CRYOFLUORANE
HAZARDTEXT ®
Information to help in the initial response for evaluating chemical incidents
-IDENTIFICATION
SYNONYMS
ARCTON 33 ARCTON 114 CFC-114 CRIOFLUORANO (Spanish) CRYOFLUORAN CRYOFLUORANE CRYOFLUORANUM (Latin) DICHLOROTETRAFLUOROETHANE sym-DICHLOROTETRAFLUOROETHANE 1,2-DICHLOROTETRAFLUOROETHANE 1,2-DICHLORO-1,1,2,2-TETRAFLUOROETHANE ETHANE, 1,2-DICHLOROTETRAFLUORO- ETHANE, 1,2-DICHLORO-1,1,2,2-TETRAFLUORO- F-114 F 114 FC 114 FLUORANE 114 FLUOROCARBON 114 FREON 114 FRIGEN 114 FRIGIDERM GENETRON 114 GENETRON 316 HALON 242 HALOCARBON 114 LEDON 114 PROPELLANT 114 R 114 REFRIGERANT 114 TETRAFLUORODICHLOROETHANE 1,1,2,2-TETRAFLUORO-1,2-DICHLOROETHANE UCON 114
IDENTIFIERS
1958-1,2-Dichloro-1,1,2,2-tetrafluoroethane
SYNONYM REFERENCE
- (Hathaway et al, 1996; HSDB , 2000; Lewis, 1996; NIOSH , 2000; RTECS , 2000)
USES/FORMS/SOURCES
Cryofluorane is used as a refrigerant and an aerosol propellant (Budavari, 1996; Sittig, 1991). This compound is also used as a blowing agent for cellular polymers; as a solvent and diluent in polymerization reactions of fluoro-olefins; as a cleaning and degreasing agent for printed circuit boards; as an agent for the preparation of explosives and for the extraction of volatile substances (HSDB , 2000). It is also utilized as a foaming agent in fire extinguishers and aerosols (Hathaway et al, 1996; HSDB , 2000). It is used to prepare uranium tetrafluoride, Freons and polymer intermediates; as a metal erosion inhibiting agent in hydraulic fluids; as an agent strengthening glass bottles; as an agent in magnesium refining, and as a heat removing agent in reflux (HSDB , 2000) HSDB (2000) reports that, due to their depleting effects on stratospheric ozone, chlorofluorocarbons were prohibited in 1979 from being used in aerosol sprays with the exception of a few special items.
Cryofluorane exists as a clear, colorless liquid (below 38 degrees F) or gas. It is shipped as liquefied, compressed gas, at technical, 95% grade (HSDB , 2000).
Cryofluorane is produced when hexachloroethane is treated with anhydrous fluoride under high pressure, using antimony chloride as a catalyst (HSDB , 2000). This compound can be manufactured through the reaction of hexachloroethane with anhydrous fluoride, using high pressure conditions and small amounts of antimony chloride as catalyst (HSDB , 2000).
-CLINICAL EFFECTS
GENERAL CLINICAL EFFECTS
- Cryofluorane may be irritating to the nose, throat, and lungs. Signs and symptoms associated with exposure may include fatigue, visual disturbances, mood disturbances, numbness of the extremities, headache, confusion, tremors, seizures, incoordination, cyanosis, unconsciousness, chemical pneumonitis or noncardiogenic pulmonary edema, cardiac arrhythmias, and cardiac arrest. Contact with the skin may cause frostbite.
- Inhalation of this compound has caused a decrease in the myocardial threshold to the arrhythmogenic action of injected epinephrine in experimental animals.
- POTENTIAL HEALTH HAZARDS - EMERGENCY RESPONSE GUIDEBOOK, GUIDE 126 (ERG, 2004)
Vapors may cause dizziness or asphyxiation without warning. Vapors from liquefied gas are initially heavier than air and spread along ground. Contact with gas or liquefied gas may cause burns, severe injury and/or frostbite. Fire may produce irritating, corrosive and/or toxic gases.
-MEDICAL TREATMENT
LIFE SUPPORT
- Support respiratory and cardiovascular function.
SUMMARY
- FIRST AID - EMERGENCY RESPONSE GUIDEBOOK, GUIDE 126 (ERG, 2004)
Move victim to fresh air. Call 911 or emergency medical service. Give artificial respiration if victim is not breathing. Administer oxygen if breathing is difficult. Remove and isolate contaminated clothing and shoes. In case of contact with liquefied gas, thaw frosted parts with lukewarm water. Keep victim warm and quiet. Ensure that medical personnel are aware of the material(s) involved and take precautions to protect themselves.
FIRST AID EYE EXPOSURE - If eye tissue is frozen, seek medical attention immediately; if tissue is not frozen, immediately and thoroughly flush the eyes with large amounts of water for at least 15 minutes, occasionally lifting the lower and upper eyelids. If irritation, pain, swelling, lacrimation, or photophobia persist, get medical attention as soon as possible. DERMAL EXPOSURE - If frostbite has occurred, seek medical attention immediately; do NOT rub the affected areas or flush them with water. In order to prevent further tissue damage, do NOT attempt to remove frozen clothing from frostbitten areas. If frostbite has NOT occurred, immediately and thoroughly wash contaminated skin with soap and water. INHALATION EXPOSURE - Move the exposed person to fresh air at once. If breathing has stopped, perform artificial respiration. Keep the affected person warm and at rest. Get medical attention as soon as possible. TARGET ORGANS - Respiratory system and cardiovascular system (National Institute for Occupational Safety and Health, 2007).
GENERAL - Move victims of inhalation exposure from the toxic environment and administer 100% humidified supplemental oxygen with assisted ventilation as required. If frostbite has developed after eye or skin exposure, seek medical attention immediately and do not flush exposed area with water. If frostbite has not developed, exposed skin and eyes should be copiously flushed with water.
INHALATION EXPOSURE - INHALATION: Move patient to fresh air. Monitor for respiratory distress. If cough or difficulty breathing develops, evaluate for respiratory tract irritation, bronchitis, or pneumonitis. Administer oxygen and assist ventilation as required. Treat bronchospasm with an inhaled beta2-adrenergic agonist. Consider systemic corticosteroids in patients with significant bronchospasm. Carefully observe patients with inhalation exposure for the development of any systemic signs or symptoms and administer symptomatic treatment as necessary. Respiratory tract irritation, if severe, can progress to pulmonary edema which may be delayed in onset up to 24 to 72 hours after exposure in some cases. ACUTE LUNG INJURY: Maintain ventilation and oxygenation and evaluate with frequent arterial blood gases and/or pulse oximetry monitoring. Early use of PEEP and mechanical ventilation may be needed. If respiratory tract irritation or respiratory depression is evident, monitor arterial blood gases, chest x-ray, and pulmonary function tests. Cardiac monitoring may be advisable in cases of significant exposure. Whenever possible, the administration of epinephrine should be avoided in patients with chlorofluorocarbon inhalation exposure (ILO, 1983). If epinephrine is required for the treatment of life-threatening conditions, it should be administered in the lowest possible dose, careful and continuous cardiac monitoring should be done, and resuscitation equipment and supplies should be readily available.
Airway protection and maintenance may be required. SEIZURES: Administer a benzodiazepine; DIAZEPAM (ADULT: 5 to 10 mg IV initially; repeat every 5 to 20 minutes as needed. CHILD: 0.1 to 0.5 mg/kg IV over 2 to 5 minutes; up to a maximum of 10 mg/dose. May repeat dose every 5 to 10 minutes as needed) or LORAZEPAM (ADULT: 2 to 4 mg IV initially; repeat every 5 to 10 minutes as needed, if seizures persist. CHILD: 0.05 to 0.1 mg/kg IV over 2 to 5 minutes, up to a maximum of 4 mg/dose; may repeat in 5 to 15 minutes as needed, if seizures continue). Consider phenobarbital or propofol if seizures recur after diazepam 30 mg (adults) or 10 mg (children greater than 5 years). Monitor for hypotension, dysrhythmias, respiratory depression, and need for endotracheal intubation. Evaluate for hypoglycemia, electrolyte disturbances, and hypoxia.
DERMAL EXPOSURE - DECONTAMINATION: Remove contaminated clothing and jewelry and place them in plastic bags. Wash exposed areas with soap and water for 10 to 15 minutes with gentle sponging to avoid skin breakdown. A physician may need to examine the area if irritation or pain persists (Burgess et al, 1999). If frostbite has occurred, DO NOT rub the affected areas, DO NOT flush affected areas with water, or attempt to remove clothing. PREHOSPITAL Rewarming of a localized area should only be considered if the risk of refreezing is unlikely. Avoid rubbing the frozen area which may cause further damage to the area (Grieve et al, 2011; Hallam et al, 2010).
