors have suggested that methylene blue should not be used because it could cause release of cyanide from the cyanmethemoglobin complex. Such authors have suggested that emergency exchange transfusion is the treatment of choice. Hyperbaric oxygen therapy could be used to support the patient while preparations for exchange transfusion are being made. However, methylene or toluidine blue have been used successfully in this setting without worsening the course of the cyanide poisoning. There is some controversy over whether or not the induction of methemoglobinemia is the sodium nitrite mechanism of action in cyanide poisoning. As long as intensive care monitoring and further antidote doses (if required) are available, methylene blue can most likely be safely administered in this setting. METHEMOGLOBINEMIA: Determine the methemoglobin concentration and evaluate the patient for clinical effects of methemoglobinemia (ie, dyspnea, headache, fatigue, CNS depression, tachycardia, metabolic acidosis). Treat patients with symptomatic methemoglobinemia with methylene blue (this usually occurs at methemoglobin concentrations above 20% to 30%, but may occur at lower methemoglobin concentrations in patients with anemia, or underlying pulmonary or cardiovascular disorders). Administer oxygen while preparing for methylene blue therapy. METHYLENE BLUE: INITIAL DOSE/ADULT OR CHILD: 1 mg/kg IV over 5 to 30 minutes; a repeat dose of up to 1 mg/kg may be given 1 hour after the first dose if methemoglobin levels remain greater than 30% or if signs and symptoms persist. NOTE: Methylene blue is available as follows: 50 mg/10 mL (5 mg/mL or 0.5% solution) single-dose ampules and 10 mg/1 mL (1% solution) vials. Additional doses may sometimes be required. Improvement is usually noted shortly after administration if diagnosis is correct. Consider other diagnoses or treatment options if no improvement has been observed after several doses. If intravenous access cannot be established, methylene blue may also be given by intraosseous infusion. Methylene blue should not be given by subcutaneous or intrathecal injection. NEONATES: DOSE: 0.3 to 1 mg/kg. Concomitant use of methylene blue with serotonergic drugs, including serotonin reuptake inhibitors (SRIs), selective serotonin reuptake inhibitors (SSRIs), serotonin and norepinephrine reuptake inhibitors (SNRIs), tricyclic antidepressants (TCAs), norepinephrine-dopamine reuptake inhibitors (NDRIs), triptans, and ergot alkaloids may increase the risk of potentially fatal serotonin syndrome.
ALTERNATE ANTIDOTES: Kelocyanor(R) (dicobalt-EDTA) and 4-DMAP (4-dimethylaminophenol) are alternate cyanide antidotes in clinical use in various countries outside the USA.
-RANGE OF TOXICITY
MINIMUM LETHAL EXPOSURE
- A cyanogen bromide concentration of 0.4 milligrams per liter (92 parts per million) in air was fatal to humans after 10 minutes (Clayton & Clayton, 1994).
- Sittig (1991) lists the probable oral lethal dose in humans to be less than 5 milligrams per kilogram ("a taste - less than 7 drops") for a 150-pound person.
MAXIMUM TOLERATED EXPOSURE
- Concentrations of 0.085 milligrams per liter (20 parts per million) and 0.035 milligrams per liter (8 parts per million) cyanogen bromide are considered "intolerable concentration(s)" for a 1-minute human exposure and a 10-minute exposure, respectively (Clayton & Clayton, 1994).
- Carcinogenicity Ratings for CAS506-68-3 :
ACGIH (American Conference of Governmental Industrial Hygienists, 2010): Not Listed EPA (U.S. Environmental Protection Agency, 2011): Not Assessed under the IRIS program. ; Listed as: Cyanogen bromide IARC (International Agency for Research on Cancer (IARC), 2016; International Agency for Research on Cancer, 2015; IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, 2010; IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, 2010a; IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, 2008; IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, 2007; IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, 2006; IARC, 2004): Not Listed NIOSH (National Institute for Occupational Safety and Health, 2007): Not Listed MAK (DFG, 2002): Not Listed NTP (U.S. Department of Health and Human Services, Public Health Service, National Toxicology Project ): Not Listed
TOXICITY AND RISK ASSESSMENT VALUES
- EPA Risk Assessment Values for CAS506-68-3 (U.S. Environmental Protection Agency, 2011):
Oral: Slope Factor: RfD: 9x10(-2) mg/kg-day
Inhalation: Drinking Water:
LCLo- (INHALATION)HUMAN: LCLo- (INHALATION)MOUSE: 500 mg/m(3) for 10M (References: RTECS, 1999 OHM/TADS, 1999) 740 mg/m(3) (References: RTECS, 1999 OHM/TADS, 1999)
CALCULATIONS
-STANDARDS AND LABELS
WORKPLACE STANDARDS
- ACGIH TLV Values for CAS506-68-3 (American Conference of Governmental Industrial Hygienists, 2010):
- AIHA WEEL Values for CAS506-68-3 (AIHA, 2006):
- NIOSH REL and IDLH Values for CAS506-68-3 (National Institute for Occupational Safety and Health, 2007):
- OSHA PEL Values for CAS506-68-3 (U.S. Occupational Safety, and Health Administration (OSHA), 2010):
- OSHA List of Highly Hazardous Chemicals, Toxics, and Reactives for CAS506-68-3 (U.S. Occupational Safety and Health Administration, 2010):
ENVIRONMENTAL STANDARDS
- EPA CERCLA, Hazardous Substances and Reportable Quantities for CAS506-68-3 (U.S. Environmental Protection Agency, 2010):
- EPA CERCLA, Hazardous Substances and Reportable Quantities, Radionuclides for CAS506-68-3 (U.S. Environmental Protection Agency, 2010):
- EPA RCRA Hazardous Waste Number for CAS506-68-3 (U.S. Environmental Protection Agency, 2010b):
Listed as: Cyanogen bromide (CN)Br P or U series number: U246 Footnote: Editor's Note: The D, F, and K series waste numbers and Appendix VIII to Part 261 -- Hazardous Constituents were not included. Please refer to 40 CFR Part 261.
- EPA SARA Title III, Extremely Hazardous Substance List for CAS506-68-3 (U.S. Environmental Protection Agency, 2010):
Listed as: Cyanogen Bromide Reportable Quantity, in pounds: 1000 Threshold Planning Quantity, in pounds: Note(s): Not Listed
- EPA SARA Title III, Community Right-to-Know for CAS506-68-3 (40 CFR 372.65, 2006; 40 CFR 372.28, 2006):
- DOT List of Marine Pollutants for CAS506-68-3 (49 CFR 172.101 - App. B, 2005):
Listed as Bromine cyanide Severe Marine Pollutant: No Listed as Bromocyane Severe Marine Pollutant: No Listed as Cyanogen bromide Severe Marine Pollutant: No
- EPA TSCA Inventory for CAS506-68-3 (EPA, 2005):
SHIPPING REGULATIONS
- DOT -- Table of Hazardous Materials and Special Provisions for UN/NA Number 1889 (49 CFR 172.101, 2005):
- ICAO International Shipping Name for UN1889 (ICAO, 2002):
LABELS
- NFPA Hazard Ratings for CAS506-68-3 (NFPA, 2002):
-HANDLING AND STORAGE
STORAGE
Cyanogen bromide that is pure and that has been dried thoroughly by distillation over sodium may be stored for up to several months in a desiccator (Budavari, 1996). Containers of cyanogen bromide should be stored covered or in an exhaust hood. Processes that may generate and release hydrogen cyanide should be performed in a complete enclosure and under an exhaust hood (HSDB , 1999).
- ROOM/CABINET RECOMMENDATIONS
The compound corrodes most metals (Lewis, 1997). Keep it separate from acid (NFPA, 1997). Cyanogen bromide that is impure decomposes rapidly and explosion may occur (Budavari, 1996). Reaction of cyanogen bromide with water, acids or acid salts generates and releases extremely toxic and flammable hydrogen cyanide (HSDB , 1999).
-PERSONAL PROTECTION
SUMMARY
- RECOMMENDED PROTECTIVE CLOTHING - EMERGENCY RESPONSE GUIDEBOOK, GUIDE 157 (ERG, 2004)
Wear positive pressure self-contained breathing apparatus (SCBA). Wear chemical protective clothing that is specifically recommended by the manufacturer. It may provide little or no thermal protection. Structural firefighters' protective clothing provides limited protection in fire situations ONLY; it is not effective in spill situations where direct contact with the substance is possible.
- Do not attempt to handle broken containers without appropriate protective equipment (AAR, 1996).
- Wear appropriate full chemical protective clothing including a chemical protective suit, goggles, rubber gloves or other impervious hand protection, boots, and a chemical cartridge respirator or positive pressure self-contained breathing apparatus when working in the vicinity of spills or leaks or when fighting fires (AAR, 1996; (NFPA, 1997; CHRIS , 1999; HSDB , 1999).
EYE/FACE PROTECTION
- Goggles should be worn when working with cyanogen bromide (CHRIS , 1999).
RESPIRATORY PROTECTION
- Refer to "Recommendations for respirator selection" in the NIOSH Pocket Guide to Chemical Hazards on TOMES Plus(R) for respirator information.
PROTECTIVE CLOTHING
- CHEMICAL PROTECTIVE CLOTHING. Search results for CAS 506-68-3.
