6.5.1) PREVENTION OF ABSORPTION/PREHOSPITAL
A) Toxicity after an acute ingestion is unlikely, and is generally only expected with chronic use. Prehospital gastrointestinal decontamination is generally unnecessary.
6.5.2) PREVENTION OF ABSORPTION
A) SUMMARY 1) Toxicity after an acute ingestion is unlikely, and is generally only expected with chronic use. Gastrointestinal decontamination is generally unnecessary. Consider activated charcoal only if coingestants with significant toxicity are involved.
B) ACTIVATED CHARCOAL 1) CHARCOAL ADMINISTRATION a) Consider administration of activated charcoal after a potentially toxic ingestion (Chyka et al, 2005). Administer charcoal as an aqueous slurry; most effective when administered within one hour of ingestion.
2) CHARCOAL DOSE a) Use a minimum of 240 milliliters of water per 30 grams charcoal (FDA, 1985). Optimum dose not established; usual dose is 25 to 100 grams in adults and adolescents; 25 to 50 grams in children aged 1 to 12 years (or 0.5 to 1 gram/kilogram body weight) ; and 0.5 to 1 gram/kilogram in infants up to 1 year old (Chyka et al, 2005). 1) Routine use of a cathartic with activated charcoal is NOT recommended as there is no evidence that cathartics reduce drug absorption and cathartics are known to cause adverse effects such as nausea, vomiting, abdominal cramps, electrolyte imbalances and occasionally hypotension (None Listed, 2004).
b) ADVERSE EFFECTS/CONTRAINDICATIONS 1) Complications: emesis, aspiration (Chyka et al, 2005). Aspiration may be complicated by acute respiratory failure, ARDS, bronchiolitis obliterans or chronic lung disease (Golej et al, 2001; Graff et al, 2002; Pollack et al, 1981; Harris & Filandrinos, 1993; Elliot et al, 1989; Rau et al, 1988; Golej et al, 2001; Graff et al, 2002). Refer to the ACTIVATED CHARCOAL/TREATMENT management for further information. 2) Contraindications: unprotected airway (increases risk/severity of aspiration) , nonfunctioning gastrointestinal tract, uncontrolled vomiting, and ingestion of most hydrocarbons (Chyka et al, 2005).
6.5.3) TREATMENT
A) SUPPORT 1) MANAGEMENT OF MILD TO MODERATE TOXICITY a) Treatment is symptomatic and supportive. Correct any significant fluid and/or electrolyte abnormalities in patients with severe diarrhea and/or vomiting.
2) MANAGEMENT OF SEVERE TOXICITY a) Treatment is symptomatic and supportive. Significant toxicity is generally not expected after a creatine overdose. In patients with an acute allergic reaction, oxygen therapy, bronchodilators, diphenhydramine, corticosteroids, vasopressors and epinephrine may be required.
B) MONITORING OF PATIENT 1) Monitor serum electrolytes in patients with significant vomiting and/or diarrhea. 2) Monitor renal function following a significant acute exposure or chronic use. 3) Monitor creatine phosphokinase in patients with muscle pain, tenderness or weakness. 4) Monitor renal function and urine output in patients with rhabdomyolysis.
C) RHABDOMYOLYSIS 1) SUMMARY: Early aggressive fluid replacement is the mainstay of therapy and may help prevent renal insufficiency. Diuretics such as mannitol or furosemide may be added if necessary to maintain urine output but only after volume status has been restored as hypovolemia will increase renal tubular damage. Urinary alkalinization is NOT routinely recommended. 2) Initial treatment should be directed towards controlling acute metabolic disturbances such as hyperkalemia, hyperthermia, and hypovolemia. Control seizures, agitation, and muscle contractions (Erdman & Dart, 2004). 3) FLUID REPLACEMENT: Early and aggressive fluid replacement is the mainstay of therapy to prevent renal failure. Vigorous fluid replacement with 0.9% saline (10 to 15 mL/kg/hour) is necessary even if there is no evidence of dehydration. Several liters of fluid may be needed within the first 24 hours (Walter & Catenacci, 2008; Camp, 2009; Huerta-Alardin et al, 2005; Criddle, 2003; Polderman, 2004). Hypovolemia, increased insensible losses, and third spacing of fluid commonly increase fluid requirements. Strive to maintain a urine output of at least 1 to 2 mL/kg/hour (or greater than 150 to 300 mL/hour) (Walter & Catenacci, 2008; Camp, 2009; Erdman & Dart, 2004; Criddle, 2003). To maintain a urine output this high, 500 to 1000 mL of fluid per hour may be required (Criddle, 2003). Monitor fluid input and urine output, plus insensible losses. Monitor for evidence of fluid overload and compartment syndrome; monitor serum electrolytes, CK, and renal function tests. 4) DIURETICS: Diuretics (eg, mannitol or furosemide) may be needed to ensure adequate urine output and to prevent acute renal failure when used in combination with aggressive fluid therapy. Loop diuretics increase tubular flow and decrease deposition of myoglobin. These agents should be used only after volume status has been restored, as hypovolemia will increase renal tubular damage. If the patient is maintaining adequate urine output, loop diuretics are not necessary (Vanholder et al, 2000). 5) URINARY ALKALINIZATION: Alkalinization of the urine is not routinely recommended, as it has never been documented to reduce nephrotoxicity, and may cause complications such as hypocalcemia and hypokalemia (Walter & Catenacci, 2008; Huerta-Alardin et al, 2005; Brown et al, 2004; Polderman, 2004). Retrospective studies have failed to demonstrate any clinical benefit from the use of urinary alkalinization (Brown et al, 2004; Polderman, 2004; Homsi et al, 1997).