REWARMING Do not institute rewarming unless complete rewarming can be assured; refreezing thawed tissue increases tissue damage. Place affected area in a water bath with a temperature of 40 to 42 degrees Celsius for 15 to 30 minutes until thawing is complete. The bath should be large enough to permit complete immersion of the injured part, avoiding contact with the sides of the bath. A whirlpool bath would be ideal. Some authors suggest a mild antibacterial (ie, chlorhexidine, hexachlorophene or povidone-iodine) be added to the bath water. Tissues should be thoroughly rewarmed and pliable; the skin will appear a red-purple color (Grieve et al, 2011; Hallam et al, 2010; Murphy et al, 2000). Correct systemic hypothermia which can cause cold diuresis due to suppression of antidiuretic hormone; consider IV fluids (Grieve et al, 2011). Rewarming may be associated with increasing acute pain, requiring narcotic analgesics. For severe frostbite, clinical trials have shown that pentoxifylline, a phosphodiesterase inhibitor, can enhance tissue viability by increasing blood flow and reducing platelet activity (Hallam et al, 2010).
WOUND CARE Digits should be separated by sterile absorbent cotton; no constrictive dressings should be used. Protective dressings should be changed twice per day. Perform twice daily hydrotherapy for 30 to 45 minutes in warm water at 40 degrees Celsius. This helps debride devitalized tissue and maintain range of motion. Keep the area warm and dry between treatments (Hallam et al, 2010; Murphy et al, 2000). The injured extremities should be elevated and should not be allowed to bear weight. In patients at risk for infection of necrotic tissue, prophylactic antibiotics and tetanus toxoid have been recommended by some authors (Hallam et al, 2010; Murphy et al, 2000). Non-tense clear blisters should be left intact due to the risk of infection; tense or hemorrhagic blisters may be carefully aspirated in a setting where aseptic technique is provided (Hallam et al, 2010). Further surgical debridement should be delayed until mummification demarcation has occurred (60 to 90 days). Spontaneous amputation may occur. Analgesics may be required during the rewarming phase; however, patients with severe pain should be evaluated for vasospasm. IMAGING: Arteriography and noninvasive vascular techniques (e.g., plain radiography, laser Doppler studies, digital plethysmography, infrared thermography, isotope scanning), have been useful in evaluating the extent of vasospasm after thawing and assessing whether debridement is needed (Hallam et al, 2010). In cases of severe frostbite, Technetium 99 (triple phase scanning) and MRI angiography have been shown to be the most useful to assess injury and determine the extent or need for surgical debridement (Hallam et al, 2010). TOPICAL THERAPY: Topical aloe vera may decrease tissue destruction and should be applied every 6 hours (Murphy et al, 2000). IBUPROFEN THERAPY: Ibuprofen, a thromboxane inhibitor, may help limit inflammatory damage and reduce tissue loss (Grieve et al, 2011; Murphy et al, 2000). DOSE: 400 mg orally every 12 hours is recommended (Hallam et al, 2010). THROMBOLYTIC THERAPY: Thrombolysis (intra-arterial or intravenous thrombolytic agents) may be beneficial in those patients at risk to lose a digit or a limb, if done within the first 24 hours of exposure. The use of tissue plasminogen activator (t-PA) to clear microvascular thromboses can restore arterial blood flow, but should be accompanied by close monitoring including angiography or technetium scanning to evaluate the injury and to evaluate the effects of t-PA administration. Potential risk of the procedure includes significant tissue edema that can lead to a rise in interstitial pressures resulting in compartment syndrome (Grieve et al, 2011). CONTROVERSIAL: Adjunct pharmacological agents (ie, heparin, vasodilators, prostacyclins, prostaglandin synthetase inhibitors, dextran) are controversial and not routinely recommended. The role of hyperbaric oxygen therapy, sympathectomy remains unclear (Grieve et al, 2011). CHRONIC PAIN: Vasomotor dysfunction can produce chronic pain. Amitriptyline has been used in some patients; some patients may need a referral for pain management. Inability to tolerate the cold (in the affected area) has been observed following a single episode of frostbite (Hallam et al, 2010). MORBIDITIES: Frostbite can produce localized osteoporosis and possible bone loss following a severe case. These events may take a year or more to develop. Children may be at greater risk to develop more severe events (ie, early arthritis) (Hallam et al, 2010).
EYE EXPOSURE - DECONTAMINATION: Remove contact lenses and irrigate exposed eyes with copious amounts of room temperature 0.9% saline or water for at least 15 minutes. If irritation, pain, swelling, lacrimation, or photophobia persist after 15 minutes of irrigation, the patient should be seen in a healthcare facility. If contact with escaping gas may have caused frostbite of the eyes do not flush with water; early ophthalmologic consultation should be obtained.
ORAL EXPOSURE - Ingestion is unlikely because this substance is a gas at room temperature and pressure. Oral exposure to escaping gas might cause frostbite injury to the upper gastrointestinal and respiratory tracts. Administer oxygen and maintain airway as clinically indicated. Observe patients with ingestion carefully for the possible development of esophageal or gastrointestinal tract irritation or burns. If signs or symptoms of esophageal irritation or burns are present, consider endoscopy to determine the extent of injury.
-RANGE OF TOXICITY
MINIMUM LETHAL EXPOSURE
Cryofluorane itself has little to no toxic effect on humans; however, contact of cryofluorane with flames or hot metal surfaces may result in the formation of toxic substances (Budavari, 1996). Over 100 deaths have been documented for individuals sniffing products containing fluorocarbons for their intoxicating effects (HSDB , 2000). Cryofluorane acts as a general asphyxiant at very high air concentrations (Hathaway et al, 1996). Unconsciousness leading to death will occur when an asphyxiant displaces the oxygen concentration to 6% to 8% or less (Kizer, 1984). Signs of asphyxia will be noted when atmospheric oxygen is displaced such that the oxygen concentration is 15% to 16% or less (Kizer, 1984).
MAXIMUM TOLERATED EXPOSURE
Cryofluorane acts as a general asphyxiant at very high air concentrations (Hathaway et al, 1996). Unconsciousness leading to death will occur when an asphyxiant displaces the oxygen concentration to 6% to 8% or less (Kizer, 1984). Signs of asphyxia will be noted when atmospheric oxygen is displaced such that the oxygen concentration is 15% to 16% or less (Kizer, 1984).
Dogs exposed to 140,000 to 160,000 ppm (14 to 16 percent) for 8 hours, or repeatedly for 8 hours at a time, developed incoordination, tremors, and rare convulsions, but all survived. Respiratory irritation was noted in guinea pigs exposed for 2 hours to a concentration of 47,000 ppm (4.7 percent). One out of 12 dogs developed significant cardiac arrhythmias when injected with epinephrine intravenously while breathing a concentration of 25,000 ppm (2.5 percent). No clinical, biochemical, or histological effects were seen in dogs exposed to 5,000 ppm or rats exposed to 10,000 ppm 6 hours daily for 90 days. A 40 percent solution produced no effects when applied directly to the skin of rabbits, but repeated spraying into the eyes caused conjunctival irritation. (REFERENCE - Hathaway et al, 1996)
- Carcinogenicity Ratings for CAS76-14-2 :
ACGIH (American Conference of Governmental Industrial Hygienists, 2010): A4 ; Listed as: Dichlorotetrafluoroethane EPA (U.S. Environmental Protection Agency, 2011): Not Listed IARC (International Agency for Research on Cancer (IARC), 2016; International Agency for Research on Cancer, 2015; IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, 2010; IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, 2010a; IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, 2008; IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, 2007; IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, 2006; IARC, 2004): Not Listed NIOSH (National Institute for Occupational Safety and Health, 2007): Not Listed ; Listed as: Dichlorotetrafluoroethane MAK (DFG, 2002): Not Listed NTP (U.S. Department of Health and Human Services, Public Health Service, National Toxicology Project ): Not Listed
TOXICITY AND RISK ASSESSMENT VALUES
- EPA Risk Assessment Values for CAS76-14-2 (U.S. Environmental Protection Agency, 2011):
CALCULATIONS
-STANDARDS AND LABELS
WORKPLACE STANDARDS
- ACGIH TLV Values for CAS76-14-2 (American Conference of Governmental Industrial Hygienists, 2010):
Editor's Note: The listed values are recommendations or guidelines developed by ACGIH(R) to assist in the control of health hazards. They should only be used, interpreted and applied by individuals trained in industrial hygiene. Before applying these values, it is imperative to read the introduction to each section in the current TLVs(R) and BEI(R) Book and become familiar with the constraints and limitations to their use. Always consult the Documentation of the TLVs(R) and BEIs(R) before applying these recommendations and guidelines.