-PHYSICAL HAZARDS
FIRE HAZARD
POTENTIAL FIRE OR EXPLOSION HAZARDS - EMERGENCY RESPONSE GUIDEBOOK, GUIDE 157 (ERG, 2004) Non-combustible, substance itself does not burn but may decompose upon heating to produce corrosive and/or toxic fumes. Vapors may accumulate in confined areas (basement, tanks, hopper/tank cars etc.). Substance will react with water (some violently), releasing corrosive and/or toxic gases. Contact with metals may evolve flammable hydrogen gas. Containers may explode when heated or if contaminated with water.
Cyanogen bromide is not combustible but, after involvement in a fire, it decomposes, producing toxic gases (NFPA, 1997). Cyanogen bromide will either not burn or will burn only with difficulty (Sittig, 1991). Containers exposed to heat of a fire should be cooled from the side with flooding quantities of water until well after the fire is extinguished (AAR, 1996; (CHRIS , 1999).
- FLAMMABILITY CLASSIFICATION
- NFPA Flammability Rating for CAS506-68-3 (NFPA, 2002):
- FIRE CONTROL/EXTINGUISHING AGENTS
- FIRE PRECAUTIONS - EMERGENCY RESPONSE GUIDEBOOK, GUIDE 157 (ERG, 2004)
- SMALL FIRE PRECAUTIONS - EMERGENCY RESPONSE GUIDEBOOK, GUIDE 157 (ERG, 2004)
- LARGE FIRE PRECAUTIONS - EMERGENCY RESPONSE GUIDEBOOK, GUIDE 157 (ERG, 2004)
Water spray, fog or alcohol-resistant foam. Move containers from fire area if you can do it without risk. Use water spray or fog; do not use straight streams. Dike fire control water for later disposal; do not scatter the material.
- TANK OR CAR/TRAILER LOAD FIRE PRECAUTIONS - EMERGENCY RESPONSE GUIDEBOOK, GUIDE 157 (ERG, 2004)
Fight fire from maximum distance or use unmanned hose holders or monitor nozzles. Do not get water inside containers. Cool containers with flooding quantities of water until well after fire is out. Withdraw immediately in case of rising sound from venting safety devices or discoloration of tank. ALWAYS stay away from tanks engulfed in fire.
- NFPA Extinguishing Methods for CAS506-68-3 (NFPA, 2002):
- Extinguish fire with agent appropriate for surrounding fire (NFPA, 1997).
- Keep containers exposed to fire cool using water spray (NFPA, 1997).
- "No not use water on the material itself" (AAR, 1996).
- Use foam, carbon dioxide, or dry chemical to extinguish fires involving cyanogen bromide (AAR, 1996).
- If large amounts of combustible materials are on fire, use water as spray or fog in flooding quantities. Also use water spray to knock down fire vapors (AAR, 1996).
When cyanogen bromide is heated to decomposition, it releases very poisonous and irritating fumes of bromide and cyanide (Budavari, 1996; Lewis, 1996). When involved in a fire, cyanogen bromide emits toxic nitrogen oxide vapors (AAR, 1996). Fire decomposes cyanogen bromide, producing poisonous gases (NFPA, 1997).
EXPLOSION HAZARD
- Impure cyanogen bromide rapidly decomposes and tends to be explosive (Budavari, 1996).
- Under extreme conditions, the compound tends to be "reactive" (OHM/TADS , 1999).
DUST/VAPOR HAZARD
- Vapors released from cyanogen bromide are extremely toxic and irritating to the skin, eyes, and mucous membranes (particularly of throat and lungs) (HSDB , 1999).
- When cyanogen bromide is heated to decomposition, it releases very poisonous and irritating fumes of bromide and cyanide (Budavari, 1996; Lewis, 1996).
- When involved in a fire, cyanogen bromide emits toxic nitrogen oxide vapors (AAR, 1996).
- Reaction with moisture will release toxic, corrosive, or flammable gases (HSDB , 1999).
- Fire decomposes cyanogen bromide, producing poisonous gases (NFPA, 1997).
- Hydrogen bromide, a flammable and toxic gas, is emitted when cyanide bromide is gradually decomposed by water or rapidly decomposed by acids (AAR, 1996).
- Cyanogen bromide in aqueous solution decomposes to alkali bromides and alkali cyanides (Budavari, 1996).
REACTIVITY HAZARD
- Cyanogen bromide in aqueous solution decomposes to alkali bromides and alkali cyanides (Budavari, 1996).
- Cyanogen bromide is an endothermic compound: It is thermodynamically unstable and tends toward instability and explosive decomposition (Urben, 1995).
- Impure cyanogen bromide rapidly decomposes and tends to be explosive (Budavari, 1996).
- When cyanogen bromide is heated to decomposition, it releases very poisonous and irritating fumes of bromide and cyanide (Budavari, 1996; Lewis, 1996).
- When involved in a fire, cyanogen bromide emits toxic nitrogen oxide vapors (AAR, 1996).
- Fire decomposes cyanogen bromide, producing poisonous gases (NFPA, 1997).
- Cyanogen bromide may decompose and release toxic gases when in contact with heat or oxidizing materials (NFPA, 1997).
- "The plastic cap of a bottle stored in a laboratory for several years on a high shelf, occasionally at 31 degrees C, shattered and drove fragments into the shelf above" (Urben, 1995).
- An explosion will result following addition of cyanides to a molten nitrate bath (HSDB , 1999).
- Reaction of cyanogen bromide with water, acids or acid salts generates and releases extremely toxic and flammable hydrogen cyanide (HSDB , 1999).
EVACUATION PROCEDURES
- Editor's Note: This material is not listed in the Table of Initial Isolation and Protective Action Distances.
- SPILL - PUBLIC SAFETY EVACUATION DISTANCES - EMERGENCY RESPONSE GUIDEBOOK, GUIDE 157 (ERG, 2004)
Increase, in the downwind direction, as necessary, the isolation distance of at least 50 meters (150 feet) for liquids and at least 25 meters (75 feet) for solids in all directions.
- FIRE - PUBLIC SAFETY EVACUATION DISTANCES - EMERGENCY RESPONSE GUIDEBOOK, GUIDE 157 (ERG, 2004)
If tank, rail car or tank truck is involved in a fire, ISOLATE for 800 meters (1/2 mile) in all directions; also, consider initial evacuation for 800 meters (1/2 mile) in all directions.
- PUBLIC SAFETY MEASURES - EMERGENCY RESPONSE GUIDEBOOK, GUIDE 157 (ERG, 2004)
CALL Emergency Response Telephone Number on Shipping Paper first. If Shipping Paper not available or no answer, refer to appropriate telephone number: MEXICO: SETIQ: 01-800-00-214-00 in the Mexican Republic; For calls originating in Mexico City and the Metropolitan Area: 5559-1588; For calls originating elsewhere, call: 011-52-555-559-1588.
CENACOM: 01-800-00-413-00 in the Mexican Republic; For calls originating in Mexico City and the Metropolitan Area: 5550-1496, 5550-1552, 5550-1485, or 5550-4885; For calls originating elsewhere, call: 011-52-555-550-1496, or 011-52-555-550-1552; 011-52-555-550-1485, or 011-52-555-550-4885.
ARGENTINA: CIQUIME: 0-800-222-2933 in the Republic of Argentina; For calls originating elsewhere, call: +54-11-4613-1100.
BRAZIL: PRÓ-QUÍMICA: 0-800-118270 (Toll-free in Brazil); For calls originating elsewhere, call: +55-11-232-1144 (Collect calls are accepted).
COLUMBIA: CISPROQUIM: 01-800-091-6012 in Colombia; For calls originating in Bogotá, Colombia, call: 288-6012; For calls originating elsewhere, call: 011-57-1-288-6012.
CANADA: UNITED STATES:
For additional details see the section entitled "WHO TO CALL FOR ASSISTANCE" under the ERG Instructions. As an immediate precautionary measure, isolate spill or leak area in all directions for at least 50 meters (150 feet) for liquids and at least 25 meters (75 feet) for solids. Keep unauthorized personnel away. Stay upwind. Keep out of low areas. Ventilate enclosed areas.
- Avoid breathing vapors, stay upwind, and avoid contact with the material (AAR, 1996).
- Restrict access to discharge area; issue a poison warning (CHRIS , 1999).
- Isolation or evacuation may be required following a cyanogen bromide release (NFPA, 1997).
- AIHA ERPG Values for CAS506-68-3 (AIHA, 2006):
- DOE TEEL Values for CAS506-68-3 (U.S. Department of Energy, Office of Emergency Management, 2010):
Listed as Cyanogen bromide TEEL-0 (units = mg/m3): 20.4 TEEL-1 (units = mg/m3): 20.4 TEEL-2 (units = mg/m3): 44 TEEL-3 (units = mg/m3): 102 Definitions: TEEL-0: The threshold concentration below which most people will experience no adverse health effects. TEEL-1: The airborne concentration (expressed as ppm [parts per million] or mg/m(3) [milligrams per cubic meter]) of a substance above which it is predicted that the general population, including susceptible individuals, could experience notable discomfort, irritation, or certain asymptomatic, nonsensory effects. However, these effects are not disabling and are transient and reversible upon cessation of exposure. TEEL-2: The airborne concentration (expressed as ppm or mg/m(3)) of a substance above which it is predicted that the general population, including susceptible individuals, could experience irreversible or other serious, long-lasting, adverse health effects or an impaired ability to escape. TEEL-3: The airborne concentration (expressed as ppm or mg/m(3)) of a substance above which it is predicted that the general population, including susceptible individuals, could experience life-threatening adverse health effects or death.