D) ACUTE ALLERGIC REACTION 1) SUMMARY a) Mild to moderate allergic reactions may be treated with antihistamines with or without inhaled beta adrenergic agonists, corticosteroids or epinephrine. Treatment of severe anaphylaxis also includes oxygen supplementation, aggressive airway management, epinephrine, ECG monitoring, and IV fluids.
2) BRONCHOSPASM a) ALBUTEROL 1) ADULT: 2.5 to 5 milligrams in 2 to 4.5 milliliters of normal saline delivered per nebulizer every 20 minutes up to 3 doses. If incomplete response administer 2.5 to 10 mg every 1 to 4 hours as needed, or 10 to 15 mg/hr by continuous nebulization as needed (National Heart,Lung,and Blood Institute, 2007). CHILD: 0.15 milligram/kilogram (minimum 2.5 milligrams) per nebulizer every 20 minutes up to 3 doses. If incomplete response administer 0.15 to 0.3 mg/kg (up to 10 mg) every 1 to 4 hours as needed, or 0.5 mg/kg/hr by continuous nebulization (National Heart,Lung,and Blood Institute, 2007).
3) CORTICOSTEROIDS a) Consider systemic corticosteroids in patients with significant bronchospasm. b) PREDNISONE: ADULT: 40 to 80 milligrams/day. CHILD: 1 to 2 milligrams/kilogram/day (maximum 60 mg) in 1 to 2 divided doses divided twice daily (National Heart,Lung,and Blood Institute, 2007).
4) MILD CASES a) DIPHENHYDRAMINE 1) SUMMARY: Oral diphenhydramine, as well as other H1 antihistamines can be used as indicated (Lieberman et al, 2010). 2) ADULT: 50 milligrams orally, or 10 to 50 mg intravenously at a rate not to exceed 25 mg/min or may be given by deep intramuscular injection. A total of 100 mg may be administered if needed. Maximum daily dosage is 400 mg (Prod Info diphenhydramine HCl intravenous injection solution, intramuscular injection solution, 2013). 3) CHILD: 5 mg/kg/24 hours or 150 mg/m(2)/24 hours. Divided into 4 doses, administered intravenously at a rate not exceeding 25 mg/min or by deep intramuscular injection. Maximum daily dosage is 300 mg (Prod Info diphenhydramine HCl intravenous injection solution, intramuscular injection solution, 2013).
5) MODERATE CASES a) EPINEPHRINE: INJECTABLE SOLUTION: It should be administered early in patients by IM injection. Using a 1:1000 (1 mg/mL) solution of epinephrine. Initial Dose: 0.01 mg/kg intramuscularly with a maximum dose of 0.5 mg in adults and 0.3 mg in children. The dose may be repeated every 5 to 15 minutes, if no clinical improvement. Most patients respond to 1 or 2 doses (Nowak & Macias, 2014).