- AIHA WEEL Values for CAS76-14-2 (AIHA, 2006):
- NIOSH REL and IDLH Values for CAS76-14-2 (National Institute for Occupational Safety and Health, 2007):
- OSHA PEL Values for CAS76-14-2 (U.S. Occupational Safety, and Health Administration (OSHA), 2010):
- OSHA List of Highly Hazardous Chemicals, Toxics, and Reactives for CAS76-14-2 (U.S. Occupational Safety and Health Administration, 2010):
ENVIRONMENTAL STANDARDS
- EPA CERCLA, Hazardous Substances and Reportable Quantities for CAS76-14-2 (U.S. Environmental Protection Agency, 2010):
- EPA CERCLA, Hazardous Substances and Reportable Quantities, Radionuclides for CAS76-14-2 (U.S. Environmental Protection Agency, 2010):
- EPA RCRA Hazardous Waste Number for CAS76-14-2 (U.S. Environmental Protection Agency, 2010b):
- EPA SARA Title III, Extremely Hazardous Substance List for CAS76-14-2 (U.S. Environmental Protection Agency, 2010):
- EPA SARA Title III, Community Right-to-Know for CAS76-14-2 (40 CFR 372.65, 2006; 40 CFR 372.28, 2006):
Listed as: Dichlorotetrafluoroethane (CFC-114) Effective Date for Reporting Under 40 CFR 372.30: 7/8/90 Lower Thresholds for Chemicals of Special Concern under 40 CFR 372.28:
- DOT List of Marine Pollutants for CAS76-14-2 (49 CFR 172.101 - App. B, 2005):
- EPA TSCA Inventory for CAS76-14-2 (EPA, 2005):
Listed as: Ethane, 1,2-dichloro-1,1,2,2-tetrafluoro-
SHIPPING REGULATIONS
- DOT -- Table of Hazardous Materials and Special Provisions for UN/NA Number 1958 (49 CFR 172.101, 2005):
Hazardous materials descriptions and proper shipping name: 1,2-Dichloro-1,1,2,2-tetrafluoroethane or Refrigerant gas R 114 Symbol(s): Not Listed Hazard class or Division: 2.2 Identification Number: UN1958 Packing Group: Not Listed Label(s) required (if not excepted): 2.2 Special Provisions: T50 Packaging Authorizations (refer to 49 CFR 173.***): Exceptions: 306 Non-bulk packaging: 304 Bulk packaging: 314, 315
Quantity Limitations: Vessel Stowage Requirements:
- ICAO International Shipping Name for UN1958 (ICAO, 2002):
Proper Shipping Name: 1,2-Dichloro-1,1,2,2-tetrafluoroethane UN Number: 1958 Proper Shipping Name: Refrigerant gas R 114 UN Number: 1958
LABELS
- NFPA Hazard Ratings for CAS76-14-2 (NFPA, 2002):
-HANDLING AND STORAGE
SUMMARY
Violent reactions may occur when cryofluorane contacts chemically-active metals such as calcium, potassium, sodium, or powdered aluminum, zinc, and magnesium. Therefore, precautions should be taken to avoid such interactions. Tightly-closed metal containers of cryofluorane should be stored in cool areas with adequate ventilation and kept free from flammable materials (HSDB , 2000; Sittig, 1991). To avoid the formation of toxic decomposition products and to minimize the risk of inhalation, adequate ventilation should be provided. Also recommended is the use of a breathing device equipped with an independent air supply; if entering a tank or confined space, a lifeline should be worn (HSDB , 2000). "All fluorocarbons are less toxic than any of the process materials used in their manufacture. Major hazards relate primarily to inadvertent release of hydrofluoric acid or carbon tetrachloride, rather than manufactured fluorocarbons" (HSDB , 2000).
HANDLING
- HSDB (2000) recommends using a breathing device equipped with an independent air supply when working in areas where fluorocarbons may be present. If entering a tank or confined space, a lifeline should be worn.
STORAGE
- ROOM/CABINET RECOMMENDATIONS
Violent reactions may occur when cryofluorane contacts chemically-active metals such as calcium, potassium, sodium, or powdered aluminum, zinc, and magnesium (NIOSH , 2000; Sittig, 1991). Highly toxic fumes will be emitted when cryofluorane contacts acid or acid fumes (HSDB , 2000; NIOSH , 2000). Coatings, plastics, and rubber in certain forms will be attacked by cryofluorane (HSDB , 2000).
-PERSONAL PROTECTION
SUMMARY
- RECOMMENDED PROTECTIVE CLOTHING - EMERGENCY RESPONSE GUIDEBOOK, GUIDE 126 (ERG, 2004)
Wear positive pressure self-contained breathing apparatus (SCBA). Wear chemical protective clothing that is specifically recommended by the manufacturer. It may provide little or no thermal protection. Structural firefighters' protective clothing will only provide limited protection.
- Appropriate protective clothing, including suits, gloves, footwear, and headgear, must be worn to ensure that frostbite does not occur while working with cold equipment, vapors, or liquid cryofluorane. Provide quick drench facilities and eyewash fountains within the immediate work area (NIOSH , 2000; Sittig, 1991).
- HSDB (2000) recommends using protective ointment since many of the fluorocarbons show solvent action on skin oil.
- To avoid the formation of toxic decomposition products and to minimize the risk of inhalation, adequate ventilation should be provided. Also recommended is the use of a breathing device equipped with an independent air supply; if entering a tank or confined space, a lifeline should be worn (HSDB , 2000).
EYE/FACE PROTECTION
- When working with liquid cryofluorane, a face shield and splash-proof goggles (or full facepiece respiratory protection) should be worn to prevent tissue damage or burns that could result from frostbite. When working with cryofluorane in its gaseous form, gas-proof goggles or full facepiece respiratory protection should be worn (CHRIS , 2000; HSDB , 2000) NIOSH, 20000; (Sittig, 1991).
RESPIRATORY PROTECTION
- Refer to "Recommendations for respirator selection" in the NIOSH Pocket Guide to Chemical Hazards on TOMES Plus(R) for respirator information.
- To avoid the formation of toxic decomposition products and to minimize the risk of inhalation, adequate ventilation should be provided. Also recommended is the use of a breathing device equipped with an independent air supply (HSDB , 2000).
PROTECTIVE CLOTHING
- CHEMICAL PROTECTIVE CLOTHING. Search results for CAS 76-14-2.
-PHYSICAL HAZARDS
FIRE HAZARD
- FLAMMABILITY CLASSIFICATION
- NFPA Flammability Rating for CAS76-14-2 (NFPA, 2002):
- FIRE CONTROL/EXTINGUISHING AGENTS
- FIRE PRECAUTIONS - EMERGENCY RESPONSE GUIDEBOOK, GUIDE 126 (ERG, 2004)
- SMALL FIRE PRECAUTIONS - EMERGENCY RESPONSE GUIDEBOOK, GUIDE 126 (ERG, 2004)
- LARGE FIRE PRECAUTIONS - EMERGENCY RESPONSE GUIDEBOOK, GUIDE 126 (ERG, 2004)
Water spray, fog or regular foam. Move containers from fire area if you can do it without risk. Damaged cylinders should be handled only by specialists.
- TANK FIRE PRECAUTIONS - EMERGENCY RESPONSE GUIDEBOOK, GUIDE 126 (ERG, 2004)
Fight fire from maximum distance or use unmanned hose holders or monitor nozzles. Cool containers with flooding quantities of water until well after fire is out. Do not direct water at source of leak or safety devices; icing may occur. Withdraw immediately in case of rising sound from venting safety devices or discoloration of tank. ALWAYS stay away from tanks engulfed in fire. Some of these materials, if spilled, may evaporate leaving a flammable residue.
- NFPA Extinguishing Methods for CAS76-14-2 (NFPA, 2002):
- Since cryofluorane itself does not burn, fires involving this compound should be extinguished with an agent that is suitable for the surrounding fire type. If it can be done without risk, containers of cryofluorane should be moved away from the area to decrease the risk of explosion. Otherwise, cool exposed containers with flooding quantities of water from as far a distance as possible and until after fire is completely out. Should a rising sound from venting safety devices be heard or a discoloration of tanks due to the fire observed, personnel should leave the area immediately (CHRIS , 2000; HSDB , 2000; Sittig, 1991).
Contacting flames or hot surfaces may cause fluorocarbons to decompose, creating the highly irritant vapors of hydrogen fluoride , hydrogen chloride, phosgene, and carbonyl fluoride (HSDB , 2000).
EXPLOSION HAZARD
- Fires may generate enough heat to cause containers of cryofluorane to explode (CHRIS , 2000).
DUST/VAPOR HAZARD
- The decomposition of cryofluorane may result in the release of toxic gases and vapors such as hydrogen chloride, phosgene, and hydrogen fluoride (HSDB , 2000).
- Because vapors of fluorocarbons are 4 to 5 times heavier than air, high concentrations may accumulate in low-lying areas. The inhalation of such concentrated vapors may result in fatalities (HSDB , 2000).
- At extremely high concentrations, cryofluorane can cause asphyxia by displacement of oxygen from the breathing atmosphere (Hathaway et al, 1996).
REACTIVITY HAZARD
- Cryofluorane coming into contact with a flame or a hot metal surface may form toxic substances (Budavari, 1996).
- Violent reactions may occur when cryofluorane contacts chemically-active metals such as calcium, potassium, sodium, or powdered aluminum, zinc, and magnesium (NIOSH , 2000; Sittig, 1991).