- AEGL Values for CAS506-68-3 (National Research Council, 2010; National Research Council, 2009; National Research Council, 2008; National Research Council, 2007; NRC, 2001; NRC, 2002; NRC, 2003; NRC, 2004; NRC, 2004; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2006; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2007; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2005; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2005; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2007; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2006; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2006; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2006; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2006; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2006; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2006; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2006; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2006; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2006; United States Environmental Protection Agency Office of Pollution Prevention and Toxics, 2006; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2006; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2007; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2007; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2008; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2008; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2007; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2008; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2007; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2008; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2007; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2009; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2009; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2009; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2009; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2009; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2009; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2009; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2009; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2009; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2009; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2009; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2008; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2008; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2008; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2008; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2008; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2008; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2008; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2009; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2008; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2008; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2008; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2009; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2008; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2008; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2008; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2008; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2008; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2008; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2008; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2007; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2006; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2006; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2006; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2007; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2007; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2007; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2007; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2007; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2005; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2005; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2005; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2005; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2005; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2005; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2005; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2005; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2007; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2005; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2006; 62 FR 58840, 1997; 65 FR 14186, 2000; 65 FR 39264, 2000; 65 FR 77866, 2000; 66 FR 21940, 2001; 67 FR 7164, 2002; 68 FR 42710, 2003; 69 FR 54144, 2004):
- NIOSH IDLH Values for CAS506-68-3 (National Institute for Occupational Safety and Health, 2007):
CONTAINMENT/WASTE TREATMENT OPTIONS
SPILL OR LEAK PRECAUTIONS - EMERGENCY RESPONSE GUIDEBOOK, GUIDE 157 (ERG, 2004) ELIMINATE all ignition sources (no smoking, flares, sparks or flames in immediate area). All equipment used when handling the product must be grounded. Do not touch damaged containers or spilled material unless wearing appropriate protective clothing. Stop leak if you can do it without risk. A vapor suppressing foam may be used to reduce vapors. DO NOT GET WATER INSIDE CONTAINERS. Use water spray to reduce vapors or divert vapor cloud drift. Avoid allowing water runoff to contact spilled material. Prevent entry into waterways, sewers, basements or confined areas.
RECOMMENDED PROTECTIVE CLOTHING - EMERGENCY RESPONSE GUIDEBOOK, GUIDE 157 (ERG, 2004) Wear positive pressure self-contained breathing apparatus (SCBA). Wear chemical protective clothing that is specifically recommended by the manufacturer. It may provide little or no thermal protection. Structural firefighters' protective clothing provides limited protection in fire situations ONLY; it is not effective in spill situations where direct contact with the substance is possible.
Stop leak if it can be done without risk; avoid touching spilled material; wear chemical protective clothing including impervious protection for hands (Sittig, 1991). Water may be used as spray to knock down vapors (AAR, 1996). Keep spilled material from entering sewers and water sources (AAR, 1996).
Cyanogen bromide can be neutralized with strong bleaching powder (CHRIS , 1999). Add cyanogen bromide to a strong calcium hypochlorite alkaline solution (Sittig, 1991). Greater than 99.7% cyanogen bromide in water can be destroyed using 1 M sodium hydroxide solution and calcium or sodium hypochlorite (HSDB , 1999). After dissolving the compound in a flammable solvent, spray the mixture into an incinerator equipped with an afterburner and scrubber (Sittig, 1991). Cyanogen bromide potentially qualifies for disposal via (HSDB , 1999) : rotary kiln incineration (820 to 1600 degrees C, residence times of seconds for liquids and gases, longer times for solids), fluidized bed incineration (450 to 980 degrees C, residence times of seconds for liquids and gases, longer for solids). Cleanup procedures for in situ amelioration include the conversion to cyanide under alkaline conditions. The generated cyanide can then be precipitated with ferric salts (available at water treatment plants or photography shops). Application of Carbon (available at water treatment plants or sugar refineries) may also be effective (HSDB , 1999). For beach or shore restoration, burning is not recommended (HSDB , 1999). Waste management activities associated with material disposition are unique to individual situations. Proper waste characterization and decisions regarding waste management should be coordinated with the appropriate local, state, or federal authorities to ensure compliance with all applicable rules and regulations.
-ENVIRONMENTAL HAZARD MANAGEMENT
POLLUTION HAZARD
- Material containing cyanide compounds which are disposed on land may lead to elevated levels of cyanide in underlying strata and in groundwater (HSDB, 2003).
ENVIRONMENTAL FATE AND KINETICS
ENVIRONMENTAL TOXICITY
- FRESHWATER TOXICITY (OHM/TADS , 1999)
- SALTWATER TOXICITY (OHM/TADS , 1999)
- Cyanogen bromide is harmful to aquatic life in very low concentrations and may be dangerous if it enters water intakes. Notify local health and wildlife officials as well as water intake operators in the vicinity if a water spill has occurred (CHRIS , 1999).
-PHYSICAL/CHEMICAL PROPERTIES
MOLECULAR WEIGHT
DESCRIPTION/PHYSICAL STATE
- Cyanogen bromide, a colorless or white crystalline solid, has a penetrating odor and a bitter taste (AAR, 1996; (HSDB , 1999).
- The solid has been described as needle-like or cube-shaped (Budavari, 1996; Lewis, 1996).
- Cyanogen bromide is volatile at ordinary temperatures (Budavari, 1996).
- It is a highly corrosive compound (Lewis, 1996).
- It appears colorless when dissolved in water (OHM/TADS , 1999).
- It is a non-flammable compound, and it does not polymerize (HSDB , 1999).
VAPOR PRESSURE
- 92 mmHg (at 20 degrees C) (Clayton & Clayton, 1994)
- 100 mmHg (at 22.6 degrees C) (Lewis, 1996; NFPA, 1997)
- 20 mmHg (at -1 degrees C) (OHM/TADS , 1999)
- 122 mmHg (at 25 degrees C) (experimental) (HSDB , 1999)
- 115.6 mmHg (at 25 degrees C) (extrapolated) (HSDB , 1999)
SPECIFIC GRAVITY
- OTHER TEMPERATURE AND/OR PRESSURE
DENSITY
- TEMPERATURE AND/OR PRESSURE NOT LISTED
FREEZING/MELTING POINT
BOILING POINT
- 61-62 degrees C (Budavari, 1996)
- 61.4 degrees C (at 760 mmHg) (HSDB , 1999)
- 61.6 degrees C (Clayton & Clayton, 1994)
SOLUBILITY
SOLUBILITY IN SOLVENTS Cyanogen bromide is soluble in ether, alcohol, and benzene (Budavari, 1996; Lewis, 1997). The compound is soluble in oxygenated solvents (Ashford, 1994).
SPECTRAL CONSTANTS
-REFERENCES
GENERAL BIBLIOGRAPHY- 40 CFR 372.28: Environmental Protection Agency - Toxic Chemical Release Reporting, Community Right-To-Know, Lower thresholds for chemicals of special concern. National Archives and Records Administration (NARA) and the Government Printing Office (GPO). Washington, DC. Final rules current as of Apr 3, 2006.
- 40 CFR 372.65: Environmental Protection Agency - Toxic Chemical Release Reporting, Community Right-To-Know, Chemicals and Chemical Categories to which this part applies. National Archives and Records Association (NARA) and the Government Printing Office (GPO), Washington, DC. Final rules current as of Apr 3, 2006.
- 49 CFR 172.101 - App. B: Department of Transportation - Table of Hazardous Materials, Appendix B: List of Marine Pollutants. National Archives and Records Administration (NARA) and the Government Printing Office (GPO), Washington, DC. Final rules current as of Aug 29, 2005.
- 49 CFR 172.101: Department of Transportation - Table of Hazardous Materials. National Archives and Records Administration (NARA) and the Government Printing Office (GPO), Washington, DC. Final rules current as of Aug 11, 2005.
- 62 FR 58840: Notice of the National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances - Proposed AEGL Values, Environmental Protection Agency, NAC/AEGL Committee. National Archives and Records Administration (NARA) and the Government Publishing Office (GPO), Washington, DC, 1997.
- 65 FR 14186: Notice of the National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances - Proposed AEGL Values, Environmental Protection Agency, NAC/AEGL Committee. National Archives and Records Administration (NARA) and the Government Publishing Office (GPO), Washington, DC, 2000.
- 65 FR 39264: Notice of the National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances - Proposed AEGL Values, Environmental Protection Agency, NAC/AEGL Committee. National Archives and Records Administration (NARA) and the Government Publishing Office (GPO), Washington, DC, 2000.
- 65 FR 77866: Notice of the National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances - Proposed AEGL Values, Environmental Protection Agency, NAC/AEGL Committee. National Archives and Records Administration (NARA) and the Government Publishing Office (GPO), Washington, DC, 2000.
- 66 FR 21940: Notice of the National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances - Proposed AEGL Values, Environmental Protection Agency, NAC/AEGL Committee. National Archives and Records Administration (NARA) and the Government Publishing Office (GPO), Washington, DC, 2001.
- 67 FR 7164: Notice of the National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances - Proposed AEGL Values, Environmental Protection Agency, NAC/AEGL Committee. National Archives and Records Administration (NARA) and the Government Publishing Office (GPO), Washington, DC, 2002.
- 68 FR 42710: Notice of the National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances - Proposed AEGL Values, Environmental Protection Agency, NAC/AEGL Committee. National Archives and Records Administration (NARA) and the Government Publishing Office (GPO), Washington, DC, 2003.
- 69 FR 54144: Notice of the National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances - Proposed AEGL Values, Environmental Protection Agency, NAC/AEGL Committee. National Archives and Records Administration (NARA) and the Government Publishing Office (GPO), Washington, DC, 2004.