6) SEVERE CASES a) EPINEPHRINE 1) INTRAVENOUS BOLUS: ADULT: 1 mg intravenously as a 1:10,000 (0.1 mg/mL) solution; CHILD: 0.01 mL/kg intravenously to a maximum single dose of 1 mg given as a 1:10,000 (0.1 mg/mL) solution. It can be repeated every 3 to 5 minutes as needed. The dose can also be given by the intraosseous route if IV access cannot be established (Lieberman et al, 2015). ALTERNATIVE ROUTE: ENDOTRACHEAL ADMINISTRATION: If IV/IO access is unavailable. DOSE: ADULT: Administer 2 to 2.5 mg of 1:1000 (1 mg/mL) solution diluted in 5 to 10 mL of sterile water via endotracheal tube. CHILD: DOSE: 0.1 mg/kg to a maximum of 2.5 mg administered as a 1:1000 (1 mg/mL) solution diluted in 5 to 10 mL of sterile water via endotracheal tube (Lieberman et al, 2015). 2) INTRAVENOUS INFUSION: Intravenous administration may be considered in patients poorly responsive to IM or SubQ epinephrine. An epinephrine infusion may be prepared by adding 1 mg (1 mL of 1:1000 (1 mg/mL) solution) to 250 mL D5W, yielding a concentration of 4 mcg/mL, and infuse this solution IV at a rate of 1 mcg/min to 10 mcg/min (maximum rate). CHILD: A dosage of 0.01 mg/kg (0.1 mL/kg of a 1:10,000 (0.1 mg/mL) solution up to 10 mcg/min (maximum dose 0.3 mg) is recommended for children (Lieberman et al, 2010). Careful titration of a continuous infusion of IV epinephrine, based on the severity of the reaction, along with a crystalloid infusion can be considered in the treatment of anaphylactic shock. It appears to be a reasonable alternative to IV boluses, if the patient is not in cardiac arrest (Vanden Hoek,TL,et al).
7) AIRWAY MANAGEMENT a) OXYGEN: 5 to 10 liters/minute via high flow mask. b) INTUBATION: Perform early if any stridor or signs of airway obstruction. c) CRICOTHYROTOMY: Use if unable to intubate with complete airway obstruction (Vanden Hoek,TL,et al). d) BRONCHODILATORS are recommended for mild to severe bronchospasm. e) ALBUTEROL: ADULT: 2.5 to 5 milligrams in 2 to 4.5 milliliters of normal saline delivered per nebulizer every 20 minutes up to 3 doses. If incomplete response administer 2.5 to 10 mg every 1 to 4 hours as needed, or 10 to 15 mg/hr by continuous nebulization as needed (National Heart,Lung,and Blood Institute, 2007). f) ALBUTEROL: CHILD: 0.15 milligram/kilogram (minimum 2.5 milligrams) per nebulizer every 20 minutes up to 3 doses. If incomplete response administer 0.15 to 0.3 milligram/kilogram (maximum 10 milligrams) every 1 to 4 hours as needed OR administer 0.5 mg/kg/hr by continuous nebulization (National Heart,Lung,and Blood Institute, 2007).
8) MONITORING a) CARDIAC MONITOR: All complicated cases. b) IV ACCESS: Routine in all complicated cases.
9) HYPOTENSION a) If hypotensive give 500 to 2000 milliliters crystalloid initially (20 milliliters/kilogram in children) and titrate to desired effect (stabilization of vital signs, mentation, urine output); adults may require up to 6 to 10 L/24 hours. Central venous or pulmonary artery pressure monitoring is recommended in patients with persistent hypotension. 1) VASOPRESSORS: Should be used in refractory cases unresponsive to repeated doses of epinephrine and after vigorous intravenous crystalloid rehydration (Lieberman et al, 2010). 2) DOPAMINE: Initial Dose: 2 to 20 micrograms/kilogram/minute intravenously; titrate to maintain systolic blood pressure greater than 90 mm Hg (Lieberman et al, 2010).
10) H1 and H2 ANTIHISTAMINES a) SUMMARY: Antihistamines are second-line therapy and are used as supportive therapy and should not be used in place of epinephrine (Lieberman et al, 2010). 1) DIPHENHYDRAMINE: ADULT: 25 to 50 milligrams via a slow intravenous infusion or IM. PEDIATRIC: 1 milligram/kilogram via slow intravenous infusion or IM up to 50 mg in children (Lieberman et al, 2010).
b) RANITIDINE: ADULT: 1 mg/kg parenterally; CHILD: 12.5 to 50 mg parenterally. If the intravenous route is used, ranitidine should be infused over 10 to 15 minutes or diluted in 5% dextrose to a volume of 20 mL and injected over 5 minutes (Lieberman et al, 2010). c) Oral diphenhydramine, as well as other H1 antihistamines, can also be used as indicated (Lieberman et al, 2010). 11) DYSRHYTHMIAS a) Dysrhythmias and cardiac dysfunction may occur primarily or iatrogenically as a result of pharmacologic treatment (epinephrine) (Vanden Hoek,TL,et al). Monitor and correct serum electrolytes, oxygenation and tissue perfusion. Treat with antiarrhythmic agents as indicated.
12) OTHER THERAPIES a) There have been a few reports of patients with anaphylaxis, with or without cardiac arrest, that have responded to vasopressin therapy that did not respond to standard therapy. Although there are no randomized controlled trials, other alternative vasoactive therapies (ie, vasopressin, norepinephrine, methoxamine, and metaraminol) may be considered in patients in cardiac arrest secondary to anaphylaxis that do not respond to epinephrine (Vanden Hoek,TL,et al).
|