- Highly toxic fumes will be emitted when cryofluorane contacts acid or acid fumes (HSDB , 2000; NIOSH , 2000).
- Coatings, plastics, and rubber in certain forms will be attacked by cryofluorane (HSDB , 2000).
EVACUATION PROCEDURES
- Editor's Note: This material is not listed in the Table of Initial Isolation and Protective Action Distances.
- LARGE SPILL - PUBLIC SAFETY EVACUATION DISTANCES - EMERGENCY RESPONSE GUIDEBOOK, GUIDE 126 (ERG, 2004)
- FIRE - PUBLIC SAFETY EVACUATION DISTANCES - EMERGENCY RESPONSE GUIDEBOOK, GUIDE 126 (ERG, 2004)
If tank, rail car or tank truck is involved in a fire, ISOLATE for 800 meters (1/2 mile) in all directions; also, consider initial evacuation for 800 meters (1/2 mile) in all directions.
- PUBLIC SAFETY MEASURES - EMERGENCY RESPONSE GUIDEBOOK, GUIDE 126 (ERG, 2004)
CALL Emergency Response Telephone Number on Shipping Paper first. If Shipping Paper not available or no answer, refer to appropriate telephone number: MEXICO: SETIQ: 01-800-00-214-00 in the Mexican Republic; For calls originating in Mexico City and the Metropolitan Area: 5559-1588; For calls originating elsewhere, call: 011-52-555-559-1588.
CENACOM: 01-800-00-413-00 in the Mexican Republic; For calls originating in Mexico City and the Metropolitan Area: 5550-1496, 5550-1552, 5550-1485, or 5550-4885; For calls originating elsewhere, call: 011-52-555-550-1496, or 011-52-555-550-1552; 011-52-555-550-1485, or 011-52-555-550-4885.
ARGENTINA: CIQUIME: 0-800-222-2933 in the Republic of Argentina; For calls originating elsewhere, call: +54-11-4613-1100.
BRAZIL: PRÓ-QUÍMICA: 0-800-118270 (Toll-free in Brazil); For calls originating elsewhere, call: +55-11-232-1144 (Collect calls are accepted).
COLUMBIA: CISPROQUIM: 01-800-091-6012 in Colombia; For calls originating in Bogotá, Colombia, call: 288-6012; For calls originating elsewhere, call: 011-57-1-288-6012.
CANADA: UNITED STATES:
For additional details see the section entitled "WHO TO CALL FOR ASSISTANCE" under the ERG Instructions. As an immediate precautionary measure, isolate spill or leak area for at least 100 meters (330 feet) in all directions. Keep unauthorized personnel away. Stay upwind. Many gases are heavier than air and will spread along ground and collect in low or confined areas (sewers, basements, tanks). Keep out of low areas. Ventilate closed spaces before entering.
- AIHA ERPG Values for CAS76-14-2 (AIHA, 2006):
- DOE TEEL Values for CAS76-14-2 (U.S. Department of Energy, Office of Emergency Management, 2010):
Listed as Dichlorotetrafluoroethane 1,2-; (Freon 114, CFC114) TEEL-0 (units = ppm): 1,000 TEEL-1 (units = ppm): 1,500 TEEL-2 (units = ppm): 10,000 TEEL-3 (units = ppm): 15,000 Definitions: TEEL-0: The threshold concentration below which most people will experience no adverse health effects. TEEL-1: The airborne concentration (expressed as ppm [parts per million] or mg/m(3) [milligrams per cubic meter]) of a substance above which it is predicted that the general population, including susceptible individuals, could experience notable discomfort, irritation, or certain asymptomatic, nonsensory effects. However, these effects are not disabling and are transient and reversible upon cessation of exposure. TEEL-2: The airborne concentration (expressed as ppm or mg/m(3)) of a substance above which it is predicted that the general population, including susceptible individuals, could experience irreversible or other serious, long-lasting, adverse health effects or an impaired ability to escape. TEEL-3: The airborne concentration (expressed as ppm or mg/m(3)) of a substance above which it is predicted that the general population, including susceptible individuals, could experience life-threatening adverse health effects or death.
- AEGL Values for CAS76-14-2 (National Research Council, 2010; National Research Council, 2009; National Research Council, 2008; National Research Council, 2007; NRC, 2001; NRC, 2002; NRC, 2003; NRC, 2004; NRC, 2004; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2006; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2007; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2005; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2005; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2007; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2006; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2006; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2006; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2006; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2006; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2006; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2006; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2006; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2006; United States Environmental Protection Agency Office of Pollution Prevention and Toxics, 2006; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2006; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2007; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2007; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2008; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2008; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2007; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2008; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2007; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2008; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2007; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2009; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2009; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2009; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2009; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2009; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2009; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2009; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2009; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2009; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2009; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2009; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2008; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2008; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2008; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2008; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2008; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2008; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2008; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2009; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2008; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2008; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2008; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2009; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2008; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2008; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2008; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2008; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2008; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2008; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2008; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2007; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2006; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2006; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2006; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2007; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2007; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2007; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2007; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2007; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2005; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2005; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2005; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2005; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2005; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2005; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2005; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2005; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2007; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2005; National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances, 2006; 62 FR 58840, 1997; 65 FR 14186, 2000; 65 FR 39264, 2000; 65 FR 77866, 2000; 66 FR 21940, 2001; 67 FR 7164, 2002; 68 FR 42710, 2003; 69 FR 54144, 2004):
- NIOSH IDLH Values for CAS76-14-2 (National Institute for Occupational Safety and Health, 2007):
IDLH: 15,000 ppm Note(s): Not Listed
CONTAINMENT/WASTE TREATMENT OPTIONS
SPILL OR LEAK PRECAUTIONS - EMERGENCY RESPONSE GUIDEBOOK, GUIDE 126 (ERG, 2004) Do not touch or walk through spilled material. Stop leak if you can do it without risk. Do not direct water at spill or source of leak. Use water spray to reduce vapors or divert vapor cloud drift. Avoid allowing water runoff to contact spilled material. If possible, turn leaking containers so that gas escapes rather than liquid. Prevent entry into waterways, sewers, basements or confined areas. Allow substance to evaporate. Ventilate the area.
RECOMMENDED PROTECTIVE CLOTHING - EMERGENCY RESPONSE GUIDEBOOK, GUIDE 126 (ERG, 2004) Wear positive pressure self-contained breathing apparatus (SCBA). Wear chemical protective clothing that is specifically recommended by the manufacturer. It may provide little or no thermal protection. Structural firefighters' protective clothing will only provide limited protection.
Only those personnel who are wearing protective equipment (including a self-contained positive pressure breathing apparatus and full protective clothing) should be allowed near the area of the spill or leak. If cryofluorane gas is leaking, the area should be ventilated to allow for the dispersion of gas and, if it can be done without risk, the flow of gas stopped; if the source of the leak cannot be safely repaired, allow the container to empty in the open air. For liquid spills, allow the spill to vaporize (CHRIS , 2000; HSDB , 2000; Sittig, 1991). The disposal method suggested by Sittig (1991) includes mixing the spill with a combustible fuel followed by incineration; a flue gas scrubber should be used. In light of the potential for chlorofluorocarbons to contribute to the depletion of the stratospheric ozone layer (Finkel, 1983; ILO, 1983), bleeding cryofluorane off to the atmosphere should most likely not be done.
-ENVIRONMENTAL HAZARD MANAGEMENT
POLLUTION HAZARD
- Environmental release of cryofluorane occurs during its production, transport, storage, disposal, and use as a refrigerant, aerosol propellant, and foaming agent. Inhalation of cryofluorane in ambient air is the primary means for exposure to the general population; dermal contact and inhalation of contaminated air are responsible for occupational exposures. No data exist that would suggest cryofluorane occurs naturally (Howard, 1990).
- When fluorocarbons undergo photodissociation in the stratosphere, chlorine atoms are produced in significant amounts; this leads to atmospheric ozone destruction (Howard, 1990; HSDB , 2000).
ENVIRONMENTAL FATE AND KINETICS
An extremely high vapor pressure will cause almost all cryofluorane to exist in the vapor phase when released into the atmosphere. Some loss by wet deposition occurs due to the cryofluorane's moderate water solubility; however, volatilization will likely return any such loss back to the atmosphere. Since cryofluorane does not undergo degradation in the troposphere, it will diffuse into the stratosphere at a half-life of 20 years, where it will slowly undergo photolysis or reaction with singlet oxygen atoms; the lifetime of cryofluorane in the stratosphere is estimated to be between 126 to 310 years. Cryofluorane can be transported long distances from its original source given its stability in the atmosphere (Howard, 1990).
SURFACE WATER Volatilization will be the primary removal mechanism for cryofluorane released to water; the half-life for this reaction is 4 hours for a model river (1 meter deep; flowing at a rate of 1 m/sec with a wind velocity of 3 m/sec). The following are not expected to be significant fate processes for cryofluorane in water: adsorption to sediments, bioaccumulation, or chemical hydrolysis (Howard, 1990).