- ACGIH: Documentation of the Threshold Limit Values, 5th ed, Am Conference of Govt Ind Hyg, Inc, Cincinnati, OH, 1986, pp 314.
- AIHA: 2006 Emergency Response Planning Guidelines and Workplace Environmental Exposure Level Guides Handbook, American Industrial Hygiene Association, Fairfax, VA, 2006.
- AMA Department of DrugsAMA Department of Drugs: AMA Evaluations Subscription, American Medical Association, Chicago, IL, 1992.
- American Conference of Governmental Industrial Hygienists : ACGIH 2010 Threshold Limit Values (TLVs(R)) for Chemical Substances and Physical Agents and Biological Exposure Indices (BEIs(R)), American Conference of Governmental Industrial Hygienists, Cincinnati, OH, 2010.
- Amo H: Nagoya Shiritsu Daigaku Igakkai Zashi 1973; 24:48-66.
- Anderson AH: Experimental studies on the pharmacology of activated charcoal. Acta Pharmacol 1946; 2:69-78.
- Anon: Med J Austral 1972; 1:1169-1170.
- Artigas A, Bernard GR, Carlet J, et al: The American-European consensus conference on ARDS, part 2: ventilatory, pharmacologic, supportive therapy, study design strategies, and issues related to recovery and remodeling.. Am J Respir Crit Care Med 1998; 157:1332-1347.
- Ashford R: Ashford's Dictionary of Industrial Chemicals, Wavelength Publications Ltd, London, England, 1994.
- Ballantyne B: Acute systemic toxicity of cyanides by topical application to the eye. J Toxicol Cut Ocular Toxicol 1983; 2:119-129.
- Barr SJ: Chemical warfare agents. Topics Emerg Med 1985; 7:62-70.
- Berlin CM Jr: Treatment of cyanide poisoning in children. Pediatrics 1970; 46:793-796.
- Berlin: Treatment of cyanide poisoning in children. Pediatr 1970a; 46:793-796.
- Berumen U Jr: Dog poisons man. JAMA 1983; 249:353.
- Bismuth C, Cantineau J-P, & Pontal P: Priorite de l'oxygenation dans l'intoxication cyanhydrique: A propos de 25 cas. J Toxicol Med 1984; 4:107-121.
- Blanc P, Hogan M, & Malin K: Cyanide intoxication among silver-reclaiming workers. JAMA 1985; 253:367-371.
- Bourrelier J & Paulet G: Intoxication cyanhydrique consecutive a des brulures graves par cyanure de sodium fondu. Sur trois cas traites par EDTA cobaltique. Presse Med 1971; 22:1013-1014.
- Boysen PG & Modell JH: Pulmonary edema, in: Textbook of Critical Care Medicine, 2nd ed. Shoemaker WC, Ayres S, Grenvik A et al (Eds), WB Saunders Company, Philadelphia, PA, 1989, pp 515-518.
- Brophy GM, Bell R, Claassen J, et al: Guidelines for the evaluation and management of status epilepticus. Neurocrit Care 2012; 17(1):3-23.
- Brower RG, Matthay AM, & Morris A: Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Eng J Med 2000; 342:1301-1308.
- Buchanan IS, Dhamee MS, & Griffith FED: Abnormal fundal appearances in a case of poisoning by a cyanide capsule. Med Sci Law 1976; 16:29.
- Buchter A & Peter H: Clinical toxicology of acrylonitrile. G Ital Med Lav 1984; 6:83-86.
- Budavari S: The Merck Index, 11th ed, Merck & Co, Inc, Rahway, NJ, 1989, pp 420.
- Budavari S: The Merck Index, 12th ed, Merck & Co, Inc, Whitehouse Station, NJ, 1996.
- Burgess JL, Kirk M, Borron SW, et al: Emergency department hazardous materials protocol for contaminated patients. Ann Emerg Med 1999; 34(2):205-212.
- CHRIS : CHRIS Hazardous Chemical Data. US Department of Transportation, US Coast Guard. Washington, DC (Internet Version). Edition expires 1993; provided by Truven Health Analytics Inc., Greenwood Village, CO.
- CHRIS : CHRIS Hazardous Chemical Data. US Department of Transportation, US Coast Guard. Washington, DC (Internet Version). Edition expires 1999; provided by Truven Health Analytics Inc., Greenwood Village, CO.
- CHRIS : CHRIS Hazardous Chemical Data. US Department of Transportation, US Coast Guard. Washington, DC (Internet Version). Edition expires 7/31/1997; provided by Truven Health Analytics Inc., Greenwood Village, CO.
- Caravati EM, Knight HH, & Linscott MS: Esophageal laceration and charcoal mediastinum complicating gastric lavage. J Emerg Med 2001; 20:273-276.
- Caravati EM: Alkali. In: Dart RC, ed. Medical Toxicology, Lippincott Williams & Wilkins, Philadelphia, PA, 2004.
- Carden E: Hyperbaric oxygen in cyanide poisoning. Anaesthesia 1970; 25:442-443.
- Carella F, Grassi MP, & Savoiardo M: Dystonic-Parkinsonian syndrome after cyanide poisoning: clinical and MRI findings. J Neurol Neurosurg Psychiatr 1988; 51:1345-1348.
- Carvajal HF & Stewart CE: Emergency management of burn patients: the first few hours. Emerg Med Reports 1987; 8:129-136.
- Cataletto M: Respiratory Distress Syndrome, Acute(ARDS). In: Domino FJ, ed. The 5-Minute Clinical Consult 2012, 20th ed. Lippincott Williams & Wilkins, Philadelphia, PA, 2012.
- Chamberlain JM, Altieri MA, & Futterman C: A prospective, randomized study comparing intramuscular midazolam with intravenous diazepam for the treatment of seizures in children. Ped Emerg Care 1997; 13:92-94.
- Chaumont M: Chronic intoxication caused by cyanides and by cyanohydric acid (French). Soc Med Hyg Trav 1960; 660-662.
- Chen KK & Rose CL: Nitrite and thiosulfate therapy in cyanide poisoning. JAMA 1952; 149:113-119.
- Chin RF , Neville BG , Peckham C , et al: Treatment of community-onset, childhood convulsive status epilepticus: a prospective, population-based study. Lancet Neurol 2008; 7(8):696-703.
- Choonara IA & Rane A: Therapeutic drug monitoring of anticonvulsants state of the art. Clin Pharmacokinet 1990; 18:318-328.
- Chudnofsky CR & Otten EJ: Acute pulmonary toxicity to nitrofurantoin. J Emerg Med 1989; 7:15-19.
- Chyka PA, Seger D, Krenzelok EP, et al: Position paper: Single-dose activated charcoal. Clin Toxicol (Phila) 2005; 43(2):61-87.
- Clayton GD & Clayton FE: Patty's Industrial Hygiene and Toxicology, Vol 2D, Toxicology, 4th ed, John Wiley & Sons, New York, NY, 1994.
- Cope C: The importance of oxygen in the treatment of cyanide poisoning. JAMA 1961; 175:1061.
- DFG: List of MAK and BAT Values 2002, Report No. 38, Deutsche Forschungsgemeinschaft, Commission for the Investigation of Health Hazards of Chemical Compounds in the Work Area, Wiley-VCH, Weinheim, Federal Republic of Germany, 2002.
- De Busk RF & Seidl LG: Attempted suicide by cyanide. A report of two cases. Calif Med 1969; 110:394-396.
- DiNapoli J, Hall AH, & Drake R: Cyanide and arsenic poisoning by intravenous injection. Ann Emerg Med 1989; 18:308-311.
- Dodds C & McKnight C: Cyanide toxicity after immersion and the hazards of dicobalt edetate. Br Med J 1985; 291:785-786.
- Doherty PA, Ferm VH, & Smith RP: Congenital malformations induced by infusion of sodium cyanide in the Golden Hamster. Toxicol Appl Pharmacol 1982; 64:456-464.
- Dunipace AJ, Beaven R, Noblitt T, et al: Mutagenic potential of toluidine blue evaluated in the Ames test. Mutat Res 1992; 279(4):255-259.
- EPA: EPA chemical profile on cyanogen bromide, Environmental Protection Agency, Washington, DC, 1985.
- EPA: Search results for Toxic Substances Control Act (TSCA) Inventory Chemicals. US Environmental Protection Agency, Substance Registry System, U.S. EPA's Office of Pollution Prevention and Toxics. Washington, DC. 2005. Available from URL: http://www.epa.gov/srs/.
- ERG: Emergency Response Guidebook. A Guidebook for First Responders During the Initial Phase of a Dangerous Goods/Hazardous Materials Incident, U.S. Department of Transportation, Research and Special Programs Administration, Washington, DC, 2004.
- Edwards AC & Thomas ID: Cyanide poisoning. Lancet 1978; 1:92-93.
- Elliot CG, Colby TV, & Kelly TM: Charcoal lung. Bronchiolitis obliterans after aspiration of activated charcoal. Chest 1989; 96:672-674.
- Ermans AM, Delange F, & Van Der Velden M: Possible role of cyanide and thiocyanate in the etiology of endemic cretinism. Adv Exp Med Biol 1972; 30:455-486.
- FDA: Poison treatment drug product for over-the-counter human use; tentative final monograph. FDA: Fed Register 1985; 50:2244-2262.
- Feihl F, Domenighetti D, & Perret CI: Intoxication massive au cyanure avec evolution favorable. Schweiz Med Wschr 1982; 112:1280-1282.
- Geiger LE, Hogy LL, & Guengerich FP: Metabolism of acrylonitrile by isolated rat hepatocytes. Cancer Res 1983; 43:3080-3087.
- Golej J, Boigner H, Burda G, et al: Severe respiratory failure following charcoal application in a toddler. Resuscitation 2001; 49:315-318.
- Graff GR, Stark J, & Berkenbosch JW: Chronic lung disease after activated charcoal aspiration. Pediatrics 2002; 109:959-961.
- Graham DL, Laman D, & Theodore J: Acute cyanide poisoning complicated by lactic acidosis and pulmonary edema. Arch Intern Med 1977; 137:1051-1055.
- Grant WM: Toxicology of the Eye, 3rd ed, Charles C Thomas, Springfield, IL, 1986, pp 287-290.
- HSDB : Hazardous Substances Data Bank. National Library of Medicine. Bethesda, MD (Internet Version). Edition expires 10/31/1999; provided by Truven Health Analytics Inc., Greenwood Village, CO.
- HSDB : Hazardous Substances Data Bank. National Library of Medicine. Bethesda, MD (Internet Version). Edition expires 1990; provided by Truven Health Analytics Inc., Greenwood Village, CO.
- HSDB : Hazardous Substances Data Bank. National Library of Medicine. Bethesda, MD (Internet Version). Edition expires 7/31/1997; provided by Truven Health Analytics Inc., Greenwood Village, CO.
- HSDB : Hazardous Substances Data Bank. National Library of Medicine. Bethesda, MD (Internet Version). Edition expires Oct/31/1993; provided by Truven Health Analytics Inc., Greenwood Village, CO.
- Haas CF: Mechanical ventilation with lung protective strategies: what works?. Crit Care Clin 2011; 27(3):469-486.
- Haguenoer JM: Eur J Toxicol 1975; 8:113-121.
- Hall AH & Rumack BH: Clinical toxicology of cyanide. Ann Emerg Med 1986; 15:1067-1074.
- Hall AH & Rumack BH: Hydroxycobalamin/sodium thiosulfate as a cyanide antidote. J Emerg Med 1987; 5:115-121.
- Hall AH, Doutre WH, & Ludden T: Nitrite/thiosulfate treated acute cyanide poisoning: Estimated kinetics after antidote. Clin Toxicol 1987; 25:121-133.
- Harris CR & Filandrinos D: Accidental administration of activated charcoal into the lung: aspiration by proxy. Ann Emerg Med 1993; 22:1470-1473.
- Hart GB, Strauss MB, & Lennon PA: Treatment of smoke inhalation by hyperbaric oxygen. J Emerg Med 1985; 3:211-215.
- Hartung R: Cyanides and Nitriles, in: Patty's Industrial Hygiene and Toxicology, Vol 2C, Toxicology, 3rd ed, Clayton GD & Clayton FE (Eds), John Wiley & Sons, New York, NY, 1982, pp 4845-4886.
- Haynes BW Jr: Emergency department management of minor burns. Top Emerg Med 1981; 3:35-40.
- Hegenbarth MA & American Academy of Pediatrics Committee on Drugs: Preparing for pediatric emergencies: drugs to consider. Pediatrics 2008; 121(2):433-443.
- Herman MI, Chyka PA, & Butlse AY: Methylene blue by intraosseous infusion for methemoglobinemia. Ann Emerg Med 1999; 33:111-113.
- Hix WR & Wilson WR: Toluidine blue staining of the esophagus: a useful adjunct in the panendoscopic evaluation of patients with squamous cell carcinoma of the head and neck. Arch Otolaryngol Head Neck Surg 1987; 113(8):864-865.
- Hjelt K, Lund JT, Scherling B, et al: Methaemoglobinaemia among neonates in a neonatal intensive care unit. Acta Paediatr 1995; 84(4):365-370.
- Howard JW & Hanzal RF: Anr Food Chem 1955; 3:325-329.
- Howland MA: Antidotes in Depth. In: Goldfrank LR, Flomenbaum N, Hoffman RS, et al, eds. Goldfrank's Toxicologic Emergencies. 8th ed., 8th ed. McGraw-Hill, New York, NY, 2006, pp 826-828.
- Howland MA: Sodium Thiosulfate. In: Nelson LS, Lewin NA, Howland MA, et al, eds. Goldfrank's Toxicologic Emergencies, 9th ed. McGraw Hill Medical, New York, NY, 2011, pp 1692-1694.
- Hvidberg EF & Dam M: Clinical pharmacokinetics of anticonvulsants. Clin Pharmacokinet 1976; 1:161.
- IARC Working Group on the Evaluation of Carcinogenic Risks to Humans : IARC Monographs on the Evaluation of Carcinogenic Risks to Humans: 1,3-Butadiene, Ethylene Oxide and Vinyl Halides (Vinyl Fluoride, Vinyl Chloride and Vinyl Bromide), 97, International Agency for Research on Cancer, Lyon, France, 2008.
- IARC Working Group on the Evaluation of Carcinogenic Risks to Humans : IARC Monographs on the Evaluation of Carcinogenic Risks to Humans: Formaldehyde, 2-Butoxyethanol and 1-tert-Butoxypropan-2-ol, 88, International Agency for Research on Cancer, Lyon, France, 2006.
- IARC Working Group on the Evaluation of Carcinogenic Risks to Humans : IARC Monographs on the Evaluation of Carcinogenic Risks to Humans: Household Use of Solid Fuels and High-temperature Frying, 95, International Agency for Research on Cancer, Lyon, France, 2010a.
- IARC Working Group on the Evaluation of Carcinogenic Risks to Humans : IARC Monographs on the Evaluation of Carcinogenic Risks to Humans: Smokeless Tobacco and Some Tobacco-specific N-Nitrosamines, 89, International Agency for Research on Cancer, Lyon, France, 2007.
- IARC Working Group on the Evaluation of Carcinogenic Risks to Humans : IARC Monographs on the Evaluation of Carcinogenic Risks to Humans: Some Non-heterocyclic Polycyclic Aromatic Hydrocarbons and Some Related Exposures, 92, International Agency for Research on Cancer, Lyon, France, 2010.
- IARC: List of all agents, mixtures and exposures evaluated to date - IARC Monographs: Overall Evaluations of Carcinogenicity to Humans, Volumes 1-88, 1972-PRESENT. World Health Organization, International Agency for Research on Cancer. Lyon, FranceAvailable from URL: http://monographs.iarc.fr/monoeval/crthall.html. As accessed Oct 07, 2004.
- ICAO: Technical Instructions for the Safe Transport of Dangerous Goods by Air, 2003-2004. International Civil Aviation Organization, Montreal, Quebec, Canada, 2002.
- International Agency for Research on Cancer (IARC): IARC monographs on the evaluation of carcinogenic risks to humans: list of classifications, volumes 1-116. International Agency for Research on Cancer (IARC). Lyon, France. 2016. Available from URL: http://monographs.iarc.fr/ENG/Classification/latest_classif.php. As accessed 2016-08-24.
- International Agency for Research on Cancer: IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. World Health Organization. Geneva, Switzerland. 2015. Available from URL: http://monographs.iarc.fr/ENG/Classification/. As accessed 2015-08-06.
- Ip M, Wong K-L, & Wong K-F: Lung injury in dimethyl sulfate poisoning. J Occup Med 1989; 31:141-143.
- Johnson RP & Mellors JW: Arteriolization of venous blood gases: a clue to the diagnosis of cyanide poisoning. J Emerg Med 1988; 6:401-404.
- Johnson WS, Hall AH, & Rumack BH: Cyanide poisoning successfully treated without 'therapeutic methemoglobin levels'. Am J Emerg Med 1989; 7:437-440.
- Jouglard J, Fagot G, & Deguigne B: L'intoxication cyanhydrique aigue et son traitement d'urgence. Marseille Med 1971; 9:571-575.
- Jouglard J, Nava G, & Botta A: A propos d'une intoxication aigue par le cyanure de potassium traitee par l'hydroxocobalamine. Marseille Med 1974; 12:617-624.
- Kiese M , Lorcher W , Weger N , et al: Comparative studies on the effects of toluidine blue and methylene blue on the reduction of ferrihaemoglobin in man and dog. Eur J Clin Pharmacol 1972; 4(2):115-118.
- Kleinman ME, Chameides L, Schexnayder SM, et al: 2010 American Heart Association guidelines for cardiopulmonary resuscitation and emergency cardiovascular care. Part 14: pediatric advanced life support. Circulation 2010; 122(18 Suppl.3):S876-S908.
- Kollef MH & Schuster DP: The acute respiratory distress syndrome. N Engl J Med 1995; 332:27-37.
- Kraut JA & Madias NE: Metabolic acidosis: pathophysiology, diagnosis and management. Nat Rev Nephrol 2010; 6(5):274-285.
- Kreig A & Saxena K: Cyanide poisoning from metal cleaning solutions. Ann Emerg Med 1987; 16:582-584.
- Lambert RJ, Kindler BL, & Schaeffer DJ: The efficacy of superactivated charcoal in treating rats exposed to a lethal oral dose of potassium cyanide. Ann Emerg Med 1988; 17:595-598.
- Lewis RJ: Hawley's Condensed Chemical Dictionary, 12th ed, Van Nostrand Reinhold Company, New York, NY, 1997.
- Lewis RJ: Sax's Dangerous Properties of Industrial Materials, 9th ed, Van Nostrand Reinhold, a Division of International Thomson Publishing Inc, New York, NY, 1996.
- Lindenmann J, Matzi V, Kaufmann P, et al: Hyperbaric oxygenation in the treatment of life-threatening isobutyl nitrite-induced methemoglobinemia--a case report. Inhal Toxicol 2006; 18(13):1047-1049.