TERRESTRIAL Rapid volatilization from surface soil and leaching into groundwater is expected for cryofluorane that is released to soil (Howard, 1990). "Soil adsorption coefficients (Koc) of 815 and 300 were estimated using linear regression equations based on the Kow and the water solubility, respectively. These Koc values suggest that Freon 114 would have low to moderate mobility in soil and that adsorption to suspended solids and sediments in water would be moderate to high" (Howard, 1990).
BIOACCUMULATION
ENVIRONMENTAL TOXICITY
- No information found at the time of this review.
-PHYSICAL/CHEMICAL PROPERTIES
MOLECULAR WEIGHT
DESCRIPTION/PHYSICAL STATE
- Cryofluorane exists as a gas at normal temperature and pressure. It has no color, virtually no odor, and is non-corrosive, nonirritating, and nonflammable. At high concentration, a faint, ether-like odor may be detected. It is converted to a liquefied compressed gas for shipping purposes (Budavari, 1996; Lewis, 1996; NIOSH , 2000).
VAPOR PRESSURE
- 1.9 atm (at 70 degrees F) (NIOSH , 2000)
- 2014 mmHg (at 25 degrees C) (Howard, 1990)
- 10 mmHg (at -72.3 degrees C) (HSDB , 2000)
- 1 mmHg (at -95.4 degrees C) (HSDB , 2000)
- 40 mmHg (at -53.7 degrees C) (HSDB , 2000)
- 100 mmHg (at -39.1 degrees C) (HSDB , 2000)
- 400 mmHg (at -12.0 degrees C) (HSDB , 2000)
DENSITY
- NORMAL TEMPERATURE AND PRESSURE
- STANDARD TEMPERATURE AND PRESSURE
FREEZING/MELTING POINT
BOILING POINT
- 4.1 degrees C (at 760 mmHg) (Budavari, 1996; Howard, 1990; Lewis, 1996)
- 38 degrees F (NIOSH , 2000)
- 3.8 degrees C; 38.8 degrees F; 277 degrees K (at 1 atm) (CHRIS , 2000)
SOLUBILITY
Insoluble (Lewis, 1996) Practically insoluble (Budavari, 1996) 0.01% (NIOSH , 2000) 130 mg/L (at 25 degrees C) (Howard, 1990)
OCTANOL/WATER PARTITION COEFFICIENT
- Log Kow = 2.82 (Howard, 1990)
HENRY'S CONSTANT
- 2.8 atm-m(3)/mole (at 25 degrees C) (calculated from vapor pressure and water solubility) (Howard, 1990)
SPECTRAL CONSTANTS
749 (National Bureau of Standards EPA-NIH Mass Spectra Data Base, NSRDS-NBS-63) (HSDB , 2000) 4272 (National Bureau of Standards EPA-NIH Mass Spectra Data Base, NSRDS-NBS-63) (HSDB , 2000)
OTHER/PHYSICAL
- ORGANIC CARBON PARTITION COEFFICIENT
Koc = 815 (estimated, based on log Kow) (HSDB , 2000) Koc = 300 (estimated, based on water solubility) (HSDB , 2000)
474 psia (Budavari, 1996) 473.2 psia = 32.2 atm = 3.3 MN/m(2) (CHRIS , 2000)
2.26 (at 25 degrees C) (liquid) (HSDB , 2000) 1.0043 (at 26.8 degrees C and 50.65 kPa) (HSDB , 2000)
-REFERENCES
GENERAL BIBLIOGRAPHY- 40 CFR 372.28: Environmental Protection Agency - Toxic Chemical Release Reporting, Community Right-To-Know, Lower thresholds for chemicals of special concern. National Archives and Records Administration (NARA) and the Government Printing Office (GPO). Washington, DC. Final rules current as of Apr 3, 2006.
- 40 CFR 372.65: Environmental Protection Agency - Toxic Chemical Release Reporting, Community Right-To-Know, Chemicals and Chemical Categories to which this part applies. National Archives and Records Association (NARA) and the Government Printing Office (GPO), Washington, DC. Final rules current as of Apr 3, 2006.
- 49 CFR 172.101 - App. B: Department of Transportation - Table of Hazardous Materials, Appendix B: List of Marine Pollutants. National Archives and Records Administration (NARA) and the Government Printing Office (GPO), Washington, DC. Final rules current as of Aug 29, 2005.
- 49 CFR 172.101: Department of Transportation - Table of Hazardous Materials. National Archives and Records Administration (NARA) and the Government Printing Office (GPO), Washington, DC. Final rules current as of Aug 11, 2005.
- 62 FR 58840: Notice of the National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances - Proposed AEGL Values, Environmental Protection Agency, NAC/AEGL Committee. National Archives and Records Administration (NARA) and the Government Publishing Office (GPO), Washington, DC, 1997.
- 65 FR 14186: Notice of the National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances - Proposed AEGL Values, Environmental Protection Agency, NAC/AEGL Committee. National Archives and Records Administration (NARA) and the Government Publishing Office (GPO), Washington, DC, 2000.
- 65 FR 39264: Notice of the National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances - Proposed AEGL Values, Environmental Protection Agency, NAC/AEGL Committee. National Archives and Records Administration (NARA) and the Government Publishing Office (GPO), Washington, DC, 2000.
- 65 FR 77866: Notice of the National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances - Proposed AEGL Values, Environmental Protection Agency, NAC/AEGL Committee. National Archives and Records Administration (NARA) and the Government Publishing Office (GPO), Washington, DC, 2000.
- 66 FR 21940: Notice of the National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances - Proposed AEGL Values, Environmental Protection Agency, NAC/AEGL Committee. National Archives and Records Administration (NARA) and the Government Publishing Office (GPO), Washington, DC, 2001.
- 67 FR 7164: Notice of the National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances - Proposed AEGL Values, Environmental Protection Agency, NAC/AEGL Committee. National Archives and Records Administration (NARA) and the Government Publishing Office (GPO), Washington, DC, 2002.
- 68 FR 42710: Notice of the National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances - Proposed AEGL Values, Environmental Protection Agency, NAC/AEGL Committee. National Archives and Records Administration (NARA) and the Government Publishing Office (GPO), Washington, DC, 2003.
- 69 FR 54144: Notice of the National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances - Proposed AEGL Values, Environmental Protection Agency, NAC/AEGL Committee. National Archives and Records Administration (NARA) and the Government Publishing Office (GPO), Washington, DC, 2004.
- AIHA: 2006 Emergency Response Planning Guidelines and Workplace Environmental Exposure Level Guides Handbook, American Industrial Hygiene Association, Fairfax, VA, 2006.
- American Conference of Governmental Industrial Hygienists : ACGIH 2010 Threshold Limit Values (TLVs(R)) for Chemical Substances and Physical Agents and Biological Exposure Indices (BEIs(R)), American Conference of Governmental Industrial Hygienists, Cincinnati, OH, 2010.
- Ansell-Edmont: SpecWare Chemical Application and Recommendation Guide. Ansell-Edmont. Coshocton, OH. 2001. Available from URL: http://www.ansellpro.com/specware. As accessed 10/31/2001.
- Bata Shoe Company: Industrial Footwear Catalog, Bata Shoe Company, Belcamp, MD, 1995.
- Best Manufacturing: ChemRest Chemical Resistance Guide. Best Manufacturing. Menlo, GA. 2002. Available from URL: http://www.chemrest.com. As accessed 10/8/2002.
- Best Manufacturing: Degradation and Permeation Data. Best Manufacturing. Menlo, GA. 2004. Available from URL: http://www.chemrest.com/DomesticPrep2/. As accessed 04/09/2004.
- Boss Manufacturing Company: Work Gloves, Boss Manufacturing Company, Kewanee, IL, 1998.
- Budavari S: The Merck Index, 12th ed, Merck & Co, Inc, Whitehouse Station, NJ, 1996.
- Budavari S: The Merck Index, 12th edition, Merck & Co, Inc, Whitehouse Station, NJ, 1996a.
- Burgess JL, Kirk M, Borron SW, et al: Emergency department hazardous materials protocol for contaminated patients. Ann Emerg Med 1999; 34(2):205-212.
- CHRIS : CHRIS Hazardous Chemical Data. US Department of Transportation, US Coast Guard. Washington, DC (Internet Version). Edition expires 1/31/2000; provided by Truven Health Analytics Inc., Greenwood Village, CO.
- ChemFab Corporation: Chemical Permeation Guide Challenge Protective Clothing Fabrics, ChemFab Corporation, Merrimack, NH, 1993.
- Comasec Safety, Inc.: Chemical Resistance to Permeation Chart. Comasec Safety, Inc.. Enfield, CT. 2003. Available from URL: http://www.comasec.com/webcomasec/english/catalogue/mtabgb.html. As accessed 4/28/2003.