- Litovitz TL, Larkin RF, & Myers RAM: Cyanide poisoning treated with hyperbaric oxygen. Am J Emerg Med 1983; 1:94-101.
- Loddenkemper T & Goodkin HP: Treatment of Pediatric Status Epilepticus. Curr Treat Options Neurol 2011; Epub:Epub.
- Maggart M & Stewart S: The mechanisms and management of noncardiogenic pulmonary edema following cardiopulmonary bypass. Ann Thorac Surg 1987; 43:231-236.
- Manno EM: New management strategies in the treatment of status epilepticus. Mayo Clin Proc 2003; 78(4):508-518.
- Marquez A & Todd M: Acute hemolytic anemia and agranulocytosis following intravenous administration of toluidine blue. Am Pract 1959; 10:1548-1550.
- Marrs TC: Antidotal treatment of acute cyanide poisoning. Adverse Drug React Acute Poisoning Rev 1988; 4:179-206.
- Moore SJ, Norris JC, & Ho IK: The efficacy of alphaketoglutaric acid in the antagonism of cyanide intoxication. Toxicol Appl Pharmacol 1986; 82:40-44.
- Moylan JA: Burn care after thermal injury. Top Emerg Med 1980; 2:39-52.
- Myers RAM & Schnitzer BM: Hyperbaric oxygen use: Update 1984. Postgrad Med 1984; 76:83-95.
- NFPA: Fire Protection Guide to Hazardous Materials, 12th ed, National Fire Protection Association, Quincy, MA, 1997.
- NFPA: Fire Protection Guide to Hazardous Materials, 13th ed., National Fire Protection Association, Quincy, MA, 2002.
- NHLBI ARDS Network: Mechanical ventilation protocol summary. Massachusetts General Hospital. Boston, MA. 2008. Available from URL: http://www.ardsnet.org/system/files/6mlcardsmall_2008update_final_JULY2008.pdf. As accessed 2013-08-07.
- NRC: Acute Exposure Guideline Levels for Selected Airborne Chemicals - Volume 1, Subcommittee on Acute Exposure Guideline Levels, Committee on Toxicology, Board on Environmental Studies and Toxicology, Commission of Life Sciences, National Research Council. National Academy Press, Washington, DC, 2001.
- NRC: Acute Exposure Guideline Levels for Selected Airborne Chemicals - Volume 2, Subcommittee on Acute Exposure Guideline Levels, Committee on Toxicology, Board on Environmental Studies and Toxicology, Commission of Life Sciences, National Research Council. National Academy Press, Washington, DC, 2002.
- NRC: Acute Exposure Guideline Levels for Selected Airborne Chemicals - Volume 3, Subcommittee on Acute Exposure Guideline Levels, Committee on Toxicology, Board on Environmental Studies and Toxicology, Commission of Life Sciences, National Research Council. National Academy Press, Washington, DC, 2003.
- NRC: Acute Exposure Guideline Levels for Selected Airborne Chemicals - Volume 4, Subcommittee on Acute Exposure Guideline Levels, Committee on Toxicology, Board on Environmental Studies and Toxicology, Commission of Life Sciences, National Research Council. National Academy Press, Washington, DC, 2004.
- Naradzay J & Barish RA: Approach to ophthalmologic emergencies. Med Clin North Am 2006; 90(2):305-328.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for 1,2,3-Trimethylbenzene (Proposed). United States Environmental Protection Agency. Washington, DC. 2006k. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d68a&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for 1,2,4-Trimethylbenzene (Proposed). United States Environmental Protection Agency. Washington, DC. 2006m. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d68a&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for 1,2-Butylene Oxide (Proposed). United States Environmental Protection Agency. Washington, DC. 2008d. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648083cdbb&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for 1,2-Dibromoethane (Proposed). United States Environmental Protection Agency. Washington, DC. 2007g. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064802796db&disposition=attachment&contentType=pdf. As accessed 2010-08-18.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for 1,3,5-Trimethylbenzene (Proposed). United States Environmental Protection Agency. Washington, DC. 2006l. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d68a&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for 2-Ethylhexyl Chloroformate (Proposed). United States Environmental Protection Agency. Washington, DC. 2007b. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648037904e&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Acrylonitrile (Proposed). United States Environmental Protection Agency. Washington, DC. 2007c. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648028e6a3&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Adamsite (Proposed). United States Environmental Protection Agency. Washington, DC. 2007h. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020fd29&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Agent BZ (3-quinuclidinyl benzilate) (Proposed). United States Environmental Protection Agency. Washington, DC. 2007f. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064803ad507&disposition=attachment&contentType=pdf. As accessed 2010-08-18.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Allyl Chloride (Proposed). United States Environmental Protection Agency. Washington, DC. 2008. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648039d9ee&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Aluminum Phosphide (Proposed). United States Environmental Protection Agency. Washington, DC. 2005b. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c5ed&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Arsenic Trioxide (Proposed). United States Environmental Protection Agency. Washington, DC. 2007m. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480220305&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Automotive Gasoline Unleaded (Proposed). United States Environmental Protection Agency. Washington, DC. 2009a. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a7cc17&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Biphenyl (Proposed). United States Environmental Protection Agency. Washington, DC. 2005j. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064801ea1b7&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Bis-Chloromethyl Ether (BCME) (Proposed). United States Environmental Protection Agency. Washington, DC. 2006n. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648022db11&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Boron Tribromide (Proposed). United States Environmental Protection Agency. Washington, DC. 2008a. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064803ae1d3&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Bromine Chloride (Proposed). United States Environmental Protection Agency. Washington, DC. 2007d. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648039732a&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Bromoacetone (Proposed). United States Environmental Protection Agency. Washington, DC. 2008e. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064809187bf&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Calcium Phosphide (Proposed). United States Environmental Protection Agency. Washington, DC. 2005d. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c5ed&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Carbonyl Fluoride (Proposed). United States Environmental Protection Agency. Washington, DC. 2008b. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064803ae328&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Carbonyl Sulfide (Proposed). United States Environmental Protection Agency. Washington, DC. 2007e. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648037ff26&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Chlorobenzene (Proposed). United States Environmental Protection Agency. Washington, DC. 2008c. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064803a52bb&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Cyanogen (Proposed). United States Environmental Protection Agency. Washington, DC. 2008f. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064809187fe&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Dimethyl Phosphite (Proposed). United States Environmental Protection Agency. Washington, DC. 2009. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a7cbf3&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Diphenylchloroarsine (Proposed). United States Environmental Protection Agency. Washington, DC. 2007l. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020fd29&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Ethyl Isocyanate (Proposed). United States Environmental Protection Agency. Washington, DC. 2008h. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648091884e&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Ethyl Phosphorodichloridate (Proposed). United States Environmental Protection Agency. Washington, DC. 2008i. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480920347&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Ethylbenzene (Proposed). United States Environmental Protection Agency. Washington, DC. 2008g. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064809203e7&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Ethyldichloroarsine (Proposed). United States Environmental Protection Agency. Washington, DC. 2007j. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020fd29&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Germane (Proposed). United States Environmental Protection Agency. Washington, DC. 2008j. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480963906&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Hexafluoropropylene (Proposed). United States Environmental Protection Agency. Washington, DC. 2006. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064801ea1f5&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Ketene (Proposed). United States Environmental Protection Agency. Washington, DC. 2007. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020ee7c&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Magnesium Aluminum Phosphide (Proposed). United States Environmental Protection Agency. Washington, DC. 2005h. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c5ed&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Magnesium Phosphide (Proposed). United States Environmental Protection Agency. Washington, DC. 2005g. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c5ed&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Malathion (Proposed). United States Environmental Protection Agency. Washington, DC. 2009k. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064809639df&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Mercury Vapor (Proposed). United States Environmental Protection Agency. Washington, DC. 2009b. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a8a087&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Methyl Isothiocyanate (Proposed). United States Environmental Protection Agency. Washington, DC. 2008k. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480963a03&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Methyl Parathion (Proposed). United States Environmental Protection Agency. Washington, DC. 2008l. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480963a57&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Methyl tertiary-butyl ether (Proposed). United States Environmental Protection Agency. Washington, DC. 2007a. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064802a4985&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Methylchlorosilane (Proposed). United States Environmental Protection Agency. Washington, DC. 2005. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c5f4&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Methyldichloroarsine (Proposed). United States Environmental Protection Agency. Washington, DC. 2007i. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020fd29&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Methyldichlorosilane (Proposed). United States Environmental Protection Agency. Washington, DC. 2005a. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c646&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Nitrogen Mustard (HN1 CAS Reg. No. 538-07-8) (Proposed). United States Environmental Protection Agency. Washington, DC. 2006a. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d6cb&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Nitrogen Mustard (HN2 CAS Reg. No. 51-75-2) (Proposed). United States Environmental Protection Agency. Washington, DC. 2006b. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d6cb&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Nitrogen Mustard (HN3 CAS Reg. No. 555-77-1) (Proposed). United States Environmental Protection Agency. Washington, DC. 2006c. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d6cb&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Nitrogen Tetroxide (Proposed). United States Environmental Protection Agency. Washington, DC. 2008n. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648091855b&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Nitrogen Trifluoride (Proposed). United States Environmental Protection Agency. Washington, DC. 2009l. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480963e0c&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Parathion (Proposed). United States Environmental Protection Agency. Washington, DC. 2008o. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480963e32&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Perchloryl Fluoride (Proposed). United States Environmental Protection Agency. Washington, DC. 2009c. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a7e268&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Perfluoroisobutylene (Proposed). United States Environmental Protection Agency. Washington, DC. 2009d. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a7e26a&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Phenyl Isocyanate (Proposed). United States Environmental Protection Agency. Washington, DC. 2008p. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648096dd58&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Phenyl Mercaptan (Proposed). United States Environmental Protection Agency. Washington, DC. 2006d. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020cc0c&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Phenyldichloroarsine (Proposed). United States Environmental Protection Agency. Washington, DC. 2007k. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020fd29&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Phorate (Proposed). United States Environmental Protection Agency. Washington, DC. 2008q. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648096dcc8&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Phosgene (Draft-Revised). United States Environmental Protection Agency. Washington, DC. 2009e. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a8a08a&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Phosgene Oxime (Proposed). United States Environmental Protection Agency. Washington, DC. 2009f. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a7e26d&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Potassium Cyanide (Proposed). United States Environmental Protection Agency. Washington, DC. 2009g. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a7cbb9&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Potassium Phosphide (Proposed). United States Environmental Protection Agency. Washington, DC. 2005c. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c5ed&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Propargyl Alcohol (Proposed). United States Environmental Protection Agency. Washington, DC. 2006e. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020ec91&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Selenium Hexafluoride (Proposed). United States Environmental Protection Agency. Washington, DC. 2006f. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020ec55&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Silane (Proposed). United States Environmental Protection Agency. Washington, DC. 2006g. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d523&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Sodium Cyanide (Proposed). United States Environmental Protection Agency. Washington, DC. 2009h. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a7cbb9&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Sodium Phosphide (Proposed). United States Environmental Protection Agency. Washington, DC. 2005i. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c5ed&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Strontium Phosphide (Proposed). United States Environmental Protection Agency. Washington, DC. 2005f. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c5ed&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Sulfuryl Chloride (Proposed). United States Environmental Protection Agency. Washington, DC. 2006h. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020ec7a&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Tear Gas (Proposed). United States Environmental Protection Agency. Washington, DC. 2008s. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648096e551&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Tellurium Hexafluoride (Proposed). United States Environmental Protection Agency. Washington, DC. 2009i. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a7e2a1&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Tert-Octyl Mercaptan (Proposed). United States Environmental Protection Agency. Washington, DC. 2008r. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648096e5c7&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Tetramethoxysilane (Proposed). United States Environmental Protection Agency. Washington, DC. 2006j. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d632&disposition=attachment&contentType=pdf. As accessed 2010-08-17.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Trimethoxysilane (Proposed). United States Environmental Protection Agency. Washington, DC. 2006i. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d632&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Trimethyl Phosphite (Proposed). United States Environmental Protection Agency. Washington, DC. 2009j. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a7d608&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Trimethylacetyl Chloride (Proposed). United States Environmental Protection Agency. Washington, DC. 2008t. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648096e5cc&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Zinc Phosphide (Proposed). United States Environmental Protection Agency. Washington, DC. 2005e. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c5ed&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for n-Butyl Isocyanate (Proposed). United States Environmental Protection Agency. Washington, DC. 2008m. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064808f9591&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Heart,Lung,and Blood Institute: Expert panel report 3: guidelines for the diagnosis and management of asthma. National Heart,Lung,and Blood Institute. Bethesda, MD. 2007. Available from URL: http://www.nhlbi.nih.gov/guidelines/asthma/asthgdln.pdf.
- National Institute for Occupational Safety and Health: NIOSH Pocket Guide to Chemical Hazards, U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, Cincinnati, OH, 2007.
- National Research Council : Acute exposure guideline levels for selected airborne chemicals, 5, National Academies Press, Washington, DC, 2007.
- National Research Council: Acute exposure guideline levels for selected airborne chemicals, 6, National Academies Press, Washington, DC, 2008.
- National Research Council: Acute exposure guideline levels for selected airborne chemicals, 7, National Academies Press, Washington, DC, 2009.
- National Research Council: Acute exposure guideline levels for selected airborne chemicals, 8, National Academies Press, Washington, DC, 2010.
- Nemec K: Antidotes in acute poisoning. Eur J Hosp Pharm Sci Pract 2011; 17(4):53-55.
- None Listed: Position paper: cathartics. J Toxicol Clin Toxicol 2004; 42(3):243-253.
- OHM/TADS : Oil and Hazardous Materials/Technical Assistance Data System. US Environmental Protection Agency. Washington, DC (Internet Version). Edition expires 1999; provided by Truven Health Analytics Inc., Greenwood Village, CO.
- Okoh PN: Toxicol Appl Pharmacol 1983; 70:335-339.
- Olusi SO: Biol Neonate 1979; 36:233-243.
- Paulet G: Valeur et mecanisme d'action de l'oxygenotherapie dans le traitement de l'intoxication cyanhydrique. Arch Internat de Physiologie et de Biochimie 1955; 63:340-360.
- Peate WF: Work-related eye injuries and illnesses. Am Fam Physician 2007; 75(7):1017-1022.
- Peberdy MA , Callaway CW , Neumar RW , et al: 2010 American Heart Association guidelines for cardiopulmonary resuscitation and emergency cardiovascular care science. Part 9: post–cardiac arrest care. Circulation 2010; 122(18 Suppl 3):S768-S786.
- Peden NR, Taha A, & McSorley PD: Industrial exposure to hydrogen cyanide: implications for treatment. Br Med J 1986; 293:538.
- Peterson RG & Rumack BH: Clin Toxicol 1979; 15:181-184.
- Philbrick DJ: J Toxicol Environ Health 1979; 5:579-592.
- Pollack MM, Dunbar BS, & Holbrook PR: Aspiration of activated charcoal and gastric contents. Ann Emerg Med 1981; 10:528-529.
- Product Information: CEREBYX(R) intravenous injection, fosphenytoin sodium intravenous injection. Pfizer Labs (per FDA), New York, NY, 2014.
- Product Information: CYANOKIT(R) 2.5g IV injection, hydroxocobalamin IV injection. Merck Lipha Sante, Lyon, France, 2006.
- Product Information: Dilantin(R) intravenous injection, intramuscular injection, phenytoin sodium intravenous injection, intramuscular injection. Parke-Davis (per FDA), New York, NY, 2013.
- Product Information: NITHIODOTE intravenous injection solution, sodium nitrite intravenous injection solution and sodium thiosulfate intravenous injection solution. Hope Pharmaceuticals (per manufacturer), Scottsdale, AZ, 2011.
- Product Information: PROVAYBLUE(TM) intravenous injection, methylene blue intravenous injection. American Regent (per FDA), Shirley, NY, 2016.
- Product Information: diazepam IM, IV injection, diazepam IM, IV injection. Hospira, Inc (per Manufacturer), Lake Forest, IL, 2008.
- Product Information: dopamine hcl, 5% dextrose IV injection, dopamine hcl, 5% dextrose IV injection. Hospira,Inc, Lake Forest, IL, 2004.
- Product Information: lorazepam IM, IV injection, lorazepam IM, IV injection. Akorn, Inc, Lake Forest, IL, 2008.
- Product Information: methylene blue 1% IV injection, methylene blue 1% IV injection. American Regent, Inc (per manufacturer), Shirley, NY, 2011.
- Product Information: methylene blue 1% intravenous injection, methylene blue 1% intravenous injection. Akorn, Inc. (per manufacturer), Lake Forest, IL, 2011.
- Product Information: norepinephrine bitartrate injection, norepinephrine bitartrate injection. Sicor Pharmaceuticals,Inc, Irvine, CA, 2005.
- Product Information: sodium thiosulfate IV injection, sodium thiosulfate IV injection. American Regent Inc, Shirley, NY, 2003.
- Pronczuk de Garbino JP & Bismuth C: Propositions therapeutiques actuelles en cas d'intoxication par les cyanures. Toxicol Eur Res 1981; 3:69-76.
- RTECS : Registry of Toxic Effects of Chemical Substances. National Institute for Occupational Safety and Health. Cincinnati, OH (Internet Version). Edition expires 10/31/1993; provided by Truven Health Analytics Inc., Greenwood Village, CO.
- RTECS : Registry of Toxic Effects of Chemical Substances. National Institute for Occupational Safety and Health. Cincinnati, OH (Internet Version). Edition expires 1999; provided by Truven Health Analytics Inc., Greenwood Village, CO.
- Rau NR, Nagaraj MV, Prakash PS, et al: Fatal pulmonary aspiration of oral activated charcoal. Br Med J 1988; 297:918-919.
- Roberts JR: Minor burns (Pt II). Emerg Med Ambulatory Care News 1988; 10:4-5.
- Rosenberg NL, Myers JA, & Martin WRW: Cyanide-induced parkinsonism: clinical, MRI, and 6-fluorodopa PET studies. Neurology 1989; 39:142-144.
- Saia B: Med Lav 1970; 61:580-586.
- Scott R, Besag FMC, & Neville BGR: Buccal midazolam and rectal diazepam for treatment of prolonged seizures in childhood and adolescence: a randomized trial. Lancet 1999; 353:623-626.
- Shepherd G & Keyes DC: Methylene blue. In: Dart,RC, ed. Medical Toxicology, 3rd ed. 3rd ed, Philadelphia, PA, 2004, pp -.
- Singh BM, Coles N, & Lewis RA: The metabolic effects of fatal cyanide poisoning. Postgrad Med J 1989; 65:923-925.
- Singh JD: The teratogenic effects of dietary cassava on the pregnant albino rat: A preliminary report. Teratology 1981; 24:289-291.