- Comasec Safety, Inc.: Product Literature, Comasec Safety, Inc., Enfield, CT, 2003a.
- DFG: List of MAK and BAT Values 2002, Report No. 38, Deutsche Forschungsgemeinschaft, Commission for the Investigation of Health Hazards of Chemical Compounds in the Work Area, Wiley-VCH, Weinheim, Federal Republic of Germany, 2002.
- DuPont: DuPont Suit Smart: Interactive Tool for the Selection of Protective Apparel. DuPont. Wilmington, DE. 2002. Available from URL: http://personalprotection.dupont.com/protectiveapparel/suitsmart/smartsuit2/na_english.asp. As accessed 10/31/2002.
- DuPont: Permeation Guide for DuPont Tychem Protective Fabrics. DuPont. Wilmington, DE. 2003. Available from URL: http://personalprotection.dupont.com/en/pdf/tyvektychem/pgcomplete20030128.pdf. As accessed 4/26/2004.
- DuPont: Permeation Test Results. DuPont. Wilmington, DE. 2002a. Available from URL: http://www.tyvekprotectiveapprl.com/databases/default.htm. As accessed 7/31/2002.
- EPA: Search results for Toxic Substances Control Act (TSCA) Inventory Chemicals. US Environmental Protection Agency, Substance Registry System, U.S. EPA's Office of Pollution Prevention and Toxics. Washington, DC. 2005. Available from URL: http://www.epa.gov/srs/.
- ERG: Emergency Response Guidebook. A Guidebook for First Responders During the Initial Phase of a Dangerous Goods/Hazardous Materials Incident, U.S. Department of Transportation, Research and Special Programs Administration, Washington, DC, 2004.
- Finkel AJ: Hamilton and Hardy's Industrial Toxicology, 4th ed, John Wright, PSG Inc, Boston, MA, 1983, pp 241.
- Grieve AW, Davis P, Dhillon S, et al: A clinical review of the management of frostbite. J R Army Med Corps 2011; 157(1):73-78.
- Guardian Manufacturing Group: Guardian Gloves Test Results. Guardian Manufacturing Group. Willard, OH. 2001. Available from URL: http://www.guardian-mfg.com/guardianmfg.html. As accessed 12/11/2001.
- HSDB : Hazardous Substances Data Bank. National Library of Medicine. Bethesda, MD (Internet Version). Edition expires 1/31/2000; provided by Truven Health Analytics Inc., Greenwood Village, CO.
- HSDB: Hazardous Substances Data Bank. National Library of Medicine. Bethesda, MD (Internet Version). Edition expires 2000; provided by Truven Health Analytics Inc., Greenwood Village, CO.
- Hallam MJ, Cubison T, Dheansa B, et al: Managing frostbite. BMJ 2010; 341:c5864-.
- Hathaway GJ, Proctor NH, & Hughes JP: Chemical Hazards of the Workplace, 4th ed, Van Nostrand Reinhold Company, New York, NY, 1996.
- Howard PH: Handbook of Environmental Fate & Exposure Data for Organic Chemicals, Vol 2, Lewis Publishers, Chelsea, MI, 1990a.
- Howard PH: Handbook of Environmental Fate and Exposure Data for Organic Chemicals. Volume II: Solvents, Lewis Publishers, Chelsea, MI, 1990.
- IARC Working Group on the Evaluation of Carcinogenic Risks to Humans : IARC Monographs on the Evaluation of Carcinogenic Risks to Humans: 1,3-Butadiene, Ethylene Oxide and Vinyl Halides (Vinyl Fluoride, Vinyl Chloride and Vinyl Bromide), 97, International Agency for Research on Cancer, Lyon, France, 2008.
- IARC Working Group on the Evaluation of Carcinogenic Risks to Humans : IARC Monographs on the Evaluation of Carcinogenic Risks to Humans: Formaldehyde, 2-Butoxyethanol and 1-tert-Butoxypropan-2-ol, 88, International Agency for Research on Cancer, Lyon, France, 2006.
- IARC Working Group on the Evaluation of Carcinogenic Risks to Humans : IARC Monographs on the Evaluation of Carcinogenic Risks to Humans: Household Use of Solid Fuels and High-temperature Frying, 95, International Agency for Research on Cancer, Lyon, France, 2010a.
- IARC Working Group on the Evaluation of Carcinogenic Risks to Humans : IARC Monographs on the Evaluation of Carcinogenic Risks to Humans: Smokeless Tobacco and Some Tobacco-specific N-Nitrosamines, 89, International Agency for Research on Cancer, Lyon, France, 2007.
- IARC Working Group on the Evaluation of Carcinogenic Risks to Humans : IARC Monographs on the Evaluation of Carcinogenic Risks to Humans: Some Non-heterocyclic Polycyclic Aromatic Hydrocarbons and Some Related Exposures, 92, International Agency for Research on Cancer, Lyon, France, 2010.
- IARC: List of all agents, mixtures and exposures evaluated to date - IARC Monographs: Overall Evaluations of Carcinogenicity to Humans, Volumes 1-88, 1972-PRESENT. World Health Organization, International Agency for Research on Cancer. Lyon, FranceAvailable from URL: http://monographs.iarc.fr/monoeval/crthall.html. As accessed Oct 07, 2004.
- ICAO: Technical Instructions for the Safe Transport of Dangerous Goods by Air, 2003-2004. International Civil Aviation Organization, Montreal, Quebec, Canada, 2002.
- ILC Dover, Inc.: Ready 1 The Chemturion Limited Use Chemical Protective Suit, ILC Dover, Inc., Frederica, DE, 1998.
- ILO: ILO Encyclopaedia of Occupational Health and Safety, 3rd ed, Vol I, Parmeggiani L (Ed), International Labour Organization, Geneva, Switzerland, 1983, pp 895-897.
- International Agency for Research on Cancer (IARC): IARC monographs on the evaluation of carcinogenic risks to humans: list of classifications, volumes 1-116. International Agency for Research on Cancer (IARC). Lyon, France. 2016. Available from URL: http://monographs.iarc.fr/ENG/Classification/latest_classif.php. As accessed 2016-08-24.
- International Agency for Research on Cancer: IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. World Health Organization. Geneva, Switzerland. 2015. Available from URL: http://monographs.iarc.fr/ENG/Classification/. As accessed 2015-08-06.
- Kappler, Inc.: Suit Smart. Kappler, Inc.. Guntersville, AL. 2001. Available from URL: http://www.kappler.com/suitsmart/smartsuit2/na_english.asp?select=1. As accessed 7/10/2001.
- Kimberly-Clark, Inc.: Chemical Test Results. Kimberly-Clark, Inc.. Atlanta, GA. 2002. Available from URL: http://www.kc-safety.com/tech_cres.html. As accessed 10/4/2002.
- Kizer KW: Toxic inhalations. Emerg Med Clin North Am 1984; 2:649-666.
- LaCrosse-Rainfair: Safety Products, LaCrosse-Rainfair, Racine, WI, 1997.
- Lewis RJ: Dangerous Properties of Industrial Materials, 9th ed, Van Nostrand Reinhold Co, New York, NY, 1996a.
- Lewis RJ: Sax's Dangerous Properties of Industrial Materials, 9th ed, Van Nostrand Reinhold Company, New York, NY, 1996.
- MAPA Professional: Chemical Resistance Guide. MAPA North America. Columbia, TN. 2003. Available from URL: http://www.mapaglove.com/pro/ChemicalSearch.asp. As accessed 4/21/2003.
- MAPA Professional: Chemical Resistance Guide. MAPA North America. Columbia, TN. 2004. Available from URL: http://www.mapaglove.com/ProductSearch.cfm?id=1. As accessed 6/10/2004.
- Mar-Mac Manufacturing, Inc: Product Literature, Protective Apparel, Mar-Mac Manufacturing, Inc., McBee, SC, 1995.
- Marigold Industrial: US Chemical Resistance Chart, on-line version. Marigold Industrial. Norcross, GA. 2003. Available from URL: www.marigoldindustrial.com/charts/uschart/uschart.html. As accessed 4/14/2003.
- Memphis Glove Company: Permeation Guide. Memphis Glove Company. Memphis, TN. 2001. Available from URL: http://www.memphisglove.com/permeation.html. As accessed 7/2/2001.
- Montgomery Safety Products: Montgomery Safety Products Chemical Resistant Glove Guide, Montgomery Safety Products, Canton, OH, 1995.
- Murphy JV, Banwell PE, & Roberts AHN: Frostbite: pathogenesis and treatment. J Trauma 2000; 48:171-178.
- NFPA: Fire Protection Guide to Hazardous Materials, 13th ed., National Fire Protection Association, Quincy, MA, 2002.
- NIOSH : Pocket Guide to Chemical Hazards. National Institute for Occupational Safety and Health. Cincinnati, OH (Internet Version). Edition expires 2000; provided by Truven Health Analytics Inc., Greenwood Village, CO.