- Sittig M: Handbook of Toxic and Hazardous Chemicals and Carcinogens, 2nd ed, Noyes Publications, Park Ridge, NJ, 1985, pp 275-276.
- Sittig M: Handbook of Toxic and Hazardous Chemicals and Carcinogens, 3rd ed, Noyes Publications, Park Ridge, NJ, 1991.
- Skene WG, Norman JN, & Smith G: Effect of hyperbaric oxygen in cyanide poisoning, in: Brown I, Cox B (Eds), Proceedings of the Third International Congress on hyperbaric oxygen, National Academy of Science, NRC, Washington, DC, 1966, pp 705-710.
- Sreenath TG, Gupta P, Sharma KK, et al: Lorazepam versus diazepam-phenytoin combination in the treatment of convulsive status epilepticus in children: A randomized controlled trial. Eur J Paediatr Neurol 2009; Epub:Epub.
- Stanford SC , Stanford BJ , & Gillman PK : Risk of severe serotonin toxicity following co-administration of methylene blue and serotonin reuptake inhibitors: an update on a case report of post-operative delirium. J Psychopharmacol 2010; 24(10):1433-1438.
- Stellpflug SJ, Gardner RL, Leroy JM, et al: Hydroxocobalamin hinders hemodialysis. Am J Kidney Dis 2013; 62(2):395-395.
- Stentoft J: The toxicity of cytarabine. Drug Saf 1990; 5:7-27.
- Stewart R: Cyanide poisoning. Clin Toxicol 1974; 5:561-564.
- Stolbach A & Hoffman RS: Respiratory Principles. In: Nelson LS, Hoffman RS, Lewin NA, et al, eds. Goldfrank's Toxicologic Emergencies, 9th ed. McGraw Hill Medical, New York, NY, 2011.
- Swartz H: Tobacco smoke: a noxious air pollutant. Rev Allergy 1971; 25:397-505.
- Takano T, Miyazaki Y, & Nashimoto I: Effect of hyperbaric oxygen on cyanide intoxication: in situ changes in intracellular oxidation reduction. Undersea Biomed Res 1980; 7:191-197.
- Ten Eyck RP, Schaerdel AD, & Ottinger WE: Stroma-free methemoglobin solution: An effective antidote for acute cyanide poisoning. Am J Emerg Med 1985; 3:519-523.
- Teunis BS, Leftwich EI, & Pierce LE: Acute methemoglobinemia and hemolytic anemia due to toluidine blue. Arch Surg 1970; 101:527-531.
- Tewe OO & Maner JH: Toxicol Appl Pharmacol 1981; 58:1-7.
- Thomson JL: Eep Cell Res 1967; 46:252-261.
- Trapp W: Massive cyanide poisoning with recovery: A boxing day story. Can Med Assoc J 1970; 102:517.
- Turchen SG, Manoguerra AS, & Whitney C: Severe cyanide poisoning following suicidal ingestion of an acetonitrile-containing cosmetic. Am J Emerg Med 1991; 9:264-267.
- U.S. Department of Energy, Office of Emergency Management: Protective Action Criteria (PAC) with AEGLs, ERPGs, & TEELs: Rev. 26 for chemicals of concern. U.S. Department of Energy, Office of Emergency Management. Washington, DC. 2010. Available from URL: http://www.hss.doe.gov/HealthSafety/WSHP/Chem_Safety/teel.html. As accessed 2011-06-27.
- U.S. Department of Health and Human Services, Public Health Service, National Toxicology Project : 11th Report on Carcinogens. U.S. Department of Health and Human Services, Public Health Service, National Toxicology Program. Washington, DC. 2005. Available from URL: http://ntp.niehs.nih.gov/INDEXA5E1.HTM?objectid=32BA9724-F1F6-975E-7FCE50709CB4C932. As accessed 2011-06-27.
- U.S. Environmental Protection Agency: Discarded commercial chemical products, off-specification species, container residues, and spill residues thereof. Environmental Protection Agency's (EPA) Resource Conservation and Recovery Act (RCRA); List of hazardous substances and reportable quantities 2010b; 40CFR(261.33, e-f):77-.
- U.S. Environmental Protection Agency: Integrated Risk Information System (IRIS). U.S. Environmental Protection Agency. Washington, DC. 2011. Available from URL: http://cfpub.epa.gov/ncea/iris/index.cfm?fuseaction=iris.showSubstanceList&list_type=date. As accessed 2011-06-21.
- U.S. Environmental Protection Agency: List of Radionuclides. U.S. Environmental Protection Agency. Washington, DC. 2010a. Available from URL: http://www.gpo.gov/fdsys/pkg/CFR-2010-title40-vol27/pdf/CFR-2010-title40-vol27-sec302-4.pdf. As accessed 2011-06-17.
- U.S. Environmental Protection Agency: List of hazardous substances and reportable quantities. U.S. Environmental Protection Agency. Washington, DC. 2010. Available from URL: http://www.gpo.gov/fdsys/pkg/CFR-2010-title40-vol27/pdf/CFR-2010-title40-vol27-sec302-4.pdf. As accessed 2011-06-17.
- U.S. Environmental Protection Agency: The list of extremely hazardous substances and their threshold planning quantities (CAS Number Order). U.S. Environmental Protection Agency. Washington, DC. 2010c. Available from URL: http://www.gpo.gov/fdsys/pkg/CFR-2010-title40-vol27/pdf/CFR-2010-title40-vol27-part355.pdf. As accessed 2011-06-17.
- U.S. Food and Drug Administration: FDA Drug Safety Communication: Serious CNS reactions possible when methylene blue is given to patients taking certain psychiatric medications. U.S. Food and Drug Administration. Silver Spring, MD. 2011. Available from URL: http://www.fda.gov/Drugs/DrugSafety/ucm263190.htm. As accessed 2011-07-26.
- U.S. Occupational Safety and Health Administration: Part 1910 - Occupational safety and health standards (continued) Occupational Safety, and Health Administration's (OSHA) list of highly hazardous chemicals, toxics and reactives. Subpart Z - toxic and hazardous substances. CFR 2010 2010; Vol6(SEC1910):7-.
- U.S. Occupational Safety, and Health Administration (OSHA): Process safety management of highly hazardous chemicals. 29 CFR 2010 2010; 29(1910.119):348-.
- Uitti RJ, Rajput AH, & Ashenhurst EM: Cyanide-induced parkinsonism: a clinicopathologic report. Neurology 1985; 35:921-925.
- United States Environmental Protection Agency Office of Pollution Prevention and Toxics: Acute Exposure Guideline Levels (AEGLs) for Vinyl Acetate (Proposed). United States Environmental Protection Agency. Washington, DC. 2006. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d6af&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
- Urben PG: Bretherick's Handbook of Reactive Chemical Hazards, Volume 1, 5th ed, Butterworth-Heinemann Ltd, Oxford, England, 1995.
- Vale JA, Kulig K, American Academy of Clinical Toxicology, et al: Position paper: Gastric lavage. J Toxicol Clin Toxicol 2004; 42:933-943.
- Vale JA: Position Statement: gastric lavage. American Academy of Clinical Toxicology; European Association of Poisons Centres and Clinical Toxicologists. J Toxicol Clin Toxicol 1997; 35:711-719.
- Vogel SN, Sultan TR, & Ten Eyck RP: Cyanide poisoning. Clin Toxicol 1981; 18:367-383.
- Wallace KL: Toxin-Induced Seizures. In: Brent J, Wallace KL, Burkhart KK, et al, eds. Critical Care Toxicology, Elsevier Mosby, Philadelphia, PA, 2005.
- Way JL, End E, & Sheehy MH: Effect of oxygen on cyanide intoxication. IV. Hyperbaric oxygen. Toxicol Appl Pharmacol 1972; 22:415-421.
- Wesson DE, Foley R, & Sabatini S: Treatment of acute cyanide intoxication with hemodialysis. Am J Nephrol 1985; 5:121-126.
- Willhite CC, Ferm VH, & Smith RP: Teratogenic effects of aliphatic nitriles. Teratology 1981; 23:317-323.
- Willhite CC: Congenital malformations induced by laetrile. Science 1982; 215:1513-1515.
- Willhite CC: Developmental toxicology of acetonitrile in the Syrian golden hamster. Teratology 1983; 27:313-325.
- Willson DF, Truwit JD, Conaway MR, et al: The adult calfactant in acute respiratory distress syndrome (CARDS) trial. Chest 2015; 148(2):356-364.
- Wilson DF, Thomas NJ, Markovitz BP, et al: Effect of exogenous surfactant (calfactant) in pediatric acute lung injury. A randomized controlled trial. JAMA 2005; 293:470-476.
- Winek CL, Collom WD, & Martineau P: Toluidine blue intoxication. Clin Toxicol 1969; 2:1-3.
- Zitnik RJ & Cooper JA: Pulmonary disease due to antirheumatic agents. Clin Chest Med 1990; 11:139-150.
- do Nascimento TS, Pereira RO, de Mello HL, et al: Methemoglobinemia: from diagnosis to treatment. Rev Bras Anestesiol 2008; 58(6):651-664.
- van Dijk A, Douze JMC, & van Heijst ANP: Clinical evaluation of the cyanide antagonist 4-DMAP. (Abstract), II World Congress of the World Federation of Associations of Clinical Toxicology and Poison Control Centers, Brussels, Belgium, 1986.
- van Heijst ANP, Douze JMC, & van Kasteren RG: Therapeutic problems in cyanide poisoning. Clin Toxicol 1987; 25:383-398.
|