- NIOSH: Pocket Guide to Chemcial Hazards. National Institute for Occupational Safety and Health. Cincinnati, OH (Internet Version). Edition expires 2000; provided by Truven Health Analytics Inc., Greenwood Village, CO.
- NRC: Acute Exposure Guideline Levels for Selected Airborne Chemicals - Volume 1, Subcommittee on Acute Exposure Guideline Levels, Committee on Toxicology, Board on Environmental Studies and Toxicology, Commission of Life Sciences, National Research Council. National Academy Press, Washington, DC, 2001.
- NRC: Acute Exposure Guideline Levels for Selected Airborne Chemicals - Volume 2, Subcommittee on Acute Exposure Guideline Levels, Committee on Toxicology, Board on Environmental Studies and Toxicology, Commission of Life Sciences, National Research Council. National Academy Press, Washington, DC, 2002.
- NRC: Acute Exposure Guideline Levels for Selected Airborne Chemicals - Volume 3, Subcommittee on Acute Exposure Guideline Levels, Committee on Toxicology, Board on Environmental Studies and Toxicology, Commission of Life Sciences, National Research Council. National Academy Press, Washington, DC, 2003.
- NRC: Acute Exposure Guideline Levels for Selected Airborne Chemicals - Volume 4, Subcommittee on Acute Exposure Guideline Levels, Committee on Toxicology, Board on Environmental Studies and Toxicology, Commission of Life Sciences, National Research Council. National Academy Press, Washington, DC, 2004.
- Nat-Wear: Protective Clothing, Hazards Chart. Nat-Wear. Miora, NY. 2001. Available from URL: http://www.natwear.com/hazchart1.htm. As accessed 7/12/2001.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for 1,2,3-Trimethylbenzene (Proposed). United States Environmental Protection Agency. Washington, DC. 2006k. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d68a&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for 1,2,4-Trimethylbenzene (Proposed). United States Environmental Protection Agency. Washington, DC. 2006m. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d68a&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for 1,2-Butylene Oxide (Proposed). United States Environmental Protection Agency. Washington, DC. 2008d. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648083cdbb&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for 1,2-Dibromoethane (Proposed). United States Environmental Protection Agency. Washington, DC. 2007g. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064802796db&disposition=attachment&contentType=pdf. As accessed 2010-08-18.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for 1,3,5-Trimethylbenzene (Proposed). United States Environmental Protection Agency. Washington, DC. 2006l. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d68a&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for 2-Ethylhexyl Chloroformate (Proposed). United States Environmental Protection Agency. Washington, DC. 2007b. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648037904e&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Acrylonitrile (Proposed). United States Environmental Protection Agency. Washington, DC. 2007c. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648028e6a3&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Adamsite (Proposed). United States Environmental Protection Agency. Washington, DC. 2007h. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020fd29&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Agent BZ (3-quinuclidinyl benzilate) (Proposed). United States Environmental Protection Agency. Washington, DC. 2007f. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064803ad507&disposition=attachment&contentType=pdf. As accessed 2010-08-18.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Allyl Chloride (Proposed). United States Environmental Protection Agency. Washington, DC. 2008. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648039d9ee&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Aluminum Phosphide (Proposed). United States Environmental Protection Agency. Washington, DC. 2005b. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c5ed&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Arsenic Trioxide (Proposed). United States Environmental Protection Agency. Washington, DC. 2007m. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480220305&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Automotive Gasoline Unleaded (Proposed). United States Environmental Protection Agency. Washington, DC. 2009a. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a7cc17&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Biphenyl (Proposed). United States Environmental Protection Agency. Washington, DC. 2005j. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064801ea1b7&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Bis-Chloromethyl Ether (BCME) (Proposed). United States Environmental Protection Agency. Washington, DC. 2006n. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648022db11&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Boron Tribromide (Proposed). United States Environmental Protection Agency. Washington, DC. 2008a. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064803ae1d3&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Bromine Chloride (Proposed). United States Environmental Protection Agency. Washington, DC. 2007d. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648039732a&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Bromoacetone (Proposed). United States Environmental Protection Agency. Washington, DC. 2008e. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064809187bf&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Calcium Phosphide (Proposed). United States Environmental Protection Agency. Washington, DC. 2005d. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c5ed&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Carbonyl Fluoride (Proposed). United States Environmental Protection Agency. Washington, DC. 2008b. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064803ae328&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Carbonyl Sulfide (Proposed). United States Environmental Protection Agency. Washington, DC. 2007e. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648037ff26&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Chlorobenzene (Proposed). United States Environmental Protection Agency. Washington, DC. 2008c. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064803a52bb&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Cyanogen (Proposed). United States Environmental Protection Agency. Washington, DC. 2008f. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064809187fe&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Dimethyl Phosphite (Proposed). United States Environmental Protection Agency. Washington, DC. 2009. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a7cbf3&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Diphenylchloroarsine (Proposed). United States Environmental Protection Agency. Washington, DC. 2007l. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020fd29&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Ethyl Isocyanate (Proposed). United States Environmental Protection Agency. Washington, DC. 2008h. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648091884e&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Ethyl Phosphorodichloridate (Proposed). United States Environmental Protection Agency. Washington, DC. 2008i. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480920347&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Ethylbenzene (Proposed). United States Environmental Protection Agency. Washington, DC. 2008g. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064809203e7&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Ethyldichloroarsine (Proposed). United States Environmental Protection Agency. Washington, DC. 2007j. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020fd29&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Germane (Proposed). United States Environmental Protection Agency. Washington, DC. 2008j. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480963906&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Hexafluoropropylene (Proposed). United States Environmental Protection Agency. Washington, DC. 2006. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064801ea1f5&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Ketene (Proposed). United States Environmental Protection Agency. Washington, DC. 2007. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020ee7c&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Magnesium Aluminum Phosphide (Proposed). United States Environmental Protection Agency. Washington, DC. 2005h. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c5ed&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Magnesium Phosphide (Proposed). United States Environmental Protection Agency. Washington, DC. 2005g. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c5ed&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Malathion (Proposed). United States Environmental Protection Agency. Washington, DC. 2009k. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064809639df&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Mercury Vapor (Proposed). United States Environmental Protection Agency. Washington, DC. 2009b. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a8a087&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Methyl Isothiocyanate (Proposed). United States Environmental Protection Agency. Washington, DC. 2008k. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480963a03&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Methyl Parathion (Proposed). United States Environmental Protection Agency. Washington, DC. 2008l. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480963a57&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Methyl tertiary-butyl ether (Proposed). United States Environmental Protection Agency. Washington, DC. 2007a. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064802a4985&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Methylchlorosilane (Proposed). United States Environmental Protection Agency. Washington, DC. 2005. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c5f4&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Methyldichloroarsine (Proposed). United States Environmental Protection Agency. Washington, DC. 2007i. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020fd29&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Methyldichlorosilane (Proposed). United States Environmental Protection Agency. Washington, DC. 2005a. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c646&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Nitrogen Mustard (HN1 CAS Reg. No. 538-07-8) (Proposed). United States Environmental Protection Agency. Washington, DC. 2006a. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d6cb&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Nitrogen Mustard (HN2 CAS Reg. No. 51-75-2) (Proposed). United States Environmental Protection Agency. Washington, DC. 2006b. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d6cb&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Nitrogen Mustard (HN3 CAS Reg. No. 555-77-1) (Proposed). United States Environmental Protection Agency. Washington, DC. 2006c. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d6cb&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Nitrogen Tetroxide (Proposed). United States Environmental Protection Agency. Washington, DC. 2008n. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648091855b&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Nitrogen Trifluoride (Proposed). United States Environmental Protection Agency. Washington, DC. 2009l. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480963e0c&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Parathion (Proposed). United States Environmental Protection Agency. Washington, DC. 2008o. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480963e32&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Perchloryl Fluoride (Proposed). United States Environmental Protection Agency. Washington, DC. 2009c. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a7e268&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Perfluoroisobutylene (Proposed). United States Environmental Protection Agency. Washington, DC. 2009d. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a7e26a&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Phenyl Isocyanate (Proposed). United States Environmental Protection Agency. Washington, DC. 2008p. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648096dd58&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Phenyl Mercaptan (Proposed). United States Environmental Protection Agency. Washington, DC. 2006d. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020cc0c&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Phenyldichloroarsine (Proposed). United States Environmental Protection Agency. Washington, DC. 2007k. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020fd29&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Phorate (Proposed). United States Environmental Protection Agency. Washington, DC. 2008q. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648096dcc8&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Phosgene (Draft-Revised). United States Environmental Protection Agency. Washington, DC. 2009e. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a8a08a&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Phosgene Oxime (Proposed). United States Environmental Protection Agency. Washington, DC. 2009f. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a7e26d&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Potassium Cyanide (Proposed). United States Environmental Protection Agency. Washington, DC. 2009g. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a7cbb9&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Potassium Phosphide (Proposed). United States Environmental Protection Agency. Washington, DC. 2005c. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c5ed&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Propargyl Alcohol (Proposed). United States Environmental Protection Agency. Washington, DC. 2006e. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020ec91&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Selenium Hexafluoride (Proposed). United States Environmental Protection Agency. Washington, DC. 2006f. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020ec55&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Silane (Proposed). United States Environmental Protection Agency. Washington, DC. 2006g. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d523&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Sodium Cyanide (Proposed). United States Environmental Protection Agency. Washington, DC. 2009h. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a7cbb9&disposition=attachment&contentType=pdf. As accessed 2010-08-15.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Sodium Phosphide (Proposed). United States Environmental Protection Agency. Washington, DC. 2005i. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c5ed&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Strontium Phosphide (Proposed). United States Environmental Protection Agency. Washington, DC. 2005f. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c5ed&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Sulfuryl Chloride (Proposed). United States Environmental Protection Agency. Washington, DC. 2006h. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020ec7a&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Tear Gas (Proposed). United States Environmental Protection Agency. Washington, DC. 2008s. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648096e551&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Tellurium Hexafluoride (Proposed). United States Environmental Protection Agency. Washington, DC. 2009i. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a7e2a1&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Tert-Octyl Mercaptan (Proposed). United States Environmental Protection Agency. Washington, DC. 2008r. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648096e5c7&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Tetramethoxysilane (Proposed). United States Environmental Protection Agency. Washington, DC. 2006j. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d632&disposition=attachment&contentType=pdf. As accessed 2010-08-17.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Trimethoxysilane (Proposed). United States Environmental Protection Agency. Washington, DC. 2006i. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d632&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Trimethyl Phosphite (Proposed). United States Environmental Protection Agency. Washington, DC. 2009j. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a7d608&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Trimethylacetyl Chloride (Proposed). United States Environmental Protection Agency. Washington, DC. 2008t. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648096e5cc&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for Zinc Phosphide (Proposed). United States Environmental Protection Agency. Washington, DC. 2005e. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020c5ed&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
- National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances: Acute Exposure Guideline Levels (AEGLs) for n-Butyl Isocyanate (Proposed). United States Environmental Protection Agency. Washington, DC. 2008m. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=09000064808f9591&disposition=attachment&contentType=pdf. As accessed 2010-08-12.
- National Institute for Occupational Safety and Health: NIOSH Pocket Guide to Chemical Hazards, U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, Cincinnati, OH, 2007.
- National Research Council : Acute exposure guideline levels for selected airborne chemicals, 5, National Academies Press, Washington, DC, 2007.
- National Research Council: Acute exposure guideline levels for selected airborne chemicals, 6, National Academies Press, Washington, DC, 2008.
- National Research Council: Acute exposure guideline levels for selected airborne chemicals, 7, National Academies Press, Washington, DC, 2009.
- National Research Council: Acute exposure guideline levels for selected airborne chemicals, 8, National Academies Press, Washington, DC, 2010.
- Neese Industries, Inc.: Fabric Properties Rating Chart. Neese Industries, Inc.. Gonzales, LA. 2003. Available from URL: http://www.neeseind.com/new/TechGroup.asp?Group=Fabric+Properties&Family=Technical. As accessed 4/15/2003.
- North: Chemical Resistance Comparison Chart - Protective Footwear . North Safety. Cranston, RI. 2002. Available from URL: http://www.linkpath.com/index2gisufrm.php?t=N-USA1. As accessed April 30, 2004.
- North: eZ Guide Interactive Software. North Safety. Cranston, RI. 2002a. Available from URL: http://www.northsafety.com/feature1.htm. As accessed 8/31/2002.
- Playtex: Fits Tough Jobs Like a Glove, Playtex, Westport, CT, 1995.
- RTECS : Registry of Toxic Effects of Chemical Substances. National Institute for Occupational Safety and Health. Cincinnati, OH (Internet Version). Edition expires 1/31/2000; provided by Truven Health Analytics Inc., Greenwood Village, CO.
- River City: Protective Wear Product Literature, River City, Memphis, TN, 1995.
- Safety 4: North Safety Products: Chemical Protection Guide. North Safety. Cranston, RI. 2002. Available from URL: http://www.safety4.com/guide/set_guide.htm. As accessed 8/14/2002.
- Servus: Norcross Safety Products, Servus Rubber, Servus, Rock Island, IL, 1995.
- Sittig M: Handbook of Toxic and Hazardous Chemicals and Carcinogens, 3rd ed, Noyes Publications, Park Ridge, NH, 1991.
- Standard Safety Equipment: Product Literature, Standard Safety Equipment, McHenry, IL, 1995.
- Tingley: Chemical Degradation for Footwear and Clothing. Tingley. South Plainfield, NJ. 2002. Available from URL: http://www.tingleyrubber.com/tingley/Guide_ChemDeg.pdf. As accessed 10/16/2002.
- Trelleborg-Viking, Inc.: Chemical and Biological Tests (database). Trelleborg-Viking, Inc.. Portsmouth, NH. 2002. Available from URL: http://www.trelleborg.com/protective/. As accessed 10/18/2002.
- Trelleborg-Viking, Inc.: Trellchem Chemical Protective Suits, Interactive manual & Chemical Database. Trelleborg-Viking, Inc.. Portsmouth, NH. 2001.
- U.S. Department of Energy, Office of Emergency Management: Protective Action Criteria (PAC) with AEGLs, ERPGs, & TEELs: Rev. 26 for chemicals of concern. U.S. Department of Energy, Office of Emergency Management. Washington, DC. 2010. Available from URL: http://www.hss.doe.gov/HealthSafety/WSHP/Chem_Safety/teel.html. As accessed 2011-06-27.
- U.S. Department of Health and Human Services, Public Health Service, National Toxicology Project : 11th Report on Carcinogens. U.S. Department of Health and Human Services, Public Health Service, National Toxicology Program. Washington, DC. 2005. Available from URL: http://ntp.niehs.nih.gov/INDEXA5E1.HTM?objectid=32BA9724-F1F6-975E-7FCE50709CB4C932. As accessed 2011-06-27.
- U.S. Environmental Protection Agency: Discarded commercial chemical products, off-specification species, container residues, and spill residues thereof. Environmental Protection Agency's (EPA) Resource Conservation and Recovery Act (RCRA); List of hazardous substances and reportable quantities 2010b; 40CFR(261.33, e-f):77-.
- U.S. Environmental Protection Agency: Integrated Risk Information System (IRIS). U.S. Environmental Protection Agency. Washington, DC. 2011. Available from URL: http://cfpub.epa.gov/ncea/iris/index.cfm?fuseaction=iris.showSubstanceList&list_type=date. As accessed 2011-06-21.
- U.S. Environmental Protection Agency: List of Radionuclides. U.S. Environmental Protection Agency. Washington, DC. 2010a. Available from URL: http://www.gpo.gov/fdsys/pkg/CFR-2010-title40-vol27/pdf/CFR-2010-title40-vol27-sec302-4.pdf. As accessed 2011-06-17.
- U.S. Environmental Protection Agency: List of hazardous substances and reportable quantities. U.S. Environmental Protection Agency. Washington, DC. 2010. Available from URL: http://www.gpo.gov/fdsys/pkg/CFR-2010-title40-vol27/pdf/CFR-2010-title40-vol27-sec302-4.pdf. As accessed 2011-06-17.
- U.S. Environmental Protection Agency: The list of extremely hazardous substances and their threshold planning quantities (CAS Number Order). U.S. Environmental Protection Agency. Washington, DC. 2010c. Available from URL: http://www.gpo.gov/fdsys/pkg/CFR-2010-title40-vol27/pdf/CFR-2010-title40-vol27-part355.pdf. As accessed 2011-06-17.
- U.S. Occupational Safety and Health Administration: Part 1910 - Occupational safety and health standards (continued) Occupational Safety, and Health Administration's (OSHA) list of highly hazardous chemicals, toxics and reactives. Subpart Z - toxic and hazardous substances. CFR 2010 2010; Vol6(SEC1910):7-.
- U.S. Occupational Safety, and Health Administration (OSHA): Process safety management of highly hazardous chemicals. 29 CFR 2010 2010; 29(1910.119):348-.
- United States Environmental Protection Agency Office of Pollution Prevention and Toxics: Acute Exposure Guideline Levels (AEGLs) for Vinyl Acetate (Proposed). United States Environmental Protection Agency. Washington, DC. 2006. Available from URL: http://www.regulations.gov/search/Regs/contentStreamer?objectId=090000648020d6af&disposition=attachment&contentType=pdf. As accessed 2010-08-16.
- Wells Lamont Industrial: Chemical Resistant Glove Application Chart. Wells Lamont Industrial. Morton Grove, IL. 2002. Available from URL: http://www.wellslamontindustry.com. As accessed 10/31/2002.
- Workrite: Chemical Splash Protection Garments, Technical Data and Application Guide, W.L. Gore Material Chemical Resistance Guide, Workrite, Oxnard, CA, 1997.
|